首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
土壤中多环芳烃的微生物降解: 降解途径及其影响影子   总被引:4,自引:0,他引:4  
Adverse effects on the environment and high persistence in the microbial degradation and environmental fate of polycyclic aromatic hydrocarbons (PAHs) are motivating interest. Many soil microorganisms can degrade PAHs and use various metabolic pathways to do so. However, both the physio-chemical characteristics of compounds as well as the physical, chemical, and biological properties of soils can drastically influence the degradation capacity of naturally occurring microorganisms for field bioremediation. Modern biological techniques have been widely used to promote the efficiency of microbial PAH-degradation and make the biodegradation metabolic pathways more clear. In this review microbial degradation of PAHs in soil is discussed, with emphasis placed on the main degradation pathways and the environmental factors affecting biodegradation.  相似文献   

2.
Microplastics(MPs) are plastic particles less than 5 mm in size that have become a major environmental pollutant due to their ubiquitous and persistent nature. Microplastic contamination of the aquatic environment has received the most attention so far, whereas the current understanding of MP prevalence and its impacts in the terrestrial environment is largely limited. The MP contamination of soil can cause bioaccumulation and toxicity in terrestrial animals and plants, which can consequently affect human health. This review is aimed towards combining the available information on the occurrence, sources, and effects of MPs on the different aspects of the terrestrial environment and to highlight the limitations in our knowledge regarding the nature and impacts of MPs in soil. The review also highlights microbial degradation of MPs as an advancing research area, with numerous microorganisms being identified as capable of efficiently degrading this persistent contaminant.  相似文献   

3.
Due to easy volatilization of volatile organic compounds from water,it is difficult to monitor their aerobic biodegradation in the traditional single water system.Whether a two-liquid-phase system(TLPS) could overcome this obstacle and enhance the degradation of volatile contaminants? In this study,a TLPS composed of silicone oil and water was employed to investigate the biodegradation of volatile compounds,trichlorobenzenes(TCBs),by the adapted microorganisms in an activated soil.The degradation and volatilization of TCBs in TLPS and in a single water system were compared.The results showed that due to volatilization losses of TCBs,the mass balance of TCBs in a single water system was very low.In contrast,using TLPS could effectively inhibit the volatilization losses of TCBs and achieved a very good mass balance during the biodegradation process.Meanwhile,the TLPS could increase microbial activity and microbial growth during the degradation process.With TLPS,the TCB degradation was in descending order of 1,2,4-TCB> 1,2,3-TCB>> 1,3,5-TCB,which was related to the exposed concentration of the contaminants in soil.This study showed that TLPS could be employed as an effective tool to evaluate the biodegradation of volatile hydrophobic organic compounds,which could not be achieved with the traditional single water system.  相似文献   

4.
Isothermal microcalorimetry provides thermodynamic and kinetic information on various reactions and processes and is thereby a powerful tool to elucidate their mechanisms. Certain improvement in isothermal microcalorimetry with regard to the studies on soil and environmental sciences is briefly described. This review mainly focuses on the use of microcalorimetry in the determination of soil microbial activity, monitoring the toxicity and biodegradation of soil organic pollutants, the risk evaluation of metals and metalloids, the heat effect of ion exchange and adsorption in soil, and environmental researches. Promising prospects for the applications of the technique in the field are also discussed.  相似文献   

5.
湿热灭菌和氯化汞灭菌对双液相体系中PAHs降解的影响   总被引:1,自引:0,他引:1  
A two-liquid-phase(TLP) soil slurry system was employed to quantify the efficiencies of autoclaving and mercuric chloride sterilization in the dissipation of polycyclic aromatic hydrocarbons(PAHs).The fates of 11 PAHs(naphthalene,fluorene,phenanthrene,anthracene,fluoranthene,pyrene,benzo(a)anthracene,benzo(a)pyrene,benzo(b)fluoranthene,benzo(k)fluoranthene,dibenzo(a,h)anthracene) were recorded over 113 days of incubation.No microorganisms were detected in the HgCl 2-sterilized soil slurries during the whole incubation period,indicating very effective sterilization.However,about 2%-36% losses of PAHs were observed in the HgCl 2 sterilized slurry.In contrast to the HgCl 2-sterilized soil slurry,some microorganisms survived in the autoclaved soil slurries.Moreover,significant biodegradation of 6 PAHs(naphthalene,fluorene,phenanthrene,anthracene,fluoranthene and pyrene) was observed in the autoclaved soil slurries.This indicated that biodegradation results of PAHs in the soil slurries,calculated on basis of the autoclaved control,would be underestimated.It could be concluded that the sterilization efficiency and effectiveness of HgCl 2 on soil slurry was much higher than those of autoclaving at 121℃ for 45 min.  相似文献   

