首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present work was to examine whether partial acid hydrolysis (PAH) of a high‐amylose maize starch (ae‐VII) would enhance the effects of hydrothermal treatments to produce granular resistant starch (RS) that is stable to further heat treatment at atmospheric pressure. PAH ae‐VII starches were prepared by heating 35% (w/v) suspensions with 1% (w/w) HCl at 25°C for 6, 30, and 78 hr. Native and PAH starches were then treated by annealing (ANN) or heat‐moisture treatment (HMT). ANN was done at 70% moisture at 50, 60, or 70°C for 24 hr, and HMT was done at 30% moisture at 100, 120, or 140°C for 80 min. RS that survives boiling during analysis was determined by a modification of the AOAC method for determining total dietary fiber. RS was also determined by the Englyst method. Little change in the gelatinization enthalpy was found for ae‐VII starch after PAH, ANN, or HMT as individual treatments. After PAH, either ANN or HMT led to decreased gelatinization enthalpy. HMT and ANN alone increased boiling‐stable RS but decreased total RS. After PAH of ae‐VII, either ANN or HMT tended to increase the yield of boiling‐stable granular RS, with the greatest yield (≤63.2%) observed for HMT.  相似文献   

2.
Changes in the digestibility and the properties of the starch isolated from normal and waxy maize kernels after heat‐moisture treatment (HMT) followed by different temperature cycling (TC) or isothermal holding (IH) conditions were investigated. Moist maize kernels were heated at 80°C for 2 hr. The HMT maize kernels were subjected to various conditions designed to accelerate retrogradation of the starch within endosperm cells. Two methods were used to accelerate crystallization: TC with a low temperature of –24°C for 1 hr and a high temperature of 20, 30, or 50°C for 2, 4, or 24 hr for 1, 2, or 4 cycles, and IH at 4, 20, 30, or 50°C for 24 hr. The starch granules were then isolated from the treated kernels. The starch isolated from HMT normal maize kernels treated by TC using –24°C for 1 hr and 30°C for 2 hr for 2 cycles gave the greatest SDS content (24%) and starch yield (54%). The starch isolated from HMT waxy maize kernels treated by TC using –24°C for 1 hr and 30°C for 24 hr for 1 cycle had an SDS content of 19% and starch yield of 43%. The results suggest that TC after HMT changes the internal structure of maize starch granules in a way that results in the formation of SDS (and RS). They also suggest that thermal treatment of maize kernels is more effective in producing SDS than is the same treatment of isolated starch. All starch samples isolated from treated normal maize kernels exhibited lower peak viscosities, breakdown, and final viscosities and higher pasting temperatures than did the control (untreated normal maize starch). Although peak viscosities and breakdown of the starch isolated from treated waxy maize kernels were similar to those of the control (untreated waxy maize starch), their pasting temperatures were higher. The starch isolated from treated normal and waxy maize kernels with the highest SDS contents (described above) were further examined by DSC, X‐ray diffraction, and polarized light microscopy. Onset and peak temperatures of gelatinization of both samples were higher than those of the controls. Both retained the typical A‐type diffraction pattern of the parent starches. The relative crystallinity of the starch from the treated normal maize kernels was higher than that of the control, while the relative crystallinity of the starch from the treated waxy maize kernels was not significantly different from that of the control. Both treated starches exhibited birefringence, but the granule sizes of both starches, when placed in water, were slightly larger than those of the controls.  相似文献   

