首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In this report, the effect of temperature on the calcium content of Quality Protein Maize (QPM H-368C) during the nixtamalization process as a function of the steeping time for three cooking temperatures (72, 82, and 92°C) is presented. Also, for the first time, we report in physico-chemical terms the end of the cooking stage during the nixtamalization process that was established when the moisture content in corn kernels reached a value of 36% (w/w) with a lime concentration of 1% (w/v), independent of the cooking temperature. Atomic absorption spectroscopy was used to determine the calcium concentration in the whole kernel and in its different anatomical components (pericarp, endosperm, and germ) as well as in 10% of the outermost layers, the next 10%, and the remaining 80% of the endosperm as a function of the steeping time. It was found that if the cooking temperature increases, the calcium content increases also. For steeping times in the range of 5–7 hr, a relative maximum was found in the calcium contents of 0.24, 0.21, and 0.18% (w/w) in QPM H-368 flours at 92, 82, and 72°C, respectively. Calcium was found in the most external layers in the endosperm and minimum diffusion occurs in the internal 80%. Phosphorous was measured by using UV spectroscopy and the results showed that it remains constant at 0.24% throughout the process. Scanning electron microscopy analysis was used to explain the calcium ion diffusion in the kernel. The physical changes in the pericarp govern the calcium diffusion process.  相似文献   

2.
Our report shows the calcium ion diffusion process through the different parts of maize kernels (pericarp, endosperm, and germ) during the traditional nixtamalization process as a function of steeping time (t) 0–24 hr. The cooking step of the nixtamalization process used 3 kg of maize kernels in 6L of water and 2% calcium hydroxide (w/w). The cooking temperature was 92°C for 40 min. The calcium content of the samples was measured using atomic absorption spectroscopy. We found that the whole instant corn flour, pericarp, endosperm, and germ, had a nonlinear relationship to steeping time, showing a local maximum at 9 hr. Analysis of the different parts of the nixtamalized kernels showed that in short steeping times (0–5 hr) calcium diffusion took place mainly in the pericarp. Calcium diffusion in the endosperm and germ occurred gradually over longer steeping times. However, the physical state of the kernels (broken kernels) accelerated the diffusion process. Calcium diffusion occurred first in the pericarp, followed by the endosperm and germ. Immediately after cooking (t = 0 hr), we found a 1.148% calcium content in the pericarp, 0.007% in the germ, and 0.028% in the endosperm. After 24 hr of steeping, the calcium contents were 2.714% in the pericarp, 0.776% in the germ, and 0.181% in the endosperm. In another study, the calcium content in the endosperm was measured by first separating the 10% from the outermost, followed by another 10% from the next endosperm tissue, and concluding with the remaining 80%. Calcium ions were present mainly in the outermost layers of the endosperm. The damaged kernels steeped for more than 5 hr showed greater calcium concentrations than the undamaged counterparts.  相似文献   

3.
Studies of starch retrogradation have not considered the initial thermal treatment. In this article, we explore the effect of heating to temperatures within and above the gelatinization range on maize starch retrogradation. In the first experiment, 30% suspensions of waxy (wx) starch were initially heated to final temperatures ranging from 54 to 72°C and held for 20 min. On reheating in the differential scanning calorimeter immediately after cooling, the residual gelatinization endotherm peak temperature increased, the endotherm narrowed, and enthalpy decreased. Samples stored for seven days at 4°C showed additional amylopectin retrogradation endotherms. Retrogradation increased dramatically as initial holding temperature increased from 60 to 72°C. In a second experiment, wx starch was initially heated to final temperatures from 54 to 180°C and rapidly cooled, followed by immediate reheating or storage at 4°C. Maximum amylopectin retrogradation enthalpy after storage was observed for initial heating to 82°C. Above 82°C, retrogradation enthalpy decreased as initial heating temperature increased. A similar effect for ae wx starch was observed, except that retrogradation occurred more rapidly than for wx starch. These experiments show that heating to various temperatures above the range of gelatinization may profoundly affect amylopectin retrogradation, perhaps due to varying extents of residual molecular order in starch materials that are commonly presumed to be fully gelatinized. This article shows that studies of starch retrogradation should take into account the thermal history of the samples even for temperatures above the gelatinization temperature range.  相似文献   

