首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Examples of nutritional stress in conifer seedlings caused by competing ericaceous species (e. g. Calluna andKalmia), have been reported in several parts of the world. Nutritional stress (primarily N deficiency) has been reported in Sitka spruce (Picea sitchensis) plantations growing in association with an ericaceous species, salal (Gaultheria shallon), in coastal British Columbia. Nutritional interference by salal was investigated on a chronosequence of sites up to 10 yr after clearcutting and slashburning. No direct evidence for an allelopathic contribution to the N stress was obtained. However, the rapid accumulation of salal fine roots and rhizomes, and the nutrients contained therein, provides a partial explanation for the observed stress symptoms. Soil analyses and seedling bioassays demonstrated a reduction in fertility in the period 8 to 10 yr after clearcutting and slashburning in comparison to the period 2 to 4 yr, which is believed to impose further nutritional stress on Sitka spruce. It is concluded that the nutritional stress in these Sitka spruce plantations is caused by a combination of (1) salal competition for nutrients and their subsequent immobilization in salal biomass, and (2) declining site fertility caused by the termination of the flush of nutrients (the “assart period”) that occurs in the immediate post-clearcutting and slashburning period. Sustaining good growth of plantations under such circumstances will require site nutrient management as well as vegetation management.  相似文献   

2.
One and 3 yr old needles of (Picoa abies [L.] Karst) were analyzed for mineral content and to determine the main nutrients and pollutants. In the Bavarian Alps 70 adult spruce trees were selected along an altitudinal gradient on seven stands from 800 to 1720 m above sea level. The samples, collected at different times of the year, came from the tops of the crowns. The needle analysis showed a severe P and a mild N deficiency. Samples which were washed with chloroform have significantly lower Fe and Ph contents. The low S concentrations of the needles exclude a burden by air pollution caused by SO2.  相似文献   

3.

Purpose

This study quantified the above- and belowground carbon (C) stocks across a chronosequence of spruce (Picea asperata) plantations established on cutovers and explored the turning point after which the increase in biomass C slowed or biomass C decreased for guiding forest management.

Materials and methods

We assessed above- and belowground plant biomass stocks at 11 sites in three regions, representing 12- to 46-year-old spruce plantations established on clear-cut areas in the eastern Tibetan Plateau, China. Biomass and C stocks of trees, understory vegetation, and forest floor litter were determined from plot-level inventories and destructive sampling. Fine root (<2 mm) biomass and mineral soil organic C (SOC) stock were estimated from soil cores. Tree biomass was quantified using allometric equations based on diameter at breast height (DBH) and height (H).

Results and discussion

Plant biomass C stocks in spruce plantations rapidly increased from 12 to 20 years at a rate of 7.8 Mg C ha?1 year?1, but decreased from 25 to 46 years at a rate of 0.79 Mg C ha?1 year?1. SOC stocks in spruce plantations gradually decreased from 12 to 46 years at a rate of 4.4 Mg C ha?1 year?1. Total C stock in the ecosystem remained unchanged for the first 20 years after the planting of spruce on cutovers, because the buildup of C stock in spruce biomass during the first 20 years was offset by the decrease in SOC. From 21 to 46 years after the reforestation, ecosystem C stock even decreased at a rate of 5.2 Mg C ha?1 year?1. The contribution of the understory vegetation, forest floor litter, and fine root to ecosystem C stock was low (<5.0 %) in the spruce plantations.

Conclusions

Ecosystem C stock in the spruce forest established on the cutover in the eastern Tibetan Plateau was related to stand age. During the first 20 years, this ecosystem was C neutral. However, aged (20–46 years) spruce plantation ecosystem can be a C source if no management was implemented to revitalize tree growth, promote understory vegetation, and enhance SOC accumulation.
  相似文献   

4.
The influence of forest development on soil solution and surface drainage water aluminium chemistry was investigated in Sitka spruce (Picea sitchensis) plantations in Wales. Comparisons with semi-natural grassland and moorland sites are described. A highly significant positive relationship was shown between increasing forest age and soilwater aluminium concentrations in the B horizons. Shortterm/episodic peaks in Al concentrations were strongly related to incidences of high concentrations of neutral, marine-derived, salts in the soilwater. Nitrification may be an important factor in soil acidification and the mobilization of Al in soilwaters beneath the older mature-forest plantations in Wales. Labile monomeric Al concentrations were largest in surface waters draining the oldest forestry plantations compared with younger forest catchments and moorland, although response to discharge of soilwater acidity to the surface waters at individual sites was dependent on the acid neutralizing capacity of the groundwater component of the surface waters.  相似文献   