3.
Rapid drying with high‐temperature air has gained interest in the rice industry, but the effects of elevated‐temperature exposure on physicochemical properties of rice are of concern. This study investigated the effects of exposing rough rice to elevated temperatures for various durations without removing moisture. Physicochemical property response was evaluated in terms of head rice yield (HRY), germination rate (GR), milled‐rice yellowing, pasting properties, and gelatinization temperatures. Two long‐grain cultivars (pure‐line Wells and hybrid CL XL729) at initial moisture contents (IMCs) of 17.9 and 18.6%, respectively, and dried moisture content (DMC) of 12.5%, were hermetically sealed and exposed to 40, 60, and 80°C for various durations. Exposure to 80°C of IMC samples of Wells and CL XL729 resulted in a significant (2.3–2.5 percentage point) reduction in the HRYs. A 2 hr exposure of both cultivars at IMC level to 60°C completely inhibited GR, and exposure to 80°C of the cultivars at both moisture content (MC) levels immediately inhibited GR. Exposure to 80°C for almost all durations and 60°C for durations over 4 hr produced significant yellowing in both cultivars at IMC. Significant yellowing in both cultivars at DMC was also observed during a 28 day storage following 80°C exposure. In general, peak viscosities of both cultivars at IMC increased only after extended exposure to 40 and 60°C, but peak viscosities of the cultivars exposed to 80°C increased sharply and immediately upon exposure. No significant differences were observed in gelatinization temperatures of either cultivar at either MC level from elevated‐temperature exposure. Results from this study suggest that extreme‐temperature exposure of rough rice affects HRY, GRs, yellowing, and pasting properties of rice, but the extent of impact is MC dependent.  相似文献   

4.
Structural characteristics of resistant starch (RS) were investigated. Tuber starches, hydrolyzed with 1N HCl at 35°C for 8 hr followed by autoclaving‐cooling treatment, were heated at 100°C for 16 hr after adjusting the moisture content to 20 or 30%. RS content of the tuber starches ranged from 5.4 to 22.7% depending on the source and type of treatment. Gelatinization parameters of RS isolated from partially acid‐hydrolyzed starch with autoclaving‐cooling followed by heat‐moisture treatment (HMT) showed higher enthalpy (ΔH) values and lower peak temperature (Tp) compared with non‐acid‐hydrolyzed RS. R values, the difference between completion and initial temperatures, and ΔH of RS increased by HMT. The X‐ray diffraction patterns of potato and sweet potato RS isolated from partially acid‐hydrolyzed starch with autoclaving‐cooling showed distinct sharp peaks at 15, 25, 27, and 28°, which decreased by HMT.  相似文献   

5.
The viscoelastic properties of glutinous rice flour extruded at moisture contents of 45–55% and barrel temperatures of 75–95°C have been investigated using a small amplitude oscillatory rheometer. High moisture contents (50 and 55%) resulted in product temperatures 3–5°C lower than the barrel temperatures. It appeared that the moisture content was a key element in influencing the value of G′ and tan δ. Raising product temperature reduced the difference in G′ caused by the moisture content. When the product temperature was >85°C, the extrudates yielded a similar degree of gelatinization despite the difference in moisture content. Meanwhile, both G′ and G″ decreased due to the disintegration of starch granules. The relationship between the energy input, measured as specific mechanical energy, and the viscoelastic properties was also assessed.  相似文献   

6.
Changes in gelatinization and retrogradation properties of two rice cultivars, Bengal and Kaybonnet, during rough rice storage were studied using differential scanning calorimetry (DSC). The storage variables included two storage moisture contents (12 and 14%), three storage temperatures (4, 21, and 38°C), and four storage durations (0, 3, 9, and 16 weeks). Rough rice cultivar, storage temperature, moisture content, and duration affected (P < 0.05) the enthalpies and temperatures of gelatinization and retrogradation of rice flour. Bengal had a higher gelatinization enthalpy (P < 0.005) but lower gelatinization temperatures (P < 0.0001) than the long-grain Kaybonnet. Rice stored at 38°C exhibited higher gelatinization enthalpy and temperatures (P < 0.05) than those stored at 4 or 21°C. Storage duration affected the gelatinization and retrogradation properties through a higher order, rather than a linear, relationship.  相似文献   