4.
Processing conditions similar to traditional nixtamalization are now used by the industry in the production of dry maize flours (DMF). The objective of this investigation was to evaluate the effect of industrial nixtamalization on maize starch. Thus, dent maize grains were sampled from storage silos and the starch isolated (S). From the same batch of maize, DMF was obtained and the starch isolated (S‐DMF). The amylose content in the starches was quite similar (21.5–23.4%) and characteristic of a dent maize. However, nixtamalization increased the calcium content in S‐DMF. The starches investigated exhibited the typical A‐type diffraction pattern after 40 days of storage at 11–84.1% rh. However, the differential scanning calorimetry (DSC) results showed that annealing of maize starch occurred during storage at 30°C. On the other hand, industrial nixtamalization has both a melting and annealing effect on maize starch. Thus, the operative glass transition temperature (Tg), and the DSC parameters that define starch gelatinization (Tp and ΔH) showed that the proportion between crystalline and amorphous regions within the starch granule and the extent of physical damage to starch were modified by nixtamalization. As an example, Tg for S was between 60 and 62.5°C, while the S‐DMF had a Tg of 45–55°C for damaged starch and 65–70°C for annealed starch. Additionally, the extraction of the nonconstitutive starch lipids provided starches with more consistent thermal properties, particularly in the behavior of gelatinization at different water content. This last observation might have important implications in the consistency of starch physicochemical properties and, consequently, in the quality of maize products such as tortillas.  相似文献   

5.
The structural features of starch were examined to better understand the causes of variability in rice quality resulting from nighttime air temperature (NTAT) incidence during kernel development. Starch samples were isolated from head rice of four cultivars (Bengal, Cypress, LaGrue, and XL723) field‐grown in four Arkansas locations (Keiser, Pine Tree, Rohwer, and Stuttgart) in 2009 and 2010. Average NTATs recorded during the grain‐filling stages of rice reproductive growth in the four locations were 3.0–8.4°C greater in 2010 than 2009. Elevated NTATs altered the deposition of starch in the rice endosperm. Means pooled across cultivars and locations showed that amylose content was 3.1% (percentage points) less for the 2010 sample set. The elevated NTATs in 2010 resulted in a decrease in the percentage of amylopectin short chains (DP ≤ 18) and a corresponding increase in the percentage of long chains (DP ≥ 19) by an average of 1.3% (percentage points). The greater NTATs in 2010 also produced greater starch paste peak, final, and breakdown viscosities, whereas setback and total setback viscosities decreased. Changes in paste viscosity were highly correlated with the changes in the proportion of amylose and amylopectin. Onset gelatinization temperature was greater by 3.5°C, gelatinization enthalpy by 1.3 J/g, and relative crystallinity by 1.5% (percentage points) for the 2010 sample set. Changes in gelatinization parameters and granule relative crystallinity were highly correlated with the changes in amylopectin chain‐length distribution. Year × cultivar × location interaction effects were statistically insignificant, indicating that the four cultivars evaluated all showed some degree of susceptibility to the effects of temperature incidence during kernel development, regardless of the growing location.  相似文献   

6.
The effects of environmental temperature on gelatinization properties and amylopectin structures of wheat endosperm starch were examined by isolating starches from four wheat cultivars matured in growth chambers at daytime temperatures of 15, 20, 25, or 30°C. Kernel weight and starch content per kernel were reduced by high maturation temperature. Amylose content showed no significant change at high maturation temperature in some cultivars; in other cultivars, there was a slight increase. Principal component analysis of data on relative peak areas of debranched amylopectin showed that amylopectin from wheat grown at a lower temperature had a greater proportion of shorter chains. Amylopectin branch chains were classified into three groups based on the correlation coefficients between the data of branch chain length distribution and principal component scores, degree of polymerization (DP) of 6–12, DP 13–34, and DP ≥ 35. The gelatinization temperature of starches increased markedly at a higher maturation temperature, with increases exceeding 10°C at high maturation temperatures. Gelatinization properties correlated significantly with amylopectin chain length distribution.  相似文献   

