首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
  目的  明确施肥对黄壤稻田和旱地磷酸酶活性的影响及其主要影响因子。  方法  依托进行了22年的黄壤长期定位试验,研究长期施用化肥和有机肥对稻田和旱地土壤养分及酸性、中性和碱性磷酸酶活性的影响。  结果  长期不同施肥处理显著改变了稻田和旱地土壤养分含量,且土壤pH、有机质和有效磷含量变化因稻田、旱地不同所受影响差异较大。稻田和旱地土壤酸性磷酸酶(ACP)活性和中性磷酸酶(NEP)活性均高于碱性磷酸酶(ALP)活性。与不施肥处理相比,稻田上除个别处理外,施用化肥对磷酸酶活性无显著影响,施用有机肥处理NEP活性显著提高,增幅达15.8% ~ 27.1%;旱地上,长期施用氮肥的处理(NK、NP、NPK)ACP活性显著提高了14.2% ~ 29.0%,ALP活性显著降低了20.1% ~ 50.7%,施用有机肥处理ACP和ALP活性分别提高了11.7% ~ 17.7%和9.4% ~ 56.9%,NEP活性降低了10.5% ~ 32.3%。与平衡施肥处理相比,稻田上缺素施肥对磷酸酶活性影响不显著,施用有机肥处理ACP、NEP、ALP活性分别提高了9.1% ~ 18.5%、6.9% ~ 17.3% 和8.3% ~ 15.0%;旱地上, NK处理ACP和NEP分别显著提高了12.9%和12.9%,PK处理则分别显著降低了16.7%和18.9%,施用有机肥处理NEP活性降低了5.9% ~ 28.9%,ALP活性显著提高了50.1% ~ 115.3%。相关分析表明,NEP活性与各土壤养分含量显著相关,但在稻田和旱地上相关性相反;ALP活性在旱地和稻田上与有机质和微生物量磷均呈显著正相关。通径分析表明,除旱地上ALP活性受pH直接影响作用较大外,其他磷酸酶活性受土壤磷素的直接影响作用均较大。  结论  黄壤稻田和旱地土壤磷酸酶活性与土壤磷素有效性密切相关,稻田上施用有机肥是提高土壤磷酸酶活性的有效途径,旱地上长期施用化学氮肥尤其是氮钾处理可提高ACP活性,增加土壤磷素供应,施用有机肥可通过提高土壤pH增加ALP活性。  相似文献   

2.
The organic matter supply can promote the dispersal and activity of applied plant growth–promoting rhizobacteria (PGPR), but the complementary effect of organic fertilization and PGPR application on the turnover of P is scarcely known. The effects of the application of two PGPR strains (Pseudomonas fluorescens strain DR54 and Enterobacter radicincitans sp. nov. strain DSM 16656) alone and in combination with organic fertilization (cattle manure and biowaste compost) on growth and P uptake of maize (Zea mays L.) and oilseed rape (Brassica napus L.) were investigated under semi–field conditions. Furthermore, P pools and phosphatase activities in soil and the arbuscular mycorrhizal colonization of maize were examined. The organic‐fertilizer amendments increased the growth and P uptake of both plant species and the soil P pools. The application of the E. radicincitans strain increased P uptake of oilseed rape when no organic fertilizer was added. Furthermore, the application of both bacterial strains increased the activities of phosphatases under both plant species. Here, the effect of the PGPR application even exceeded the effect of organic fertilization. The magnitude of this effect varied between the different fertilizing treatments and between the two bacterial strains. Phosphatase activities were increased to the greatest extent after application of P. fluorescens in the unfertilized soil. Under rape increases of 52% for acid phosphatase activities (ACP), 103% for alkaline phosphatase activities (ALP), and 133% for phosphodiesterase (PDE) were observed therewith. In the unfertilized soil, the application of P. fluorescens also resulted in a strong increase of the arbuscular mycorrhizal colonization of maize. We conclude that application of PGPR can promote the P mobilization and supply of crops in P‐deficient soils, however, in combination with organic fertilization these effects might be masked by a general improved P supply of the crops. Interactive effects of applied bacterial strains and organic fertilization depend on the sort of organic fertilizer and crop species used.  相似文献   