7.
Brown rice kernels (japonica type) were soaked in water at different temperatures (25 or 50°C) before cooking to a moisture content of 20 or 30%. Soaked brown rice was cooked in either the soaking water (SW) or in distilled water (DW) (rice solids to water ratio 1:1.4). Color, texture, and in vitro digestive properties of the cooked rice were examined. When the soaking temperature was higher (50°C vs. 25°C), water absorption and starch leaching were greater. To reach 20% moisture, the rice required 1 hr of soaking at 50°C but 2 hr of soaking at 25°C. Both the moisture content of the soaked rice and the soaking temperature affected the texture of the cooked brown rice. Rice that attained 20% moisture content during soaking was harder and less adhesive when cooked compared with rice that attained 30% moisture content. The rice soaked at 50°C was slightly softer but more adhesive when cooked than rice soaked at 25°C. The soaking temperature and moisture content of the rice kernels also affected the digestive properties of the cooked rice. The cooked brown rice that had attained 30% moisture before cooking was digested to a greater extent than rice that had attained 20% moisture. Even at equal moisture content, the rice soaked at the higher temperature (50°C) was digested more readily. It was assumed that the amount of soluble material leached during soaking differed according to the soaking temperature and moisture content, which subsequently affected the texture and digestive properties of the cooked brown rice. The rice cooked in its own soaking water was harder and more adhesive, had higher levels of resistant starch (RS), and exhibited smaller glycemic index (GI) values than its counterpart cooked with distilled water. This result indicated that the soluble material leached during soaking made the cooked rice harder and less digestible, perhaps due to interactions between these molecules and the gelatinized rice during cooking.  相似文献   

8.
Milled long‐grain rice samples were evaluated by differential scanning calorimetry (DSC) to determine the kinetics of starch gelatinization. The experiments were conducted with milled rice flour with a 10.6% degree of milling. DSC thermograms were obtained from 35 to 110°C using heating rates between 1°C/min and 15°C/min. The rate constants were evaluated, and two activation energies were found for different temperature ranges. At <70.1°C gelatinization was not completed. It was assumed that at <70.1°C gelatinization would only affect the amorphous regions. During the subsequent phase the crystalline regions destabilized by the amorphous component begin to gelatinize. For moisture content of 70%, wet basis, and a heating rate of 12°C/min, the enthalpy of gelatinization reaches a constant value of 7.3 J/g.  相似文献   

9.
The effects of amylose content on thermal properties of starches, dough rheology, and bread staling were investigated using starch of waxy and regular wheat genotypes. As the amylose content of starch blends decreased from 24 to 0%, the gelatinization enthalpy increased from 10.5 to 15.3 J/g and retrogradation enthalpy after 96 hr of storage at 4°C decreased from 2.2 to 0 J/g. Mixograph water absorption of starch and gluten blends increased as the amylose content decreased. Generally, lower rheofermentometer dough height, higher gas production, and a lower gas retention coefficient were observed in starch and gluten blends with 12 or 18% amylose content compared with the regular starch and gluten blend. Bread baked from starch and gluten blends exhibited a more porous crumb structure with increased loaf volume as amylose content in the starch decreased. Bread from starch and gluten blends with amylose content of 19.2–21.6% exhibited similar crumb structure to that of bread with regular wheat starch which contained 24% amylose. Crumb moisture content was similar at 5 hr after baking but higher in bread with waxy starch than in bread without waxy starch after seven days of storage at 4°C. Bread with 10% waxy wheat starch exhibited lower crumb hardness values compared with bread without waxy wheat starch. Higher retrogradation enthalpy values were observed in breads containing waxy wheat starch (4.56 J/g at 18% amylose and 5.43 J/g at 12% amylose) compared with breads containing regular wheat starch (3.82 J/g at 24% amylose).  相似文献   

