首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our report shows the calcium ion diffusion process through the different parts of maize kernels (pericarp, endosperm, and germ) during the traditional nixtamalization process as a function of steeping time (t) 0–24 hr. The cooking step of the nixtamalization process used 3 kg of maize kernels in 6L of water and 2% calcium hydroxide (w/w). The cooking temperature was 92°C for 40 min. The calcium content of the samples was measured using atomic absorption spectroscopy. We found that the whole instant corn flour, pericarp, endosperm, and germ, had a nonlinear relationship to steeping time, showing a local maximum at 9 hr. Analysis of the different parts of the nixtamalized kernels showed that in short steeping times (0–5 hr) calcium diffusion took place mainly in the pericarp. Calcium diffusion in the endosperm and germ occurred gradually over longer steeping times. However, the physical state of the kernels (broken kernels) accelerated the diffusion process. Calcium diffusion occurred first in the pericarp, followed by the endosperm and germ. Immediately after cooking (t = 0 hr), we found a 1.148% calcium content in the pericarp, 0.007% in the germ, and 0.028% in the endosperm. After 24 hr of steeping, the calcium contents were 2.714% in the pericarp, 0.776% in the germ, and 0.181% in the endosperm. In another study, the calcium content in the endosperm was measured by first separating the 10% from the outermost, followed by another 10% from the next endosperm tissue, and concluding with the remaining 80%. Calcium ions were present mainly in the outermost layers of the endosperm. The damaged kernels steeped for more than 5 hr showed greater calcium concentrations than the undamaged counterparts.  相似文献   

2.
The entry of calcium ions from the nixtamalization solution into maize kernels over time was followed in model experiments using radiolabeled calcium ions, with autoradiographic evaluation of the kernels after different cooking and steeping times. Calcium ions immediately entered the pericarp and were rapidly fixed at the outer boundary of the endosperm, especially at the external surface of the germ. Entry of calcium into the endosperm occurred gradually after long steeping times, except in the case of broken kernels, for which massive invasion by calcium was observed. After extended steeping times, a moderate amount of calcium‐45 was evident in the germ. Specific perforation of the outer layers of the grains provided a defined route of facilitated entry of calcium into the endosperm. No fundamental difference with respect to penetrability by calcium ion was seen in a comparison between flint‐type grains and grains containing only floury endosperm.  相似文献   

3.
This work presents the study of the structural changes of the endosperm of Quality Protein Maize (QPM H-368C), modified by alkaline cooking at two different temperatures (72 and 92°C) and steeping time of 0–7 hr. Structural changes in the outermost 10% layers, the subsequent 10%, and the remaining 80% of the endosperm as a function of the steeping time were studied using scanning electron microscopy (SEM), X-ray diffraction, and differential scanning calorimetry (DSC) techniques. SEM images revealed that soft and hard endosperm have different shapes and packing factors. The X-ray diffraction patterns of the hard and soft endosperm from raw corn suggest that the hard endosperm consists mainly of amylopectin and has a bigger relative crystallinity quality than the soft endosperm. Samples cooked at 72 and 92°C with and without the (Ca(OH)2 and steeped for 0, 3, and 7 hr, showed structural changes, X-ray diffraction patterns from the outermost 10% layers and subsequent 10% of the endosperm were completely amorphous. This fact is related to the total or partial gelatinization of the starch. The crystallinity in the internal layers of endosperm (remaining 80%) did not have significant changes after the treatments and exhibited the characteristic patterns of crystalline amylose and amylopectin. DSC measurements in the outermost layers of the endosperm did not exhibit the characteristic endothermic peak of starch (from 64 to 81°C) compared with the raw sample, while the endotherm peak for 80% of the endosperm internal layers appears in all cases (72 and 92°C). According to these results, a new definition of the nixtamalization process can be developed as follows. During the nixtamalization process there is a total gelatinization of the starch granules from the most external layers, and a partial gelatinization of the innermost internal layers of the endosperm.  相似文献   