3.
复垦土壤贫瘠,磷素含量极低,严重影响作物的生长发育。研究化肥、有机肥配施荧光假单胞菌对玉米产量和复垦土壤磷素形态以及酶活性的影响,为加速培肥矿区复垦土壤提供技术支持和理论依据。该研究在山西省晋中市采煤塌陷区进行了2a的定位培肥试验,共设置7个处理:不施肥(CK)、单施化肥(CF)、化肥配施荧光假单胞菌(CFB)、单施有机肥(M)、有机肥配施荧光假单胞菌(MB)、化肥配施有机肥(MCF)、化肥有机肥配施荧光假单胞菌(MCFB)。采集各处理土壤样品测定相关指标,并通过相关性分析和结构方程模型来探究各形态磷与有效磷以及土壤磷酸酶之间的关系。结果表明:1)在整个试验周期(2021—2022年),与CK相比,不同施肥处理均能显著提高玉米产量以及各形态磷素。其中,以MB处理下的玉米产量、有效磷、磷活化系数、不稳定态磷以及部分不稳定态磷含量最高,与CK处理相比,玉米产量显著提高2.4倍,有效磷含量、磷活化系数值、不稳定态磷含量、部分不稳定态磷含量分别显著提高4.5倍、4.67倍、0.98倍、1.16倍。2)与CK处理相比,化肥、有机肥配施荧光假单胞菌能够显著提高土壤微生物量磷以及酸性和碱性磷酸酶活性,配施荧光假单胞菌后,微生物量磷水平和碱性磷酸酶活性均以MB较M处理提升效果最佳,分别显著提高27.08%和9.56%。3)结合相关性分析以及结构方程模型,随着荧光假单胞菌和化肥有机肥的施入,在提高不稳定态磷素含量的同时也提高有效磷的供应能力,促进磷素在农田生态系统中的循环转化,产生积极的正向影响。化肥、有机肥配施荧光假单胞菌能够一定程度上影响复垦土壤玉米产量及产量性状、各形态磷素及有效性和微生物活性,对复垦土壤脆弱的农田生态系统产生积极影响。  相似文献   

4.
5.
Soil microbes and phosphatase enzymes play a critical role in organic soil phosphorus (P) cycling. However, how long-term P inputs influence microbial P transformations and phosphatase enzyme activity under grazed pastures remains unclear. We collected top-soil (0–75 mm) from a grazed pasture receiving contrasting P inputs (control, 188 kg ha−1 year−1 of single super phosphate [SSP], and 376 kg ha−1 year−1 of SSP) for more than 65 years. Olsen P, microbial biomass P, and acid and alkaline phosphatase enzyme activities were measured regularly over a 2-year period. Pasture dry matter and soil chemical properties were also investigated. Results showed that long-term P inputs significantly increased pasture dry matter, total N, and the concentrations of NO 3 –N but significantly decreased soil pH and the concentrations of NH 4 + –N. Total C was not affected by P fertilization. Although Olsen P significantly increased with increasing long-term P inputs, microbial biomass P was similar under P fertilized treatments. Long-term P inputs decreased acid phosphatase activity but increased alkaline phosphatase activity. Microbial biomass P was similar across seasons in the control but decreased in spring and autumn while increased in summer and winter under P fertilized treatments. Acid and alkaline phosphatase activities were significantly affected by season and followed similar seasonal trends being maximum in summer and minimum in winter regardless of P treatment. Correlation and principal component analysis revealed that acid and alkaline phosphatase activities were significantly positively correlated with soil temperature and significantly negatively correlated with soil moisture. In contrast, Olsen P and microbial biomass P were weakly correlated with environmental conditions. The findings of this study highlight the intertwined relationship between organic P cycling and the availability of C and N in soil systems and the need to integrate both soil moisture and temperature in models predicting organic P mineralization, especially in the context of global climate change.  相似文献   