10.
Although pulsed NMR (PNMR) has been used for qualitative study of starch retrogradation in selected systems, validation is necessary for its application to new systems. PNMR was used to analyze the retrogradation of rice starches in purified form, in rice flour, and in cooked rice grains. The standard curves between the relative solid content (S′, %) by PNMR and the percentage of gelatinized starch (GS, %) were determined for common rice flour, common rice starch, and waxy rice starch at different moisture contents. The coefficients of linear regression for these curves (R2) were all >0.997. Starches with different amylose contents were tested for S′ values at the stages of freshly gelatinized, retrograded (4°C, 18 days), and reheated (90°C, 20 min). The S′ of reheated starch (S′reheat) was similar to the S′ of freshly gelatinized starch (S′0), so we concluded that the increase in S′ during storage corresponded to amylopectin retrogradation. The effect of moisture content on retrogradation of rice starch, rice flour, and cooked rice grains was studied by PNMR, and the data were interpreted using the Avami equation. Decreasing the moisture content increased the rate of retrogradation and led to a higher parameter k and a lower parameter n. For moisture content in the range studied, PNMR can be used to follow amylopectin retrogradation of different rice starch systems.  相似文献   

11.
If properly executed, parboiling, a hydrothermal treatment consisting of soaking, steaming, and drying of rice, substantially reduces its milling breakage susceptibility. Here, brown rice was soaked at 40, 55, or 65°C for different times (150 s to 240 min) and subsequently parboiled under standardized steaming and drying conditions. The moisture absorption during initial soaking induced fissures in more than 90% of the rice grains, which disappeared with further soaking. The fissuring incidence in the soaked rice samples was related to that of the parboiled rice samples. The extent of starch gelatinization during steaming increased with the moisture content of the soaked grains. In addition, as a result of starch gelatinization, the level of white bellies (i.e., parboiled grains with translucent outer layers and an opaque center) decreased from over 90% to less than 3%. Rice grains need to absorb sufficient moisture during soaking to minimize the level of breakage‐susceptible white bellies and fissured rice grains in the parboiled end product.  相似文献   

12.
The effects of autoclave and oven treatments on the gelatinization of rice flour and on the rheological characteristics of its pastes were studied by differential scanning calorimetry (DSC), rapid viscoanalysis (RVA), and rotational viscometry. Flours from autoclave‐treated rice (ATR) and oven‐treated rice (OTR) were prepared, respectively, by heating at 120°C for 60 min and 160°C for 60 min followed by drying (ATR sample), and grinding at 2.2–12.9% moisture content. The rice flour dispersions were adjusted between pH 6.3 and 2.8 using 0.2M citrate buffer. The retort processing of rice flour in water pastes were done at 120°C for 20 min either once or twice. The gelatinization peak temperature (PT and To) and the peak temperature corresponding to the amylose‐lipid complexes (Tp3) of ATR increased at pH 6.3 and 2.8 compared with OTR and UTR flour. This indicates that the internal structures of the starch granules in ATR became more stable to heat and acid, even though the damaged starch content of ATR was 23% compared with 16 and 7%, respectively, for untreated rice flour (UTR) and OTR. The OTR flour pastes showed a gel‐like behavior at pH 4.5 after retort processing in water at 120°C for 20 min; however, the ATR mixture behaved more like a liquid paste. Decreases in the reducing sugar content of OTR and ATR pastes suggested that enzymes in the heat‐treated rice were denatured, which retarded the hydrolysis of glucose chains and the rupture of starch granules during pasting.  相似文献   

13.
The rheological behavior of wheat starch preparations at intermediate moisture contents (25–60%, w/w) was studied by dynamic mechanical thermal analysis (DMTA). Differential scanning calorimetry (DSC) and electron spin resonance (ESR) experiments were also performed in parallel. Upon heating wheat starch preparations from 25 to 85°C, DMTA showed first a slight decrease in storage modulus (G′) to 45–60°C, then an increase of the shear modulus (predominant effect of swelling) to 68–74°C, followed by a decrease (predominant effect of melting-softening) to 85°C. In this 25–85°C temperature range, the initial swelling and subsequent softening were less pronounced with decreasing moisture content. The 45% moisture content level appeared critical, since there was a radical change in the thermomechanical behavior below this concentration. DSC showed that gelatinization did not appear as a single endotherm but as two endotherms. Whatever the moisture content, the melting started within a quite narrow temperature range, while the end of melting shifted progressively to higher temperatures as moisture content was decreased. ESR showed first a slight decrease in the water-soluble probe (Tempol) mobility as temperature was increased to 47–50°C, followed by a pronounced decrease to 57–60°C. Then, a progressive increase in probe mobility was observed to 85°C. These changes in probe mobility suggest some modifications of the kinetic and thermodynamic properties of the aqueous phase associated with changes in the starch physical state. For the lowest moisture contents, the probe mobility was quite stable during heating.  相似文献   