6.
Functional redundancy in soil microbial communities seems to contradict the notion that individual species have distinct metabolic niches in multi-species communities.All soil microbiota have the metabolic capacity for"basic"functions(e.g.,respiration and nitrogen and phosphorus cycling),but only a few soil microbiota participate in"rare"functions(e.g.,methanogenesis and mineralization of recalcitrant organic pollutants).The objective of this perspective paper is to use the phylogenetic niche conservatism theory as an explanation for the functional redundancy of soil microbiota.Phylogenetic niche conservatism is defined as the tendency for lineages to retain ancestral functional characteristics through evolutionary time-scales.The present-day soil microbiota is the result of a community assembly process that started when prokaryotes first appeared on Earth.For billions of years,microbiota have retained a highly conserved set of core genes that control the essential redox and biogeochemical reactions for life on Earth.These genes are passed from microbe to microbe,which contributes to functional redundancy in soil microbiota at the planetary scale.The assembly of microbial communities during soil formation is consistent with phylogenetic niche conservatism.Within a specific soil,the heterogeneous matrix provides an infinite number of sets of diverse environmental conditions,i.e.,niches that lead to the divergence of microbial species.The phylogenetic niche conservatism theory predicts that two or more microbial species diverging from the same clade will have an overlap in their niches,implying that they are functionally redundant in some of their metabolic processes.The endogenous genetic factors that constrain the adaptation of individuals and,thus,populations to changing environmental conditions constitute the core process of phylogenetic niche conservatism.Furthermore,the degree of functional redundancy in a particular soil is proportional to the complexity of the considered function.We conclude with a conceptual model that identifies six patterns of functional redundancy in soil microbial communities,consistent with the phylogenetic niche conservatism theory.  相似文献   

7.
四川和重庆地区的植茶土壤与茶叶品质   总被引:4,自引:0,他引:4  
A laboratory experiment was conducted to evaluate the effect of triphenyltetrazolum chloride(TTC) on soil microorganisms and the availability of pH characterization medium in BIOLOG plates.Application of TTC decreased the color development sharply and resulted in a great biocidal effect on the growth and reproduction of soil microorganisms,indicating that TTC can affect the discrimination on soil microbial community.The microtitration plates with 21 cabon sources and two different pH levels(4.7 and 7.0) were used to determine microbial community structure of eight red soils.The average utilization(average well colour development) of the carbon sources in the paltes with different pH levels generally followed the same sigmoidal pattern as that in the traditional BIOLOG plates,but the pH 4.7 plates increased the discrimination of this technique,compared with the pH 7.0 plates.Since most tested soils are acid,it seemed that it‘s better to use a suitable pH characterization medium for a specific spil in the sole carbon source test.  相似文献   

8.
Various microorganisms live in association with different parts of plants and can be harmful, neutral, or beneficial to plant health. Some microbial inhabitants of plants can control plant diseases by contesting with, predating on, or antagonizing plant pathogens and by inducing systems for plant defense. A range of methods, including plant growth-promoting microorganisms(PGPMs) as biological control agents(BCAs)(BCA-PGPMs) are used for the biological management and control of plant pathogens. S...  相似文献   