6.
长期定位施肥对黄绵土酶活性及土壤养分状况的影响   总被引:5,自引:0,他引:5  
本研究以25年的肥料长期定位试验为平台,探讨了长期不同施肥处理对土壤活性有机质、氮磷养分及土壤酶活性的影响。结果表明:长期施肥土壤活性有机质、全氮、碱解氮及速效磷含量显著提高,土壤转化酶和碱性磷酸酶活性增强,其中有机肥化肥配施(NPM)的作用明显大于施用化肥(N、NP);长期施肥不能增强土壤过氧化氢酶活性。相关分析表明,土壤脲酶、转化酶及碱性磷酸酶活性与土壤活性有机质、氮磷养分含量呈显著正相关,且三种酶活性间呈极显著正相关关系。综合土壤养分与土壤主要酶活性的密切关系,认为将土壤酶与土壤养分相结合进行土壤肥力研究,对该区培肥土壤具有重要的指导意义。  相似文献   

7.
土壤磷酸酶活性对施肥-种植-耕作制度的响应   总被引:14,自引:1,他引:14  
沈菊培  陈利军 《土壤通报》2005,36(4):622-627
植物所需的磷素营养,主要来源于土壤内源、外源无机磷。而大量存在的有机磷类化合物在土壤磷酸酶的作用下催化水解为无机磷,不仅是土壤内源无机磷的主要来源,也是土壤磷素循环的一个重要的环节。土壤磷酸酶在土壤中主要以吸附态的形式存在,其活性受到施肥、种植和耕作制度的影响。本文对国内外不同施肥方式、种植及耕作制度下土壤磷酸酶(酸性磷酸酶、中性磷酸酶、碱性磷酸酶、磷酸二酯酶、磷酸三酯酶、焦磷酸酶)活性响应进行综述,拟为不同农业管理制度下土壤磷酸酶活性的调节提供依据。  相似文献   

8.
以天津市东丽区和西青区2个养殖池塘为对象,采用室内试验方法,研究了底泥中各有机磷组分与上覆水中可溶性磷(DRP)含量、底泥磷酸酶活性与有机磷各组分及上覆水中可溶性磷之间的关系,并采取不同处理对底泥酸性磷酸酶(ACP)和碱性磷酸酶(ALP)活性进行调控。结果表明,底泥中活性有机磷(LOP)、中等活性有机磷(MLOP)、中稳性有机磷(MROP)与上覆水中DRP之间呈显著正相关。底泥中ALP与MLOP、MROP之间相关显著,并对其直接影响较大;ACP与MLOP之间相关显著,对其产生的直接影响也很大。A、B两池塘底泥中ALP与上覆水中DRP随时间变化规律基本一致,二者之间呈显著正相关。在养殖水体中加入酶抑制剂和沸石能抑制ALP和ACP活性,并以酶抑制剂加沸石的处理效果最好。  相似文献   

9.
长期施肥对红壤旱地土壤活性有机碳和酶活性的影响   总被引:18,自引:3,他引:15  
张继光  秦江涛  要文倩  周睿  张斌 《土壤》2010,42(3):364-371
以江西进贤长期肥料定位试验为平台,研究了红壤旱地不同施肥措施对土壤微生物生物量、活性有机C、C库管理指数以及土壤酶活性的影响。研究结果表明:与不施肥和单施化肥土壤相比,施有机肥处理土壤的pH、CEC、有机C、全N、全P、无机N、速效P、速效K及土壤微生物生物量均显著增加,土壤活性有机C和C库管理指数也较试前土壤和其他处理土壤明显提高,此外,土壤的转化酶、脱氢酶、脲酶和酸性磷酸酶活性也较其他处理显著增加。土壤微生物生物量、活性有机C以及4种土壤酶活性之间的相关关系显著,且它们均与土壤有机C、全N、全P、无机N、速效P等土壤养分呈显著正相关。因此,红壤旱地通过长期施用有机肥或与无机肥配施,不仅能显著提高土壤有机质的数量和质量,而且能增加土壤微生物生物量和酶活性,从而显著提高土壤肥力和土壤持续生产力。  相似文献   