7.
Amylose contents of prime starches from nonwaxy and high-amylose barley, determined by colorimetric method, were 24.6 and 48.7%, respectively, whereas waxy starch contained only a trace (0.04%) of amylose. There was little difference in isoamylase-debranched amylopectin between nonwaxy and high-amylose barley, whereas amylopectin from waxy barley had a significantly higher percentage of fraction with degree of polymerization < 15 (45%). The X-ray diffraction pattern of waxy starch differed from nonwaxy and high-amylose starches. Waxy starch had sharper peaks at 0.58, 0.51, 0.49, and 0.38 nm than nonwaxy and high-amylose starches. The d-spacing at 0.44 nm, characterizing the amylose-lipids complex, was most evident for high-amylose starch and was not observed in waxy starch. Differential scanning calorimetry (DSC) thermograms of prime starch from nonwaxy and high-amylose barley exhibited two prominent transition peaks: the first was >60°C and corresponded to starch gelatinization; the second was >100°C and corresponded to the amylose-lipid complex. Starch from waxy barley had only one endothermic gelatinization peak of amylopectin with an enthalpy value of 16.0 J/g. The retrogradation of gelatinized starch of three types of barley stored at 4°C showed that amylopectin recrystallization rates of nonwaxy and high-amylose barley were comparable when recrystallization enthalpy was calculated based on the percentage of amylopectin. No amylopectin recrystallization peak was observed in waxy barley. Storage time had a strong influence on recrystallization of amylopectin. The enthalpy value for nonwaxy barley increased from 1.93 J/g after 24 hr of storage to 3.74 J/g after 120 hr. When gel was rescanned every 24 hr, a significant decrease in enthalpy was recorded. A highly statistically significant correlation (r = 0.991) between DSC values of retrograded starch of nonwaxy barley and gel hardness was obtained. The correlation between starch enthalpy value and gel hardness of starch concentrate indicates that gel texture is due mainly to its starch structure and functionality. The relationship between the properties of starch and starch concentrate may favor the application of barley starch concentrate without the necessity of using the wet fractionation process.  相似文献   

8.
Broken corn created by grounding sound corn kernels was added back at levels of 0, 4, 8, 12, or 16%, by weight, to whole kernels of three corresponding hybrids: FR27 × FRMo17 (a soft endosperm corn), FR618 × FR600 (amedium‐hard endosperm corn), and FR618 × LH123 (a hard endosperm corn). The samples had been dried from 28% moisture content to 15% moisture content either by using ambient air at ≈25°C or at 110°C. Samples were steeped for 36 hr at 52°C in 0.15% sulfur dioxide and 0.5% lactic acid steeping solution. The steepwater characteristics, such as water absorption, solids and protein content in the steepwater, and steepwater pH, were measured by periodic sampling and analyzed. Broken corn level has a significant effect on the amount of solids released during steeping and steepwater protein content for all samples. Both steepwater solids and protein content increased linearly as broken corn content increased. Corn drying temperature, kernel hardness, and interactions between drying temperature and kernel hardness has a significant effect on steepwater solids and protein content and steepwater pH in both broken and unbroken corn. Corn dried at low temperature released more soluble solids and protein into the steepwater than corn dried at high temperature. Soft endosperm and medium‐hard endosperm corn released more soluble solids and protein into the steepwater than hard endosperm corn. Soft endosperm corn resulted in a higher steepwater pH than medium‐hard and hard endosperm corn. No significant effect of broken corn content on final moisture content of steeped corn and steepwater pH was observed.  相似文献   

9.
The relative amounts of amylose and amylopectin in maize starch were determined in samples representing hard and soft endosperm. Although differences were small, amylose content differed significantly (P < 0.001 and P < 0.05) between the two types of endosperm, with hard endosperm containing a higher percentage of amylose. Scanning electron microscopy was used to determine that the surface appearance of starch granules from hard and soft endosperm differed. Starch granules from soft endosperm had randomly distributed pores on their surfaces, which had a rough appearance. Few pores were observed on granules from hard endosperm. A fairly common occurrence with starch granules from soft endosperm was the development of wrinkles or fissures upon prolonged exposure to the beam of the electron microscope. Thus, a correlation existed between endosperm hardness, amylose content, and susceptibility to wrinkling and fissures. The granules of the soft endosperm of maize, presumably less mature than the granules of the hard endosperm, have a lower amylose content (20.5 ± 1.9% vs. 23.0 ± 1.0%), exhibit more surface pores, and are more susceptible to wrinkling in an electron beam, compared with granules of the hard endosperm. Results suggested that the composition and internal architecture of the starch granule differ depending on the hardness of the endosperm from which it was obtained.  相似文献   