9.
The effects of root activity on microbial response to cadmium (Cd) loading in the rhizosphere are not well understood. A pot experiment in greenhouse was conducted to investigate the effects of low Cd loading and root activity on microbial biomass and community structure in the rhizosphere of pakchoi (Brassica chinensis L.) on silty clay loam and silt loamy soil. Cd was added into soil as Cd(NO3)2 to reach concentrations ranging from 0.00 to 7.00 mg kg-1. The microbial biomass carbon (MBC) and community structure were affected by Cd concentration, root activity, and soil type. Lower Cd loading rates (〈 1.00 mg kg-1) stimulated the growth of pakchoi and microorganisms, but higher Cd concentrations inhibited the growth of microorganisms. The content of phospholipid fatty acids (PLFAs) was sensitive to increased Cd levels. MBC was linearly correlated with the total PLFAs. The content of general PLFAs in the fungi was positively correlated with the available Cd in the soil, whereas those in the bacteria and actinomycetes were negatively correlated with the available Cd in the soil. These results indicated that fungi were more resistant to Cd stress than bacteria or actinomycetes, and the latter was the most sensitive to Cd stress. Microbial biomass was more abundant in the rhizosphere than in the bulk soil. Root activity enhanced the growth of microorganisms and stabilized the microbial community structure in the rhizosphere. PLFA analysis was proven to be sensitive in detecting changes in the soil microbial community in response to Cd stress and root activity.  相似文献   

10.
Increasing use of pyrethroid insecticides has resulted in concerns regarding potential effects on human health and ecosystems. Cypermethrin and its metabolite 3-phenoxybenzoic acid (PBA) have exerted adverse biological impacts on the environment; therefore, it is critically important to develop different methods to enhance their degradation. In this study, incubation experiments were conducted using samples of an Aquic Inceptisol supplied with nitrogen (N) in the form of NH4NO3 at different levels to investigate the effect of nitrogen on the degradation of cypermethrin and PBA in soil. The results indicated that appropriate N application can promote the degradation of cypermethrin and PBA in soil. The maximum degradation rates were 80.0% for cypermethrin after 14 days of incubation in the treatment with N at a rate of 122.1 kg ha^-1 and 41.0% for PBA after 60 days of incubation in the treatment with N at a rate of 182.7 kg ha^-1. The corresponding rates in the treatments without nitrogen were 62.7% for cypermethrin and 27.8% for PBA. However, oversupplying N significantly reduced degradation of these compounds. Enhancement of degradation could be explained by the stimulation of microbial activity after the addition of N. In particular, dehydrogenase activities in the soil generally increased with the addition of N, except in the soil where N was applied at the highest level. The lower degradation rate measured in the treatment with an oversupply of N may be attributed to the microbial metabolism shifts induced by high N.  相似文献   

11.
Halosulfuron methyl is a sulfonylurea herbicide used worldwide for weed control in sugarcane, maize, wheat, and rice production. Considering its environmental impact, this study evaluated the effects of soil type, application rate, and temperature on the dynamics of halosulfuron methyl degradation.Additionally, as soil microbes and enzymes are reliable indicators of the impacts of anthropogenic activities on soil health, the effects of halosulfuron methyl on soil enzymatic and microbial activiti...  相似文献   

12.
Land degradation causes great changes in the soil biological properties.The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity.The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation(NV),moderately degraded land(LDL),highly degraded land(HDL) and land under restoration for four years(RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil.Soil samples were collected at 0-10 cm depth.Soil organic carbon(SOC),soil microbial biomass C(MBC) and N(MBN),soil respiration(SR),and hydrolysis of fluorescein diacetate(FDA) and dehydrogenase(DHA) activities were analyzed.After two years of evaluation,soil MBC,MBN,FDA and DHA had higher values in the NV,followed by the RL.The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV.However,after land restoration,the MBC and MBN increased approximately 5-fold and 2-fold,respectively,compared with the HDL.The results showed that land degradation produced a strong decrease in soil microbial biomass.However,land restoration may promote short-and long-term increases in soil microbial biomass.  相似文献   