10.
This study evaluated the impact of direct seeding mulch-based cropping (DMC), as an alternative to conventional tilling (CT), on a functional community involved in N cycling and emission of greenhouse gas nitrous oxide (N2O). The study was carried out for annual soybean/rice crop rotation in the Highlands of Madagascar. The differences between the two soil management strategies (direct seeding with mulched crop residues versus tillage without incorporation of crop residues) were studied along a fertilization gradient (no fertilizer, organic fertilizer, organic plus mineral fertilizers). The activity and size of the denitrifier community were determined by denitrification enzyme activity assays and by real-time PCR quantification of the denitrification genes. Denitrification activity and total C and N content in the soil were significantly increased by DMC both years, whereas the fertilization regime and sampling year (crop and mulch types, climatic conditions) had very little effect. Similar results were also observed for denitrification gene densities. Denitrification enzyme activity was more closely correlated with C content than with N content in the soil and denitrification gene densities. Principal component analysis confirmed that soil management had the strongest impact on the soil denitrifier community and total C and N content for both years and further indicated that changes in microbial and chemical soil parameters induced by the use of fertilizer were favored in DMC plots. Overall, the alternative DMC system had a significant positive effect on denitrifier densities and potential activities, which was not altered by crop rotation and the level of fertilization. These data also suggest that in these clayey soils, the DMC system simultaneously increased the size of the soil N pool and accelerated the N cycle, by stimulating the denitrifier community. Complementary investigations should further determine in greater detail the influence of DMC on in situ N-fluxes caused by denitrification.  相似文献   

11.
磷营养水平对不同基因型甜菜根磷酸酶活性的效应   总被引:3,自引:2,他引:3  
采用无菌条件下的液体培养法,研究了磷素营养水平对甜菜根磷酸酶活性的效应。结果表明,营养液中的供磷水平对甜菜磷酸酶的影响程度因其从根内到根生长介质空间的分布位置、品种和磷酸酶的种类而异。磷对内源酸性和中性磷酸酶的影响明显,各品种的不同磷水平间的酶活性差异均达到了5%以上显著水平;对碱性磷酸酶的作用效果较差,只有V6和V12达到了5%以上显著水平。磷营养水平对不同基因型甜菜根外泌的中性磷酸酶的作用较强,除了V6外,其他3个品种的供磷水平的效应均达到了显著或极显著水平;对酸性和碱性磷酸酶的影响效果稍差,两者均有2个品种对供磷水平高低没有明显反应。从磷酸酶的分布空间上看,根表酸性磷酸酶对磷营养水平的反应最敏感,并且各品种均表现出一致的趋势,即在低磷条件下,各品种甜菜的根表酸性磷酸酶均能得到显著或极显著地增加。磷对甜菜内源和根外泌到营养液中3种磷酸酶之间相关性的影响,依次为碱性磷酸酶>中性磷酸酶>酸性磷酸酶,表现出较强的规律性。  相似文献   

12.
The interactions between soil P availability and mycorrhizal fungi could potentially impact the activity of soil microorganisms and enzymes involved in nutrient turnover and cycling, and subsequent plant growth. However, much remains to be known of the possible interactions among phosphorus availability and mycorrhizal fungi in the rhizosphere of berseem clover (Trifolium alexandrinum L.) grown in calcareous soils deficient in available P. The primary purpose of this study was to look at the interaction between P availability and an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on the growth of berseem clover and on soil microbial activity associated with plant growth. Berseem clover was grown in P unfertilized soil (−P) and P fertilized soil (+P), inoculated (+M) and non-inoculated (−M) with the mycorrhizal fungus for 70 days under greenhouse conditions. We found an increased biomass production of shoot and root for AM fungus-inoculated berseem relative to uninoculated berseem grown at low P levels. AM fungus inoculation led to an improvement of P and N uptake. Soil respiration (SR) responded positively to P addition, but negatively to AM fungus inoculation, suggesting that P limitation may be responsible for stimulating effects on microbial activity by P fertilization. Results showed decreases in microbial respiration and biomass C in mycorrhizal treatments, implying that reduced availability of C may account for the suppressive effects of AM fungus inoculation on microbial activity. However, both AM fungus inoculation and P fertilization affected neither substrate-induced respiration (SIR) nor microbial metabolic quotients (qCO2). So, both P and C availability may concurrently limit the microbial activity in these calcareous P-fixing soils. On the contrary, the activities of alkaline phosphatase (ALP) and acid phosphatase (ACP) enzymes responded negatively to P addition, but positively to AM fungus inoculation, indicating that AM fungus may only contribute to plant P nutrition without a significant contribution from the total microbial activity in the rhizosphere. Therefore, the contrasting effects of P and AM fungus on the soil microbial activity and biomass C and enzymes may have a positive or negative feedback to C dynamics and decomposition, and subsequently to nutrient cycling in these calcareous soils. In conclusion, soil microbial activity depended on the addition of P and/or the presence of AM fungus, which could affect either P or C availability.  相似文献   