5.
In the early summer of 1987 an untimely needle loss was observed in Scots pine (Pinus sylvestris L.) of different ages growing on oliogotrophic mineral soils in Cladina and Calluna-type heath forests in northern Finland. The first symptoms were observed at the beginning of July when current shoot growth was ending and the young needles were flushing. The older needles first yellowed then later turned brown before falling. Needle loss proceeded from the oldest to the younger needle age classes. The trees lost between one and four age classes of needles from earlier growth and retained only the most recent 1 to 3 yr needles. Foliar analysis indicated nutrient stress as revealed by retranslocation of mobile nutrients such as N and insufficient uptake of immobile nutrients such as Ca. The soil nutrient concentration, however, was normal at poor sites and therefore it appears the primary reason for needle Loss is a nutrient stress due to root damage. This damage was caused by unusual weather in the winter of 1986 to 1987, rather than by soluble Al.  相似文献   

6.
The water and oxygen status of four upland soils under Sitka spruce plantations was studied for 2 years. In a brown earth, waterlogging only occurred ephemerally in the subsoil and oxgen concentrations were generally high. In contrast, waterlogged and near-anaerobic conditions persisted for much of the year in stagnogley and stagnohumic gley soils. In a peaty stagnopodzol moist conditions occurred above and below the thin ironpan, but while high oxygen concentrations generally persisted in the subsoil, low concentrations were common in the soil above. In the brown earth, healthy roots of Sitka spruce were present at a depth of 85 cm, but in the gley soils rooting was mainly limited to 25 cm and many roots were dead. In the peaty stagnopodzol, roots penetrated the ironpan and grew in the subsoil to 75 cm depth.  相似文献   

7.
Soil solution chemistry was sampled for 2 yr in a mature Sitka spruce — western hemlock (Picea sitchensis (Bong) Carr. Tsuga heterophylla (Raf.) Sarg) forest on a Dystric Cryandept (Spodosol) soil. Electroneutrality balances indicated a cation deficit at all soil solution sampling points. Calculated soil solution electrical conductivity was less than measured electrical conductivity, with differences greater than expected measurement errors. Soil solutions and streamflow were colored by organics, as measured by P.C.U.s. It is suggested that organic acids or other organic compounds may be positively charged in northern Spodosols.  相似文献   

8.
9.
This work was performed in the Rio de Janeiro State, Brazil, with the objective to evaluate the nutritional status of yellow passion fruit plants along different phenological stages, using the DRIS method. Fifty-four passion fruit cultivated areas with an annual yield productivity ranging from 6.95 to 33.8 t ha?1 year?1 and average productivity of 16.9 t ha?1 year?1 were selected in the region. The contents of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), chlorine (Cl), iron (Fe), zinc (Zn), manganese (Mn), and boron (B) were evaluated. The reference standards were established (mean and variation coefficient) for the values of the nutrient concentration ratios, two by two, on samples from high yield productivity plantations and analyzed by the DRIS index of nutrients for the medium and low yield productivity areas. The established standards differed according with the phenological stage of the culture. In a general way, the mean content of the evaluated nutrients did not differed between the two productivity levels into each phonological stage. There was a difference for the Nutritional Limitation Order between different phenological stages of yellow passion fruit plants. The most negative DRIS indexes and the highest absolute values for the Average Nutritional Balance on yellow passion fruit plants in the region, were found for potassium in May, phosphorus in October and iron in January.  相似文献   