4.
Tortillas are made by cooking maize in a lime solution during variable times and temperatures, steeping the grain for up to 12 h, washing and grinding it to a fine dough, and cooking portions as flat cakes for up to 6 min. The effects of the main processing steps on the chemical composition, nutritive value, and functional and physicochemical characteristics have been areas of research. The present work evaluates the effect of lime concentration (0, 1.2, 2.4, and 3.6%) and cooking times (45, 60, and 75 min) on phytic acid retention of whole maize, its endosperm, and germ, as well as on the content of calcium, iron, and zinc on the same samples. The effects of steeping time and temperature and steeping medium on the phytic acid of lime-cooked maize were also studied. Finally, phytic acid changes from raw maize to tortilla were also measured. The results indicated that lime concentration and cooking time reduce phytic acid content in whole grain (17.4%), in endosperm (45.8%), and in germ (17.0%). Statistical analyses suggested higher phytic acid loss with 1.2% lime and 75 min of cooking. Cooking with the lime solution is more effective in reducing phytic acid than cooking with water. Steeping maize in lime solution at 50 degrees C during 8 h reduced phytic acid an additional 8%. The total loss of phytic acid from maize to tortilla was 22%. Calcium content increased in whole maize, endosperm, and germ with lime concentration and cooking and steeping times. The increase was higher in the germ than in the endosperm. The level, however, can be controlled if steeping of the cooked grain is conducted in water. Iron and zinc contents were not affected by nixtamalization processing variables but were affected in steeping.  相似文献   

5.
Nixtamalization is the primary step in the production of products such as corn chips, tortilla chips, tacos, and corn tortillas. The process involves cooking and steeping of corn in lime and excess water to produce nixtamal. Commercial nixtamalization results in 5–14% corn solids loss in the liquid generated during cooking‐steeping and washing. Loss of corn solids not only causes economic loss to corn processors but also creates costly waste and wastewater disposal problems. Empirical results show that, besides corn kernel characteristics, processing parameters are critical variables influencing corn solids loss and effluent pH during nixtamalization. This work was designed to systematically study the impact of processing parameters on corn dry matter loss and effluent pH generated during nixtamalization by using response surface methodology. Corn cooking temperature and lime concentration were more critical factors influencing corn solid loss than were cooking and steeping time. In the ranges studied, total dry matter loss increased only up to ≈8 hr of steeping and then leveled off. By optimizing the nixtamalization protocol, effluent dry matter loss can be minimized.  相似文献   

6.
This report shows the effect of temperature (72, 82, and 92°C) during the cooking stage and steeping time (0, 1, 3, 5, 7, 9, 11, 13, and 15 hr) on calcium and phosphorus contents in nixtamalized corn flours obtained by the traditional nixtamalization process (NCF). In addition, calcium and phosphorus contents in industrial nixtamalized corn flours were analyzed for comparative purposes. Atomic absorption spectroscopy and UV‐vis spectroscopy methods were used to study the calcium and phosphorus contents as well as the Ca2+/P ratio in NCF and industrial nixtamalized corn flours. Additionally, deposition and identification of calcium compounds in the nixtamalized corn pericarp were analyzed by low‐vacuum scanning electron microscopy, energy dispersive spectrometry, and X‐ray diffraction techniques. Dry matter loss in NCF is also reported. As the temperature increased, Ca2+ content was enhanced, while the phosphorus content decreased with statistical differences (P ≤ 0.05) between thermal treatments. Ca2+ content in industrial nixtamalized corn flours was significantly lower (P ≤ 0.05) than that of NCF. On the other hand, no statistical differences (P ≤ 0.05) were found between phosphorus content in commercial nixtamalized corn flours and NCF. Calcium compounds, identified as calcite, were detected in corn pericarp. Statistical differences (P ≤ 0.05) were observed in phosphorous content in NCF obtained at different cooking temperatures. In addition, a decrease in phosphorus levels significantly correlated with the steeping time at 92°C (r = –0.91). At 72, 82, and 92°C, the average Ca2+/P ratio in NCF was 0.45 ± 0.03, 0.61 ± 0.05, and 0.82 ± 0.05, respectively, indicating a correlation between this parameter and the cooking temperature. However, no correlation was found between the Ca2+/P ratio and the steeping time. This behavior is attributed to calcium attached to corn kernel. In commercial nixtamalized corn flours, the Ca2+/P ratio was significantly lower (P ≤ 0.05) than that of NCF. There was a significant correlation (P ≤ 0.01) between dry matter loss and steeping time (r = 0.99) in NCF, this fact influenced the Ca2+/P ratio due to the calcium attached to pericarp. At 82 and 92°C, maximum values of Ca2+/P ratio were detected in NCF at 7 hr of steeping time and at 9 hr at 72°C. These results can be used with industrial purposes to assess a maximum calcium‐to‐phosphorus ratio, and at the same time, to avoid the loss of pericarp to increase the functional properties of NCF.  相似文献   