10.
Structural and physicochemical characteristics of endosperm starch from milled rice grains of seven Japanese cultivars used in sake production were examined. Amylose content was 15.2–20.2%, number-average degree of polymerization (DPn) of amylose was 900–1,400, and the ratio of short-to-long chain amylopectin was 2.7–3.5, respectively. The degree of retrogradation of purified starch stored for seven days at 4°C after gelatinization was 20–31%. The degree of retrogradation correlated negatively with the ratio of short-to-long chain amylopectin. The effect of holding time after steaming on enzyme digestibility and starch retrogradation of steamed rice grains was investigated. The longer the holding time after steaming, the greater the extent of retrogradation, and the less the degree of enzymatic digestibility. The decreased rate of enzyme digestibility correlated with amylopectin chain length distribution. Samples with short-chain amylopectin exhibited a slow decrease in enzyme digestibility. It was determined that the structure and retrogradation properties of endosperm starch in Japanese rice cultivars affect the decreasing rate of enzyme digestibility of the steamed, milled rice grains.  相似文献   

11.
Flours and starches from rough rice dried using different treatment combinations of air temperature (T) and relative humidity (RH) were studied to better understand the effect of drying regime on rice functionality. Rough rice from cultivars Bengal and Cypress were dried to a moisture content of ≈12% by three drying regimes: low temperature (T 20°C, RH 50%), medium temperature (T 40°C, RH 12%), and high temperature (T 60, RH 17%). Head rice grains were processed into flour and starch and evaluated for pasting characteristics with a Brabender Viscoamylograph, thermal properties with differential scanning calorimetry, starch molecular‐size distribution with high‐performance size‐exclusion chromatography (HPSEC), and amylopectin chain‐length distribution with high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). Lower head rice and starch yields were obtained from the batch dried at 60°C which were accompanied by an increase in total soluble solids and total carbohydrates in the pooled alkaline supernatant and wash water used in extracting the starch. Drying regime caused no apparent changes on starch molecular‐size distribution and amylopectin chain‐length distribution. Starch fine structure differences were due to cultivar. The pasting properties of flour were affected by the drying treatments while those of starch were not, suggesting that the grain components removed in the isolation of starch by alkaline‐steeping were important to the observed drying‐related changes in rice functionality.  相似文献   

12.
This report shows the effect of temperature (72, 82, and 92°C) during the cooking stage and steeping time (0, 1, 3, 5, 7, 9, 11, 13, and 15 hr) on calcium and phosphorus contents in nixtamalized corn flours obtained by the traditional nixtamalization process (NCF). In addition, calcium and phosphorus contents in industrial nixtamalized corn flours were analyzed for comparative purposes. Atomic absorption spectroscopy and UV‐vis spectroscopy methods were used to study the calcium and phosphorus contents as well as the Ca2+/P ratio in NCF and industrial nixtamalized corn flours. Additionally, deposition and identification of calcium compounds in the nixtamalized corn pericarp were analyzed by low‐vacuum scanning electron microscopy, energy dispersive spectrometry, and X‐ray diffraction techniques. Dry matter loss in NCF is also reported. As the temperature increased, Ca2+ content was enhanced, while the phosphorus content decreased with statistical differences (P ≤ 0.05) between thermal treatments. Ca2+ content in industrial nixtamalized corn flours was significantly lower (P ≤ 0.05) than that of NCF. On the other hand, no statistical differences (P ≤ 0.05) were found between phosphorus content in commercial nixtamalized corn flours and NCF. Calcium compounds, identified as calcite, were detected in corn pericarp. Statistical differences (P ≤ 0.05) were observed in phosphorous content in NCF obtained at different cooking temperatures. In addition, a decrease in phosphorus levels significantly correlated with the steeping time at 92°C (r = –0.91). At 72, 82, and 92°C, the average Ca2+/P ratio in NCF was 0.45 ± 0.03, 0.61 ± 0.05, and 0.82 ± 0.05, respectively, indicating a correlation between this parameter and the cooking temperature. However, no correlation was found between the Ca2+/P ratio and the steeping time. This behavior is attributed to calcium attached to corn kernel. In commercial nixtamalized corn flours, the Ca2+/P ratio was significantly lower (P ≤ 0.05) than that of NCF. There was a significant correlation (P ≤ 0.01) between dry matter loss and steeping time (r = 0.99) in NCF, this fact influenced the Ca2+/P ratio due to the calcium attached to pericarp. At 82 and 92°C, maximum values of Ca2+/P ratio were detected in NCF at 7 hr of steeping time and at 9 hr at 72°C. These results can be used with industrial purposes to assess a maximum calcium‐to‐phosphorus ratio, and at the same time, to avoid the loss of pericarp to increase the functional properties of NCF.  相似文献   