13.
阿特拉津在土壤, 矿物质及堆肥中的吸附, 运输和转化   总被引:2,自引:0,他引:2  
A. MUDHOO  V. K. GARG 《土壤圈》2011,21(1):11-25
Atrazine is a widely used herbicide for controlling weeds on both agricultural and nonagricultural land,which is equally detected in water supplies beyond safe concentrations.Although the presence of atrazine metabolites is an indication of herbicide degradation,some of them still exhibit toxicity,greater water solubility and weaker interaction with soil components than atrazine.Hence,studies with atrazine in the environment are of interest because of its potential to contaminate drinking water sources.Data on atrazine availability for transport,plant uptake,and microbial degradation and mineralization are therefore required to perform more comprehensive and realistic environmental risk assessments of its environmental fate.This review presents an account of the sorption-desorption phenomenon of atrazine on soil and other sorbents by revisiting the several mechanisms of atrazine-sorbent binding reported in the literature.The retention and transport of atrazine in soils;the influence of organic matter on atrazine sorption;the interactions of atrazine with humic substances,atrazine uptake by plants,atrazine bioccumulation and microbial degradation;atrazine transformation in composting environments;and finally atrazine removal by biosorption are discussed.  相似文献   

14.
黄河三角洲土壤土著菌的石油烃降解潜力   总被引:3,自引:0,他引:3  
The bioremediation potential of bacteria indigenous to soils of the Yellow River Delta in China was evaluated as a treatment option for soil remediation. Petroleum hydrocarbon degraders were isolated from contaminated soil samples from the Yellow River Delta. Four microbial communities and eight isolates were obtained. The optimal temperature, salinity, pH, and the ratios of C, N, and P (C:N:P) for the maximum biodegradation of diesel oil, crude oil, n-alkanes, and polyaromatic hydrocarbons by indigenous bacteria were determined, and the kinetics changes in microbial communities were monitored. In general, the mixed microbial consortia demonstrated wider catabolic versatility and faster overall rate of hydrocarbon degradation than individual isolates. Our experimental results demonstrated the feasibility of biodegradation of petroleum hydrocarbon by indigenous bacteria for soil remediation in the Yellow River Delta.  相似文献   

15.
To evaluate the effect of groundwater irrigation on the polycyclic aromatic hydrocarbons(PAHs) pollution abatement and soil microbial characteristics,a case study was performed in the Shenfu irrigation area of Shenyang,Northeast China,where the irrigation with petroleum wastewater had lasted for more than fifty years,and then groundwater irrigation instead of wastewater irrigation was applied due to the gradually serious PAHs pollution in soil.Soil chemical properties,including PAHs and nutrients contents,and soil microbial characteristics,including microbial biomass carbon,substrateinduced respiration,microbial quotient(qM),metabolic quotient(qCO2),dehydrogenase(DH),polyphenol oxidase(PO),urease(UR) and cellulase(CE) in surface and subsurface were determined.Total organic C,total N,total P,and available K were significantly different between the sites studied.The PAHs concentrations ranged from 610.9 to 6362.8 μg kg-1 in the surface layers(0-20 cm) and from 404.6 to 4318.5 μg kg-1 in the subsurface layers(20-40 cm).From the principal component analysis,the first principal component was primarily weighed by total PAHs,total organic C,total N,total P and available K,and it was the main factor that influencing the soil microbial characteristics.Among the tested microbial characteristics,DH,PO,UR,CE,qM and qCO2 were more sensitive to the PAHs stress than the others,thus they could serve as useful ecological assessment indicators for soil PAHs pollution.  相似文献   