7.
Naturally aflatoxin-contaminated corn (Zea mays L.) was made into tortillas, tortilla chips, and corn chips by the traditional and commercial alkaline cooking processes. The traditional nixtamalization (alkaline-cooking) process involved cooking and steeping the corn, whereas the commercial nixtamalization process only steeps the corn in a hot alkaline solution (initially boiling). A pilot plant that includes the cooker, stone grinder, celorio cutter, and oven was used for the experiments. The traditional process eliminated 51.7, 84.5, and 78.8% of the aflatoxins content in tortilla, tortilla chips, and corn chips, respectively. The commercial process was less effective: it removed 29.5, 71.2, and 71.2 of the aflatoxin in the same products. Intermediate and final products did not reach a high enough pH to allow permanent aflatoxin reduction during thermal processing. The cooking or steeping liquor (nejayote) is the only component of the system with a sufficiently high pH (10.2-10.7) to allow modification and detoxification of aflatoxins present in the corn grain. The importance of removal of tip, pericarp, and germ during nixtamalization for aflatoxin reduction in tortilla is evident.  相似文献   

8.
Using a continuous decorticating machine, white dent corn was efficiently separated, after brief steeping in water, into two fractions: the first (12.5%) consisting mainly of pericarp, germ, and tip cap (PGT); the second (87.5%) consisting of endosperm. Nixtamalization of the maize fractions in the presence of 0.6% (w/w) lime caused an increase in the hot‐paste viscosity at 90°C, while nixtamalization of PGT at lime inputs <0.6% (w/w) resulted in decreased viscosity. Three domains were found for the viscosity of nixtamalized endosperm at 90°C: lower concentrations of lime (< 0.15%, w/w) resulted in lower viscosity values; increased lime (0.15% – <0.3%, w/w) increased the viscosity values; and a lime concentration of 0.3% (w/w) resulted in a lower viscosity value. The response variables (water absorption index, water solubility index, initial viscosity, and viscosity at 90°C for nixtamalized PGT, and compression force and compression area of tortillas) indicated that the mathematical models fit the experimental data and the variance of the models was highly significant. Tortillas of good functional characteristics similar to tortillas produced by the traditional process were obtained when 5% nixtamalized fractions of PGT were blended with 95% nixtamalized endosperm.  相似文献   

9.
This study showed the protein changes in Quality Protein Maize (QPM H‐368C) during the traditional nixtamalization process as a function of the steeping time from 0 to 15 hr. Protein content (N × 6.25), pH, protein fractionation, reactive lysine, essential amino acids, and protein digestibility were analyzed to explain the protein quality modifications in nixtamalized corn flours (NQF). The thermoalkaline process increased significantly (P ≤ 0.05) the protein content (5.57 ± 0.86%) in NQF obtained at 3, 5, 7, 9, 11, 13, and 15 hr of steeping time compared with native corn or corn without treatment (NC). The pH values of NQF were not proportional to the steeping time and significantly different (P ≤ 0.05) between them. At 5 hr critical steeping time, the total lysine and reactive lysine content decreased severely (36 and 32%, respectively) with statistical differences (P ≤ 0.05) compared with NC. On the other hand, the tryptophan content decreased significantly (P ≤ 0.05) at steeping times of 5–15 hr (38.70 ± 6.7%) compared with NC. The changes in the lysine and tryptophan content were not proportional to the steeping time. The protein recovery in the albumin and globulin fraction diminished (P ≤ 0.05) with respect to raw corn. The protein recovery for γ‐zeins, glutelin‐like proteins, glutelins, and residue increased. A significant (P ≤ 0.05) decrease was found in the essential amino acids in NQF with 3–7 hr of steeping time compared with NC. Equally important was the reduction in protein digestibility observed in NQF steeped at long steeping times (11–15 hr) with significant (P ≤ 0.05) differences compared with NC. The protein solubility distribution along the steeping step and the essential amino acids location, specifically lysine in corn kernel, could explain partially the protein quality changes observed in this research. Finally, these results contribute to reconciling discrepancies associated with the protein quality modifications in nixtamalized corn reported previously in literature.  相似文献   