10.
This study was carried out in alien warmth-tolerant forest plantations of red oak (Quercus rubra), common beech (Fagus sylvatica) and European larch (Larix decidua). We compared the changes in foliar litterfall mass and biochemical composition after five months of cold period. The mean mass of fresh foliar litterfall collected in late autumn was 30% higher in red oak compared to the larch and beech plantations. After the cold period, the reduction of foliar litterfall mass did not exceed 10% in any of the studied plantations. The fresh foliar litterfall of red oak was the richest in cellular fibre and easily decomposable glucose and nutrients such as P and Mg, larch was distinguished by the highest lignin, N, K and Ca concentrations, while beech fresh foliar litterfall was the poorest in the aforementioned nutrients. After the cold period, the changes in the biochemical composition of foliar litterfall revealed different patterns. In the spring, the beech and red oak foliar litterfall was the richest in N, P and Ca, meanwhile the larch foliar litterfall still had the highest concentration of lignin but, in contrast to the autumn, was the poorest in nutrients. After the cold period Lignin: N, C: N and C: P ratios reached critical values indicating that the foliar litterfall of beech and red oak had started to decompose. The highest lignin concentration and the highest and most stable Lignin: N, C: N, C: P and N: P ratios after the cold period indicated that the slowest foliar litterfall decomposition took place in the larch plantation.  相似文献   

11.
Samples of strongly acid forest litter and humus from beneath Sitka spruce, heather, Scots pine and larch from two sites in north-east Scotland were incubated aerobically at 20°C in the laboratory. At the Glen Tanar site, spruce litter and larch humus showed significant nitrification and ammonification whereas spruce humus and Scots pine humus produced only NH4+-N. Heather humus showed no net mineralization. At the Fetteresso site, application of fertilizer N, P and K to Sitka spruce up to 3 yr previously, significantly stimulated the production of NO3-N in both litter and humus.Amendment of the samples with organic N as peptone caused significant increases in NO3-N production in those samples that already showed nitrification. The increases in NO3-N generally represented a low proportion of the added peptone-N. Amendment with NH4+-N as (NH4)2SO4 either had no effect or significantly reduced NO3-N production (in larch humus). The results suggest the occurrence of heterotrophic nitrification in some of these forest samples.Net immobilization of NH4+-N was typically greater in NH4+-N amended than in peptone amended samples, except for heather humus which showed complete immobilization of both N sources.Total mineral N produced at the end of the aerobic incubation was correlated (P < 0.01) with NH4+-N produced during a 30-day anaerobic incubation at 30°C. Net NO3-N production was greater in litter than in the corresponding humus samples and was correlated (P < 0.001) with initial organic N soluble in 1 m KCl.  相似文献   

12.
Concentrations of oxygen and carbon dioxide were measured in an upland peaty gley soil during two growing seasons and a deep peat during one season. Measurements were compared with the soil water regimes on both soils. Comparison was also made between planted areas of Sitka spruce and Lodgepole pine, and areas of the native vegetation (Molinia grassland on the peaty gley, and Calluna heath on the deep peat). In 13 m tall pure stands of the pine and spruce on the peaty gley soil about 28% of the rainfall was intercepted by the canopy and evaporated without reaching the soil, and the watertable was deeper and matric potentials were lower than under grass. When the matric potential fell below ?5 kPa in the upper soil layers, high oxygen concentrations prevailed. In undisturbed peat, waterlogged conditions produced an anaerobic regime virtually to the surface, but a 1 m deep drainage ditch lowered the watertable and created an aerobic regime within the top 0.3 m of peat. The presence of tree crops on drained plots increased the depth of drying during the summer months, and aerobic conditions reached 0.4 m depth under Sitka spruce and 0.5m under Lodgepole pine. On the peaty gley also, Lodgepole pine dried and aerated the soil to a greater depth than Sitka spruce during the summer, but no difference in water regime was evident in the winter.  相似文献   

13.
At three sites in northern Germany (Witzenhausen, Egge-Mountains and Hamburg-Eißendorf) biochemical stress bioindicators (chlorophyll, starch, proline and acid phosphatase and peroxidase activity) were determined in the needles of healthy and damaged Norway spruce (Picea abies L. Karst.). Peroxidase activity was higher in 1 and 2 yr old needles of damaged Norway spruce at the Witzenhausen and Hamburg-Eißendorf sites. Phosphatase activity was significantly higher in needles of damaged trees in all needle ages at the Egge-mountains site in 1983, and at the Witzenhausen site in current and 1 yr old needles. At the Hamburg-Eißendorf site lower phosphatase activity in needles of damaged trees was determined. At the Witzenhausen site lower levels of chlorophyll were determined in the 1 and 2 yr old needles of damaged trees, whereas at the Hamburg-Eißendorf and Egge-mountains sites lower chlorophyll levels were found in current needles. Thus between healthy and damaged trees at a specific site differences in the stress bioindicators could be found, however no common pattern between the sites could be determined. The study indicates that these biochemical bioindicators may be used to show a general stress, but it is difficult to relate them to a specific stress factor.  相似文献   

14.