13.
Long-term experimental sites are expected to provide important information regarding soil properties as affected by management practices. This study was designed to examine the effects of continuous fertilization, and manuring on the activities of enzymes involved in mineralization of C, N, and P on a long term (33 years) field trial under sub-temperate conditions in India. Treatments at the site included application of recommended doses of nitrogen and phosphorus (NP), nitrogen and potassium (NK), nitrogen, phosphorus and potassium (NPK), farmyard manure (FYM) with N (N + FYM), FYM with NPK (NPK + FYM) and un-amended control (C). The study was done under rainfed soybean–wheat rotation. Manure application increased soil carbohydrate, dehydrogenase, acid and alkaline phosphatases, cellulase, and protease activity significantly. Urease activity was not influenced by the manure treatment and the activity was highest in controls. Both acid and alkaline phosphatase activities were negatively influenced by chemical fertilizer treatment. Almost all the enzymes studied were significantly correlated with soil C content. The results suggest that application of FYM directly or indirectly influences the enzyme activity and it in turn regulates nutrient transformation.  相似文献   

14.
为明确菜田种养结合模式下施肥方式对土壤编码碱性磷酸酶基因phoD的微生物群落结构和多样性的影响机制,通过Illumina MiSeq高通量测序手段,系统分析了4种不同施肥方式,即不施肥(CK)、施常规化肥(CF)、施有机肥(OF)、有机无机肥混施(MF)对花菜收获时0−20cm土层土壤理化性质、碱性磷酸酶(ALP)、微生物量磷(MBP)以及phoD微生物群落的影响。结果表明:(1)与CK相比,OF处理可显著提高土壤有机质、总氮、速效磷和Ca含量47.83%、38.46%、104.81%和69.21%(P<0.05);OF和MF处理均显著提高ALP活性;CF和OF分别显著增加MBP含量56.12%和195.16%,OF处理中MBP含量最高(105.40mg·kg−1);(2)菜田种养结合模式不同施肥处理中假单胞菌属(Pseudomonas)为优势属,CF和MF较CK显著降低了假单胞菌属相对丰度33.39%和45.52%;施肥降低土壤phoD微生物Chao1指数,MF提高其多样性(Simpson)和均匀度(Simpsoneven);(3)影响phoD微生物群落结构的关键环境因子为MBP、AP、ALP;phoD微生物α多样性指数与土壤性状指标无显著相关性。因此,菜田种养结合模式下,不同施肥处理改变了土壤理化和生物性质,从而驱动了土壤phoD微生物群落组成、结构和多样性变化。  相似文献   

15.
Abstract

We studied the effects of the application of organic matter (OM) and chemical fertilizer (CF) on soil alkaline phosphatase (ALP) activity and ALP-harboring bacterial communities in the rhizosphere and bulk soil in an experimental lettuce field in Hokkaido, Japan. The ALP activity was higher in soils with OM than in soils with CF, and activity was higher in the rhizosphere for OM than in the bulk soil. Biomass P and available P in the soil were positively related to the ALP activity of the soil. As a result, the P concentration of lettuce was higher in OM soil than in CF soil. We analyzed the ALP-harboring bacterial communities using polymerase chain reaction based denaturing gradient gel electrophoresis (DGGE) on the ALP genes. Numerous ALP genes were detected in the DGGE profile, regardless of sampling time, fertilizer treatment or sampled soil area, which indicated a large diversity in ALP-harboring bacteria in the soil. Several ALP gene fragments were closely related to the ALP genes of Mesorhizobium loti and Pseudomonas fluorescens. The community structures of the ALP-harboring bacteria were assessed using principal component analysis of the DGGE profiles. Fertilizer treatment and sampled soil area significantly affected the community structures of ALP-harboring bacteria. As the DGGE bands contributing to the principal component were different from sampling time, it is suggested that the major bacteria harboring the ALP gene shifted. Furthermore, there was, in part, a significant correlation between ALP activity and the community structure of the ALP-harboring bacteria. These results raise the possibility that different ALP-harboring bacteria release different amounts and/or activity of ALP, and that the structure of ALP-harboring bacterial communities may play a major role in determining overall soil ALP activity.  相似文献   