10.
A laboratory nixtamalization process was developed to imitate larger scale cooking/steeping conditions. Corn (45 kg) was cooked in a pilot plant gas‐fired cook/steep tank and temperature was monitored every 30 sec. Cooling and heating rates were mimicked in the laboratory using a digital temperature programmable hot plate that adjusted grain‐water‐lime temperature changes at a specified rate. A Response Surface Central Composite Design was used to model pasting and thermal properties of nixtamal and masa as a function of cooking temperature (86–96°C), cooking time (20–40 min), and steeping time (3–11.77 hr). Nixtamal and masa moisture, dry matter loss, nixtamal and masa RVA peak temperature, shear thinning, nixtamal peak viscosity, masa final viscosity, nixtamal and masa DSC enthalpy peak and end temperatures, and nixtamal onset temperature were explained by the same regression terms for results obtained using both processes conditions. The intercept and slopes of the fitted models for the pilot plant and laboratory responses were not significantly different (P < 0.05). The laboratory method can be used to mimic larger scale processing over a wide range of nixtamalization conditions.  相似文献   

11.
《Cereal Chemistry》2017,94(2):207-214
A convenient small‐scale laboratory method that can be used to simultaneously analyze multiple samples was developed to rapidly assess suitability of corn for nixtamalization. This new 100 g method was developed based on a previously reported 500 g laboratory process that has been shown to mimic the industrial nixtamalization process. The two methods were compared for nixtamal moisture, dry matter loss, degree of pericarp removal, and gelatinization properties of the cooked corn. The heating and cooling profiles of the 100 g method were developed using the 500 g method, by monitoring temperature every 30 s during cooking and steeping. Nixtamalization was conducted with a 1:4 corn/water ratio, with 1% lime. A response surface central composite design was used to model a wide range of processing conditions for the two methods: cook temperature (80–95°C), cook time (3–40 min), and steep time (2–12 h). Parameter estimates and response surfaces were compared, and predictive models were fitted. The response surface models for the two methods were not significantly different for nixtamal moisture, dry matter loss, and gelatinization enthalpy; there was an overlap of the 90% Bonferroni confidence intervals (P < 0.05, r 2 > 0.7). The bench‐top 100 g nixtamalization process can successfully mimic the 500 g method over a wide range of processing conditions.  相似文献   

12.
The present investigation provides a new method for the nixtamalization process wherein corn endosperm fractions (corn meal) are treated in an alkaline solution that yields quality masa or instant masa flour like traditional nixtamalization process (alkaline cooking of corn with lime). The objective of this work was to determine the best combination of nixtamalization process variables for producing nixtamalized instant flour (NIF) from corn meal. Nixtamalization conditions were selected from factorial combinations of process variables including nixtamalization time (NT 8–22 min) and cooking temperature (CT 78–88°C). A central composite rotable experimental design was chosen. Lime concentration was 1% (10 g of Ca(OH)2/L of water) and ratio of corn meal to cooking medium was 1:4. At the end of each cooking, each treatment was steeped for 5 hr at room temperature (25°C). Nixtamalized corn meal was dried (55°C/12 hr) and milled to pass through 80 U.S. mesh to obtain NIF. Response surface methodology (RSM) was applied as an optimization technique over four response variables: masa firmness (MF), masa adhesiveness (MA), tortilla cutting force (CF), and tortilla tensile strength (TS). Predictive models for response variables were developed as a function of process variables. Conventional graphic methods were applied to obtain response variable values similar to the control (MASECA). Contour plots of each response variable applied superposition surface methodology to obtain a contour plot for observation and for selecting the best combination of nixtamalization time (NT 15 min) and cooking temperature (CT 83°C) for producing an optimized NIF from corn meal. Values of MF, MA, CF, and TS obtained from the predictive models were compared with those derived from experimental tests; a close agreement (coefficient of variance < 10%) between both values was observed.  相似文献   