14.
Differential scanning calorimetry (DSC) was used to study the effect of sucrose on wheat starch glass transition, gelatinization, and retrogradation. As the ratio of sucrose to starch increased from 0.25:1 to 1:1, the glass transition temperature (Tg, Tg′) and ice melting enthalpy (ΔHice) of wheat starch‐sucrose mixtures (with total moistures of 40–60%) were decreased to a range of −7 to −20°C and increased to a range of 29.4 to 413.4 J/g of starch, respectively, in comparison with wheat starch with no sucrose. The Tg′ of the wheat starch‐sucrose mixtures was sensitive to the amount of added sucrose, and detection was possible only under conditions of excess total moisture of >40%. The peak temperature (Tm) and enthalpy value (ΔHG) for gelatinization of starch‐sucrose systems within the total moisture range of 40–60% were increased with increasing sucrose and were greater at lower total moisture levels. The Tg′ of the starch‐sucrose system increased during storage. In particular, the significant shift in Tg′ ranged between 15 and 18°C for a 1:1 starch‐sucrose system (total moisture 50%) after one week of storage at various temperatures (4, 32, and 40°C). At 40% total moisture, samples with sucrose stored at 4, 32, and 40°C for four weeks had higher retrogradation enthalpy (ΔH) values than a sample with no sucrose. At 50 and 60% total moisture, there were small increases in ΔH values at storage temperature of 4°C, whereas recrystallization of samples with sucrose stored at 32 and 40°C decreased. The peak temperature (Tp), peak width (δT), and enthalpy (ΔH) for the retrogradation endotherm of wheat starch‐sucrose systems (1:0.25, 1:0.5, and 1:1) at the same total moisture and storage temperature showed notable differences with the ratio of added sucrose. In addition, Tp increased at the higher storage temperature, while δT increased at the lower storage temperature. This suggests that the recrystallization of the wheat starch‐sucrose system at various storage temperatures can be interpreted in terms of δT and Tp.  相似文献   

15.
The non‐Newtonian behavior and dynamic viscoelasticity of rice starch (Akihikari, 18.8% amylose content) solutions after storage at 25 and 4°C for 24 hr were measured with a rheogoniometer. The flow curves, at 25°C, of Akihikari starch showed plastic behavior >3.0% (w/v) after heating at 100°C for 30 min. The dynamic viscoelasticity of the starch increased after storage at 25 and 4°C for 24 hr and stayed at a constant value with increasing temperature. A small dynamic modulus of rice starch was observed upon addition of urea (4.0M) at low temperature (0°C), but it produced a sigmoid curve when plotted against increasing temperature. A small dynamic modulus was also observed in 0.05M NaOH solution. However, it increased rapidly after the temperature reached 70°C. Possible models of retrogradation mechanism of rice starch were proposed.  相似文献   

16.
Dough for nontraditional semisweet biscuits—prepared with wheat flour or replacing part of the wheat flour with corn starch, with or without skim milk—was baked at two oven temperatures, 120 or 170°C, until reaching moisture content and water activity lower than 6% and 0.5, respectively. Assays of fracture stress, differential scanning calorimetry, X‐ray diffraction, and starch digestibility were performed. Results showed that biscuits containing milk had the highest fracture stress, and biscuits baked at low temperature were harder than biscuits baked at high temperature. The degree of starch gelatinization during baking was higher when dough was baked at 170°C, compared with dough baked at 120°C. The decrease in gelatinization coincides with the decrease in the height and surface of peaks at 15 and 23° in the X‐ray diffraction patterns. Milk and corn starch did not affect the starch digestibility of biscuits, but biscuits baked at 170°C presented lower fracture stress and higher starch digestibility than biscuits baked at 120°C.  相似文献   