16.
Sustainability of agricultural systems has become an important issue all over the world. The activity of enzymes is potentially an important quality bioindicator in soils. The aim of the present study was to develop a simple and convenient assay to determine the activity of arylsulphatase (AS), acid (ACP) and alkaline phosphatase (ALP) in agricultural soil. The activities of these enzymes were detected using a non-electroactive substrate, which produces an electroactive product. To this end, p-aminophenyl phosphate (pAPP) was used as a substrate which is converted to p-aminophenol (pAP) after enzymatic dephosphorylation; and 4-nitrocatechol sulphate (4-NCS) was used as a substrate for AS activity based on its catalytic effect on the hydrolysis of 4-NCS into 4-nitrocatechol (4-NC). The products of both enzymatic reactions were quantified on carbon-based screen-printed electrodes (SPCEs) modified with carbon nanotubes (CNTs), using Osteryoung square-wave voltammetry (OSWV). The determination of the reaction products allowed more sensitive determination of ALP, ACP and AS activities in soil than that obtained with a spectrophotometric method. This assay also diminishes the generation of waste, which is desirable in green analytical chemistry. The optimization of the analytical procedure in terms of the nature of electrode type, applied potential, pH of solution, and precision of measurements is reported.  相似文献   

17.
氮磷提高华北落叶松人工林地土壤养分和酶活性的作用   总被引:1,自引:1,他引:0  
【目的】采用田间试验,研究外源施用氮、磷肥对处于中龄林的20年华北落叶松(Larix principis-rupprechtii)人工林地土壤养分和酶活性特征的影响,并对土壤肥力水平进行评价,以筛选出最佳施肥方案。【方法】2012年4月中旬对处于中龄林的20年华北落叶松人工纯林进行外源施用氮、磷肥,在5月到10月中旬采集0—20 cm土壤样品,测定土壤养分和土壤酶含量,分析其在整个生长期内的动态变化,运用主成分分析法筛选出最佳施肥方案。【结果】1)施用氮、磷肥显著增加土壤速效氮和速效磷含量(P0.05),降低土壤速效钾含量和p H值。与对照相比,不同施肥处理速效氮增加幅度为N2PN2N1PN1P,速效磷为N1PPN2PN2N1,而速效钾降低幅度为N2PN1PN2PN1,p H降低幅度为N2PN2PN1PN1。2)施肥后,土壤蔗糖酶、磷酸酶和脲酶活性显著增加(P0.05),过氧化氢酶活性降低。与对照相比,不同施肥处理蔗糖酶增加幅度是N1PN2PN1PN2,磷酸酶是N2PN1N1PN2P,脲酶是N2PN1PN1N2P,而过氧化氢酶降低幅度是N2PN2N1PPN1。3)土壤中养分含量对季节变化的响应非常敏感,速效氮、速效磷和速效钾整体呈先降低后增加的趋势,最小值出现在植物生长旺盛的7、8月份。土壤酶活性变化比较复杂,多数最大值出现在7、8月份。4)施氮肥、磷肥和氮磷配施处理均提高了土壤速效氮和速效磷含量,速效氮由21.56 mg/kg上升到35.77 mg/kg,速效磷由1.86 mg/kg上升到3.73 mg/kg,尤以N1P和N2P配施效果最明显。5)氮肥、磷肥和氮磷配施处理,土壤蔗糖酶、脲酶和磷酸酶活性均增加,虽然过氧化氢酶活性小幅下降,但总的来说土壤酶活性增强,以N1P和N2P配施效果最为明显。6)主成分分析表明,施肥提高了土壤肥力水平,提高效果表现为N1PN2PPN1N2CK。N1P处理土壤肥力水平增加了1.505,N2P增加了1.405。【结论】施氮、磷肥可显著增加林地土壤养分,增强土壤酶活性,有效改善华北落叶松人工林地土壤肥力状况,缓解氮、磷亏缺导致的林地地力衰退。供试条件下华北落叶松的最佳施肥方案是N 75 kg/hm2和P2O575 kg/hm2(N1P),而N 150 kg/hm2和P2O575 kg/hm2(N2P)次之。  相似文献   