Purpose

The relationships among resorption, leaf nutrient status, and soil nutrient availability remain unresolved. Moreover, the dynamics of resorption in leaf and soil nutrients and stoichiometry during development of Chinese fir (Cunninghamia lanceolata) stands have rarely been studied. This study quantified the resorption efficiencies of nitrogen (N), phosphorus (P), and potassium (K), and their potential correlations with stoichiometric ratios in leaf and soil as Chinese fir stands develop, and also evaluated the nutritional control on resorption in the stands based on the “relative resorption hypothesis.”

Materials and methods

Leaf and soil samples were collected from Chinese fir stands at different developmental stages (young, mature, and overmature) at the Xinkou National Forest in southern China. Samples of green leaves were collected from different portions of the crown from representative trees in different seasons. Samples of senesced leaves were collected from litter traps placed under the representative trees every month. Soils were sampled at three depths (0–20, 20–40, and 40–60 cm). Samples of green and senesced leaves were analyzed to determine nutrient (N, P, and K) concentrations, stoichiometric ratios, and resorption efficiencies. Soil samples were also analyzed for nutrient concentrations (organic matter, N, P, and K) and stoichiometric ratios.

Results and discussion

P (75 %) and K (77 %) resorption efficiencies were higher than N resorption efficiency (57 %) but did not vary among the stands. However, K resorption efficiency decreased from the young to the overmature stage. N and P resorption efficiencies were influenced by season, and leaf nutrient stoichiometric ratios varied with stand stage. Green-leaf N and P concentrations, and senesced-leaf K concentration increased with stand developmental stage. The concentrations of N, P, and K decreased with soil depth, and there was no interaction effect of stand stage and soil depth on stoichiometric ratios of the soil nutrients. The correlation results showed that nutrient resorption efficiencies were mostly affected by leaf nutrient status, but seldom by soil nutrient concentration and stoichiometry.

Conclusions

The results suggest Chinese fir might preferentially resorb P and K from senescing leaves prior to abscission. Based on the relative resorption hypothesis the Chinese fir plantations are more limited by P and that resorption may be an important mechanism to conserve nutrients in these stands in order to reduce dependence on soil nutrient pools. There is an indication that stand development affects these processes; however, the resorption process and internal mechanism need to be further investigated for the long term.
  相似文献   

15.
Abscisic acid (10–4 M) applied via absorbent discs bound to the stems of 6 wk old E. camaldulensis seedlings caused changes in leaf shape and orientation similar to those induced by nutritional and water stress. Seedlings from the driest provenance, Tennant Creek, were more responsive to ABA than seedlings from the wettest provenance, Katherine, and the response of Petford seedlings was intermediate. Likewise, Tennant Creek seedlings were most, and Katherine seedlings least, responsive to water and/or nutritional stress. Seedlings that responded to the application of ABA produced prematurely strengthened, linear leaves with the lamina rotated from horizontal to vertical. The ability of Tennant Creek seedlings to readily assume this form may be a specific adaptation for the particularly difficult conditions in their natural environment.  相似文献   

16.
Abstract. Rooting depth, watertable depth and oxygen regime were measured in plots of Sitka spruce, lodgepole pine and a 50% mixture of each species planted on a deep unflushed blanket peat. The water-table was about 10 cm deeper and roots occurred about 2 cm deeper under the pine than under the spruce or the mixture. In addition the mean concentration of oxygen at 50 cm depth was significantly larger under the pine and the mixture than under the spruce, showing that the rapid early growth of the pine had started to dry the peat. There was no evidence of any improvement in the growth of the spruce in the mixture compared to the pure Sitka spruce, suggesting that the expected nursing benefit had not occurred.  相似文献   