13.
Broken corn created by grounding sound corn kernels was added back at levels of 0, 4, 8, 12, or 16%, by weight, to whole kernels of three corresponding hybrids: FR27 × FRMo17 (a soft endosperm corn), FR618 × FR600 (amedium‐hard endosperm corn), and FR618 × LH123 (a hard endosperm corn). The samples had been dried from 28% moisture content to 15% moisture content either by using ambient air at ≈25°C or at 110°C. Samples were steeped for 36 hr at 52°C in 0.15% sulfur dioxide and 0.5% lactic acid steeping solution. The steepwater characteristics, such as water absorption, solids and protein content in the steepwater, and steepwater pH, were measured by periodic sampling and analyzed. Broken corn level has a significant effect on the amount of solids released during steeping and steepwater protein content for all samples. Both steepwater solids and protein content increased linearly as broken corn content increased. Corn drying temperature, kernel hardness, and interactions between drying temperature and kernel hardness has a significant effect on steepwater solids and protein content and steepwater pH in both broken and unbroken corn. Corn dried at low temperature released more soluble solids and protein into the steepwater than corn dried at high temperature. Soft endosperm and medium‐hard endosperm corn released more soluble solids and protein into the steepwater than hard endosperm corn. Soft endosperm corn resulted in a higher steepwater pH than medium‐hard and hard endosperm corn. No significant effect of broken corn content on final moisture content of steeped corn and steepwater pH was observed.  相似文献   

14.
We studied the effect of steeping time on various physical and chemical properties of maize flour prepared by the traditional nixtamalization process as well as in oversaturated calcium ion conditions. The calcium content of the corn flour was measured by atomic absorption spectroscopy and was correlated with X‐ray diffraction, viscosity, and pH measurements. Calcium content of the flour showed a nonlinear dependence on steeping time, with a local calcium maximum occurring at ≈7 hr. The pH level of the corn flour increased with steeping time, thus roughly following the time trend shown by the steeping time dependence of the calcium content. Flour crystallinity and peak viscosity of water suspensions of the flour reached maximal values at ≈7–9 hr of steeping, in agreement with manufacturing experience showing that these are appropriate steeping times to prepare tortillas with the desirable rheological and organoleptic properties.  相似文献   

15.
Nixtamalization involves cooking and steeping corn in a lime solution, washing the corn (nixtamal), and stone grinding nixtamal to form a corn dough or masa. Masa is used to produce nixtamalized products (corn tortillas, tortilla chips, corn chips, taco shells, etc.) by forming and baking or deepfat frying. The degree of corn kernel cook determines the quality and texture of masa. Response surface methodology (RSM) was used as an experimental design to study the impact of process variables (cook temperature, cook time, initial steep temperature, and steep time) on the degree of cook measured using a Rapid Visco Analyser (RVA) and differential scanning calorimetry (DSC). RSM data exhibited significant (P < 0.005), although not predictive, linear models for RVA peak viscosity (r2 = 0.63), setback (r2 = 0.61), final viscosity (r2 = 0.61), and peak time (r2 = 0.57), indicating a dependence of these parameters on nixtamalization conditions. Peak viscosity, setback, and final viscosity increased linearly with steep time. DSC enthalpy (r2 = 0.83) and peak temperature (r2 = 0.89) of freezedried masa also exhibited significant (P < 0.0001) linear regression models with processing variables. DSC enthalpy increased with an increase in steep time, suggesting that starch is annealed during steeping. This study demonstrated that fundamental starch properties were altered on extended steeping during nixtamalization.  相似文献   

16.
Coarse and fine fiber fractions obtained from the corn wet‐milling processes, with and without steeping chemicals (SO2 and lactic acid), were evaluated microscopically for structure and analytically for recovery of phytosterol compounds from the fiber oil. Microscopic results showed that wet milling, with and without chemicals during steeping, changed the line of fracture between pericarp and endosperm and therefore affected the recovery of the aleurone layer in coarse (pericarp) and fine (endosperm cellular structure) fiber. Analytical results showed that most of the phytosterols and mainly phytostanols in corn fiber are contributed by the aleurone layer. Hand‐dissection studies were performed to separate the two layers that comprise the wet‐milled coarse fiber, the aleurone, and pericarp layer. Analyses revealed that the aleurone contained 8× more phytosterols than the pericarp.  相似文献   