13.
Using a continuous decorticating machine, white dent corn was efficiently separated, after brief steeping in water, into two fractions: the first (12.5%) consisting mainly of pericarp, germ, and tip cap (PGT); the second (87.5%) consisting of endosperm. Nixtamalization of the maize fractions in the presence of 0.6% (w/w) lime caused an increase in the hot‐paste viscosity at 90°C, while nixtamalization of PGT at lime inputs <0.6% (w/w) resulted in decreased viscosity. Three domains were found for the viscosity of nixtamalized endosperm at 90°C: lower concentrations of lime (< 0.15%, w/w) resulted in lower viscosity values; increased lime (0.15% – <0.3%, w/w) increased the viscosity values; and a lime concentration of 0.3% (w/w) resulted in a lower viscosity value. The response variables (water absorption index, water solubility index, initial viscosity, and viscosity at 90°C for nixtamalized PGT, and compression force and compression area of tortillas) indicated that the mathematical models fit the experimental data and the variance of the models was highly significant. Tortillas of good functional characteristics similar to tortillas produced by the traditional process were obtained when 5% nixtamalized fractions of PGT were blended with 95% nixtamalized endosperm.  相似文献   

14.
Nonwaxy rice starch was cross‐linked with sodium trimetaphosphate and sodium tripolyphosphate to obtain different degrees of cross‐linking (9.2, 26.2, and 29.2%). The objective was to investigate the influence of cross‐linking on thermal transitions of rice starch. Starch suspensions (67% moisture) were heated at 2°C/min using differential scanning calorimetry (DSC) to follow melting transition of amylopectin. Biphasic transitions were observed at ≈60–95°C in all samples. Melting endotherms of amylopectin shifted to a higher temperature (≤5°C) with an increasing degree of cross‐linking, while there was no dramatic change in enthalpy. Recrystallization during aging for 0–15 days was significantly suppressed by cross‐linking. The delayed gelatinization and retrogradation in crosslinked starch were evident due to restricted swelling and reduced hydration in starch granules. Glass transition temperature (Tg) measured from the derivative curve of heat flow was ‐3 to ‐4°C. No significant change in Tg was observed over the storage time studied.  相似文献   

15.
The present research evaluated the feasibility of using ozone (O3) to replace sulfur dioxide (SO2) in corn steeping. Traditionally, steep water contains 0.1–0.2% sulfur dioxide to promote starch‐protein separation and high starch yields, and to control microbial growth. However, residual SO2 in starch products affects product quality and jeopardizes the “organic products” claims. Also, SO2 discharged to the environment pollutes water and air. Ozone is a strong oxidant and disinfectant with a capability to control the growth of putrefactive microorganisms in steeping systems, and to break down the endosperm protein matrix and, hence, improve starch release. This study demonstrates that an ozone‐aided steeping (OAS) process had starch yields as high as conventional SO2 steeping. OAS processes can be conducted at a lower temperature (20°C vs. 50°C) and for shorter times (36 hr vs. 48 hr) than the conventional SO2 processes, suggesting significant energy savings and increased productivity. We have found that the timing of ozone application is of great importance to the performance of the OAS process.  相似文献   

16.
Rice starches of long grain and waxy cultivars were annealed (ANN) in excess water at 50°C for 4 hr. They were also modified under heat-moisture treatment (HMT) conditions at 110°C with various moisture contents (20, 30, and 40%) for 8 hr. The modified products were analyzed by rapid-viscosity analysis (RVA), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Generally, these hydrothermal treatments altered the pasting and gelling properties of rice starch, resulting in lower viscosity peak heights, lower setbacks, and greater swelling consistency. The modified starch showed increased gelatinization temperatures and narrower gelatinization temperature ranges on ANN or broader ones on HMT. The effects were more pronounced for HMT than for ANN. Also, the typical A-type XRD pattern for rice starch remained unchanged after ANN or HMT at low moisture contents, and the amorphous content increased after HMT at 40% moisture content.  相似文献   