17.
Rice parboiled at various combinations of soaking temperature and steaming time were analyzed by differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). Generally, gelatinization enthalpy decreased as the soaking temperature increased from 30°C to 50°C and 70°C to 90°C, and gelatinization enthalpy decreased as steaming times increased from 4 and 8 min to 12 min. As expected, a distinctive A‐pattern was observed in the XRD of raw rice. The most severely parboiled laboratory sample (90°C for 12 min), showed no discernable change toward the V‐pattern. Crystallinity decreased from the raw rice (24.6%) with increased cooking temperature.  相似文献   

18.
Rapid visco analysis (RVA) and differential scannning calorimetry (DSC) provided overall assessments of the effects of variable temperature soaking at 30, 50, 70, and 90°C and steaming at 4, 8, and 12 min. Calculation of the relative parboiling index (RPI) and percent gelatinization provided good metrics for determining the overall effects of partial parboiling. FT‐Raman and solid‐state 13C CP‐MAS NMR spectroscopies provided insight to conformational changes in protein and starch of paddy rice under various parboiling conditions. RVA showed lower pasting curves and DSC showed lower ΔH with increased temperature and steaming times. A large decrease in viscosity occurred with only the 30‐4 treatment as opposed to raw rice. This observation was consistent with FT‐Raman results that indicated substantial conversion of the protein from α‐helix to other conformations. DSC indicated incomplete gelatinization of starch, even with 90°C soaking and 12 min of steaming. Solid‐state 13C CP‐MAS NMR spectroscopy confirmed this result. However, it indicated the percent of Vh/amorphous plus the remaining crystalline starch in the 90‐12 treatment was equal to the amorphous and partially‐ordered starch in commercially parboiled rice. These results suggest that partial parboiling, 90°C soaking, and more than 8 min of steaming (ideally ≈12 min) of paddy rice is sufficient to induce changes that inactivate enzymes and provide enough starch gelatinization to prevent kernel breakage.  相似文献   

19.
Thermomechanical analysis (TMA) and differential scanning calorimetry (DSC) were used to investigate the thermal transitions of long‐grain rice kernels. Three distinct thermomechanical transitions were identified as rice kernels were heated from 0 to 200°C. The identified transitions were a low temperature transition with onset at ≈45°C, an intermediate temperature transition at ≈80°C, and a high temperature transition at ≈180°C. Low temperature transition with onset from ≈60°C at 5% moisture content (MC) to 30°C at 20% MC was identified as the glass transition of the rice kernels. Intermediate temperature transition from 60 to 100°C, depending on MC, may be caused by rapid evaporation of moisture in the rice kernels. High temperature transition was associated with melting of the crystalline structure of rice starch. The temperatures of all three transitions decreased as MC increased, confirming that moisture acted as a plasticizer in rice kernels.  相似文献   

20.
《Cereal Chemistry》2017,94(4):770-779
Rice, maize, and potato starches were incubated under acidic (2), neutral (7) or alkaline (11) pH conditions, and combined with annealing (ANN) or heat–moisture treatment (HMT), with the aim to evaluate their changes of physicochemical, digestion, and molecular characteristics. The applied treatments produced changes in all starches, showing void zones in the granules, which were more evident in ANN samples. The HMT starches promoted the formation of granular conglomerates that still showed birefringence. Overall, the evaluated conditions promoted changes in granule architecture (revealed by differences in gelatinization enthalpy) and crystallinity, for which an extensive degradation of their characteristics diffraction patterns occurred. These changes were more evident when incubation under acidic conditions was employed. Through principal component analysis, we found that the structural changes in starch granules have a direct influence on slowly digestible starch, resistant starch, and predicted glycemic index values, and this is the result of a higher proportion of organized crystallites, obtained from the acid hydrolysis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号