16.
应用危险确认模型评估土地管理的可持续发展   总被引:4,自引:1,他引:4  
New Zealand is highly dependent on its soil resource for continued agricultural production.To avoid depleting this resource,there is a need to identify soils and associated land management practices where there is a risk of soil degradation.Environmental integraity and ecosystem services also need to be maintoained.Accordingly,to ensure sustainable production,The on -and off-site environmental impacts of aldn management need to be identified and managed.We developed a structural vulnerability index for New Zealand soils.This index ranks solis according to their inherent susceptibility to physical degradation when used for agricultural (pasture,forestry and cropping) Purposes.We also developed a rule-based model to assess soil sompaction vulnerability by characterising the combined effects of resistance and resilience,Other soil attributes have been approatised using seven chemical,physical and biological indicators of soil quality.These indicators have been applied in a nation -wide project involving data collection from over 500 sites for a range of land uses.These soil quality data can be interpreted via the World Wide Web -through the in teractive decisionsupport tool SINDI,The land-use impact model is a framework to assess agricultural land management and environmental sustainability,and may be applied to land units at any scale.Using land resource data and information the model explicitly identifies hazards to land productivity and environmental integrity,It utilises qualitative expert and local knowledge and quantitative model-based evaluations to assess the potential environmental impacts of land-management pratices.The model is linked to a geographic information system(GIS),allowing model outputs.such at the environmental impacts of site-specific best management practices,to be identified in a spatially explicit manner,The model has been tested in New Zealand in an area of pastoral land use.Advantages of this risk identification model include:utilising current knowledege of the causes and effects of land-management practices on soil degradation;linking land management practice to both on-and off-site environmental consequences;identifying important gaps in local knowledge,and providing spatially explicit information on the environmental impact of land-management practices.  相似文献   

17.
PH对红壤微生物生物量碳和生物量磷的影响   总被引:12,自引:2,他引:12  
The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic) were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmie and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive. The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (i.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions.  相似文献   

18.
The biosurfactants rhamnolipids and the “soil ecosystem engineers” earthworms are often used to remediate contaminated soils. However, the effects of rhamnolipids on earthworm intestinal flora and microbial community in soil containing earthworms are not clearly understood. In our study, a 21-d microcosm experiment was carried out to reveal the effects of rhamnolipids on microbial abundance, composition, and metabolism, as well as contaminant degradation capacity. Both rhamnolipids and earthworm...  相似文献   

19.
Chlorobenzenes (CBs) are a group of organic pollutants that pose a high environmental risk due to their toxicity,persistence and possible transfer in the food chain.Available data in literature show that CBs are detected in different environmental compartments such as soil,water,air and sediment.The widespread presence of CBs in the environment is related to their former extensive use in agriculture and industry.Some CBs are ranked in the list of priority pollutants by the Stockholm Convention,and their reduction or elimination from the environment is therefore of high importance.Environmental risk assessment of CBs requires knowledge on the role and importance of the main environmental fate processes,especially in soil.Furthermore,development of remediation strategies for reduction or elimination of CBs from the environment is related to the enhancement of fate processes that increase their dissipation in various environmental compartments.The main objectives of the current review were to present up-to-date data on fate processes of CBs in the soil environment and to explore possible remediation strategies for soils contaminated with CBs.Dechlorination of highly-chlorinated benzenes is the main degradation pathway under anaerobic conditions,leading to the formation of lower-chlorinated benzenes.Biodegradation of lower-chlorinated benzenes is well documented,especially by strains of adapted or specialized microorganisms.Development of techniques that combine dechlorination of highly-chlorinated benzenes with biodegradation or biomineralization of lower-chlorinated benzenes can result in useful tools for remediation of soils contaminated with CBs.In addition,immobilization of CBs in soil by use of different amendments is a useful method for reducing the environmental risk of CBs.  相似文献   

20.
Pesticides have become an inevitable part of the modern environment as they are widely used in agriculture,household,and public health sectors and,hence,are extensively distributed throughout most ecosystems.Currently,organophosphate pesticides are the most commercially favored group of pesticides,with large application areas all over the world.Depending on their fate,these organophosphorus compounds may become bioavailable for microbial degradation.Environmental microbes,such as Aspergillus,Pseudomonas,Chlorella,and Arthrobacter,are capable of coupling a variety of physical and biochemical mechanisms for the degradation of organophosphate pesticides,including adsorption,hydrolysis of P–O alkyl and aryl bonds,photodegradation,and enzymatic mineralization.Enzymes,such as esterase,diisopropyl fluorophosphatase,phosphotriesterase,somanase,parathion hydrolase,and paraoxonase,have been isolated from microbes to study and understand the catabolic pathways involved in the biotransformation of these xenobiotic compounds.This review highlights various aspects of biodegradation of organophosphate pesticides along with biological and molecular characterization of some organophosphate pesticide-degrading bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号