17.
Aqueous solutions of sodium hydroxide were used to debran whole sorghum and millet grains. The alkali solution was effective in dissolving the pericarp, leaving the kernel free of pericarp. Various combinations of concentration of sodium hydroxide (3, 6, and 10%, w/w) and soaking duration (5, 8, and 10 min) were investigated. Two cultivars of sorghum (Dionje and Jumbo) and one cultivar of pearl millet (IM) were used in the study. A 10% aqueous solution of sodium hydroxide at 60°C was most effective in dissolving the pericarp of both sorghum and millet after 10 min of soaking, resulting in ≈90% yield of clean endosperm for all grain types. The debranning process reduced the fiber content (measured as crude fiber) of sorghum cultivars Dionje and Jumbo by 37.6 and 41.8%, respectively; and pearl millet by 32%.  相似文献   

18.
A modified dry‐grind corn process has been developed that allows recovery of both pericarp and endosperm fibers as coproducts at the front end of the process before fermentation. The modified process is called enzymatic milling (E‐Mill) dry‐grind process. In a conventional dry‐grind corn process, only the starch component of the corn kernel is converted into ethanol. Additional ethanol can be produced from corn if the fiber component can also be converted into ethanol. In this study, pericarp and endosperm fibers recovered in the E‐Mill dry‐grind process were evaluated as a potential ethanol feedstock. Both fractions were tested for fermentability and potential ethanol yield. Total ethanol yield recovered from corn by fermenting starch, pericarp, and endosperm fibers was also determined. Results show that endosperm fiber produced 20.5% more ethanol than pericarp fiber on a g/100 g of fiber basis. Total ethanol yield obtained by fermenting starch and both fiber fractions was 0.370 L/kg compared with ethanol yield of 0.334 L/kg obtained by fermenting starch alone.  相似文献   

19.
Nixtamalization is an ancient process developed by the Mesoamerican cultures. Initially, volcanic ashes were used and then calcium hydroxide in commercial production, and more recently nixtamalization with calcium salts (NCS) has been proposed. The aim of this study was to evaluate the effect of NCS on carbohydrate digestibility and antioxidant capacity in the elaboration of blue maize tortillas. NCS in blue tortillas showed a high amount of total dietary fiber (14.27 g/100 g), the main fraction being insoluble dietary fiber. The contents of resistant starch and slowly digestible starch did not change with the nixtamalization process. The predicted glycemic index value was lower in blue tortillas with the NCS process (58) than with the traditional nixtamalization process (71). In general, NCS in blue tortillas presented a higher antioxidant capacity than traditional tortillas (ferric reducing antioxidant power method), indicating that phenolics present in blue maize maintain their activity after cooking. It can be concluded that the nutraceutical features (high dietary fiber content and antioxidant capacity) of blue maize tortillas are enhanced when they are elaborated with the NCS process.  相似文献   

20.
Dent corn (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) sample sets representative of commonly grown hybrids and diverse physical attributes were analyzed for alkaline cooking performance. The influence of kernel characteristics including hardness, density, starch properties (thermal, pasting, and crystallinity), starch content, protein content, and prolamin content on alkaline cooking performance was also determined. Corn nixtamal moisture content was lower for hard, dense kernels with high protein contents; sorghum nixtamal moisture content was lower for kernels with low moisture contents and low starch relative crystallinities. Statistically significant (P < 0.05) regression equations showed that corn nixtamal moisture content was influenced by TADD (tangential abrasive dehulling device) index, kernel moisture content, starch content, and protein content; sorghum nixtamal moisture content was influenced by starch relative crystallinity, kernel moisture content, and abrasive hardness index. Pericarp removal was not strongly correlated with kernel characterization tests. Location (environmental) and hybrid (genetic) factors influenced most kernel characteristics and nixtamalization processing variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号