17.
To evaluate the influence of irrigation and fertilization on the productivity of E. globulus a field experiment was started in 1986 in Central Portugal. The nutrients accumulated in the biomass and their allocation to the various biomass components as well as the changes in soil chemical characteristics were also followed. Irrigation and fertilization resulted in a significant increase of biomass production during the first 2 yr. A similar trend occurred with the net primary production and leaf litterfall. The differences between treatments in the amounts of accumulated nutrients in the aboveground biomass were similar to those of biomass accumulation. However, there was a small but consistent effect related to the average concentration of nutrients in the plant tissues. This effect occurred essentially in the leaves and branches. The concentration of N and P in the leaf litterfall was higher in the fertilized treatments than in the others. Fertilization alone induced a slight increase in the soil pH values, C content, exchangeable Ca and available P levels. Such increase was more pronounced in the fertilized with dripping irrigation treatment. This was due to the accumulation of nutrients in the wetted soil volume.  相似文献   

18.
Carbon sequestration in 30 yr old Norway spruce in south Sweden following manipulation of nutrient and water availability is presented. The site has an annual precipitation of 1100 mm and a deposition of about 20 kg N and 25 kg S per ha?1 yr?1. The soil type is a poorly developed podzol. Treatment include irrigation; artificial drought; ammonium sulphate addition; nitrogen-free-fertilization and irrigation with liquid fertilizers including a complete set of nutrients. The experiment has a randomized block design with four replicates per treatment. A comprehensive investigation of the above ground C storage on an areal basis was made at the start of the experiment and after 3 yr of treatment. After 3 yr of treatment with simulated N-S deposition using ammonium sulphate (100 kg N, 114 kg S ha?1 yr?1), C accumulation rates in the above ground compartments had increased by 37%. Similarly, irrigation caused increased C accumulation rates by 25%, whereas simulated drought during the vegetation period during 2 yr followed by 1 yr of recovery caused a 15% reduction of the C accumulation rates. Irrigation combined with liquid fertilization (100 kg N ha?1 yr?1), including all important nutrient elements, led to 65% increase in C accumulation rates compared to the control. The C sequestration of the latter treatment gradually increased and, during yr 5 of treatment, 8.6 Mg C ha?1 accumulated in stems and branches, compared to 3.6 Mg ha?1 for the control. It is concluded that there is a strong interaction between N-deposition and C accumulation rates in Norway spruce in south Sweden. The C accumulation rates are also sensitive to water availability. The study indicates a great potential to cultivate Norway spruce in south Sweden as a renewable energy source. A shift in energy source from fossil fuels to renewable energy sources will directly reduce the net emissions of CO2 to the atmosphere.  相似文献   

19.
川西亚高山针叶林植物群落演替对生物学特性的影响   总被引:13,自引:0,他引:13  
通过对川西亚高山针叶林人工重建过程中土壤微生物数量、酶活性及其与土壤养分性状的关系研究表明,云杉人工成熟林土壤微生物数量、酶活性明显低于云杉人工幼林地,也低于同龄的次生阔叶林地,人工云杉林随着林龄的增加土壤肥力严重退化。土壤微生物数量、酶活性与土壤有机质、全N、全P和碱解N等养分指标呈显著相关关系,土壤生物学指标能较好地反映土壤肥力状况。解决当前人工成熟云杉林土壤退化的主要措施应因地制宜地进行抚育间伐,改善林地的微生态条件,尽量避免营造针叶纯林,建议营造针阔混交林。  相似文献   

20.
Studies of biogeochemical cycling and soil acidification have been carried out in even aged stands of Norway spruce, sitka spruce, Douglas fir, beech and oak under the frame of “The Element Cycling Project”. Deposition of excess nitrogen to forests is important as a potential acidifying input. In Denmark, reduced vitality in Norway spruce has promoted extensive planting of sitka spruce. However, several spruce aphid infestations have caused defoliation in many sitka spruce stands. The objectives of this study were to evaluate the effects of deposition and increased litterfall due to spruce aphid infestations on nitrogen transformations in the forest floor in sitka spruce stands on different soil types. The deposition of throughfall nitrogen range from 19 to 35 kg/ha/year. Fluxes of nitrogen in litterfall ranged from 21 to 77 kg/ha/year, whereas nitrogen leaching range from 1 to 57 kg/ha/year. Leaching was lowest at the infertile sites, but increased with magnitude of deposition and aphid infestations. Proton production according to the nitrogen transformations was largest at the fertile site most often affected by infestations. Huge amounts of bird droppings, honey dew and input of easily available nutrients by canopy leaching probably induced litter decomposition and formation of NO 3 ? in the soil water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号