17.
《Cereal Chemistry》2017,94(2):207-214
A convenient small‐scale laboratory method that can be used to simultaneously analyze multiple samples was developed to rapidly assess suitability of corn for nixtamalization. This new 100 g method was developed based on a previously reported 500 g laboratory process that has been shown to mimic the industrial nixtamalization process. The two methods were compared for nixtamal moisture, dry matter loss, degree of pericarp removal, and gelatinization properties of the cooked corn. The heating and cooling profiles of the 100 g method were developed using the 500 g method, by monitoring temperature every 30 s during cooking and steeping. Nixtamalization was conducted with a 1:4 corn/water ratio, with 1% lime. A response surface central composite design was used to model a wide range of processing conditions for the two methods: cook temperature (80–95°C), cook time (3–40 min), and steep time (2–12 h). Parameter estimates and response surfaces were compared, and predictive models were fitted. The response surface models for the two methods were not significantly different for nixtamal moisture, dry matter loss, and gelatinization enthalpy; there was an overlap of the 90% Bonferroni confidence intervals (P < 0.05, r 2 > 0.7). The bench‐top 100 g nixtamalization process can successfully mimic the 500 g method over a wide range of processing conditions.  相似文献   

18.
Dough for nontraditional semisweet biscuits—prepared with wheat flour or replacing part of the wheat flour with corn starch, with or without skim milk—was baked at two oven temperatures, 120 or 170°C, until reaching moisture content and water activity lower than 6% and 0.5, respectively. Assays of fracture stress, differential scanning calorimetry, X‐ray diffraction, and starch digestibility were performed. Results showed that biscuits containing milk had the highest fracture stress, and biscuits baked at low temperature were harder than biscuits baked at high temperature. The degree of starch gelatinization during baking was higher when dough was baked at 170°C, compared with dough baked at 120°C. The decrease in gelatinization coincides with the decrease in the height and surface of peaks at 15 and 23° in the X‐ray diffraction patterns. Milk and corn starch did not affect the starch digestibility of biscuits, but biscuits baked at 170°C presented lower fracture stress and higher starch digestibility than biscuits baked at 120°C.  相似文献   

19.
Retrogradation of du wx and su2 wx starches after different gelatinization heat treatments was studied by differential scanning calorimetry. Suspensions of 30% (w/w) starch were initially heated to final temperatures of 55–180°C. Gelatinized starch was cooled and stored at 4°C. Starch retrogradation in the storage period was influenced by initial heat treatments. Retrogradation of du wx starch was rapid: when initially heated to 80–105°C, retrogradation enthalpy was ≈10 J/g after one day at 4°C. The retrogradation enthalpy was ≈15 J/g after 22 days of storage, and reached a maximum of 16.2 J/g after 40 days of storage. For du wx starch, application of the Avrami equation to increases in retrogradation enthalpy suggests retrogradation kinetics vary with initial heating temperature. Furthermore, starch retrogradation may not fit simple Avrami theory for initial heating ≤140°C. Retrogradation of su2 wx starch was slow. After 30 days of storage at 4°C, the maximum retrogradation enthalpy for all initial heating temperatures tested was 7.0 J/g, for the initial heating to 80°C. This work indicates that gelatinization heat treatment in these starches is an important factor in amylopectin retrogradation, and that the effect of initial heat treatment varies according to the genotype.  相似文献   

20.
The entry of calcium ions from the nixtamalization solution into maize kernels over time was followed in model experiments using radiolabeled calcium ions, with autoradiographic evaluation of the kernels after different cooking and steeping times. Calcium ions immediately entered the pericarp and were rapidly fixed at the outer boundary of the endosperm, especially at the external surface of the germ. Entry of calcium into the endosperm occurred gradually after long steeping times, except in the case of broken kernels, for which massive invasion by calcium was observed. After extended steeping times, a moderate amount of calcium‐45 was evident in the germ. Specific perforation of the outer layers of the grains provided a defined route of facilitated entry of calcium into the endosperm. No fundamental difference with respect to penetrability by calcium ion was seen in a comparison between flint‐type grains and grains containing only floury endosperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号