18.
Soil enzymes activities and microbial biomass have an important influence on nutrient cycling. The spatial distribution of soil enzymes activities and microbial biomass were examined along a latitudinal gradient in farmlands of Songliao Plain, Northeast China to assess the impact of climatic changes along the latitudinal transect on nutrient cycling in agroecosystems. Top soils (0-20 cm depth) were sampled in fields at 7 locations from north (Hallun) to south (Dashiqiao) in the end of October 2005 after maize harvest. The contents of total C, N, and P, C/N, available N, and available P increased with the latitude. The activities of invertase and acid phosphatase, microbial biomass (MB) C and N, and MBC/MBN were significantly correlated with latitude (P 〈 0.05, r^2 = 0.198, 0.635, 0.558, 0.211 and 0.317, respectively), that is, increasing with the latitude. Significant positive correlations (P 〈 0.05) were observed between invertase activity and the total N and available P, and between acid phosphatase activity and the total C, C/N, available N, total P and available P. The urease, acid phosphatase, and dehydrogenase activities were significantly correlated with the soil pH and electrical conductivity (EC) (P 〈 0.05). MBC and MBN were positively correlated with the total C, C/N, and available P (P 〈 0.05). The MBC/MBN ratio was positively correlated with the total C, total N, C/N, and available N (P 〈 0.05). The spatial distribution of soil enzyme activities and microbial biomass resulted from the changes in soil properties such as soil organic matter, soil pH, and EC, partially owing to variations in temperature and rainfall along the latitudinal gradient.  相似文献   

19.
长期有机物循环利用对红壤稻田土壤供磷能力的影响   总被引:6,自引:3,他引:3  
采用盆栽试验,研究了长期不同施肥处理定位试验土壤供磷能力的差异,并从土壤磷素平衡、全磷、有机磷、Olsen-P和MB-P的含量的变化等方面探索了导致供磷能力差异的原因。结果表明,长期施用磷肥能显著提高土壤的供磷能力,其中以有机物循环利用配合磷肥施用处理土壤的供磷量能力最高,植株平均吸磷量是长期不施磷肥处理的3.5倍,比长期施用磷肥处理平均高出59.8%。长期单施氮肥导致土壤供磷能力衰竭,植株总吸磷量比长期不施肥还低17.2%,单一有机物循环利用和配施N肥植株总吸磷量比长期不施肥分别高80.3%和40.2%。有机物循环利用能明显提高土壤微生物对磷素的固持量,土壤微生物对无机磷的利用可能是其向有效磷转化的关键途径。磷肥配合系统内有机物循环利用,是提高红壤稻田土壤供磷能力的有效施肥模式。  相似文献   

20.
Soil enzymes are critical to soil nutrient cycling function but knowledge on the factors that control their response to major disturbances such as wildfires remains very limited. We evaluated the effect of fire-related plant functional traits (resprouting and seeding) on the resistance and resilience to fire of two soil enzyme activities involved in phosphorus and carbon cycling (acid phosphatase and β-glucosidase) in a Mediterranean shrublands in SE Spain. Using experimental fires, we compared four types of shrubland microsites: SS (vegetation patches dominated by seeder species), RR (patches dominated by resprouter species), SR (patches co-dominated by seeder and resprouter species), and IP (shrub interpatches). We assessed pre- and post-fire activities of the target soil enzymes, available P, soil organic C, and plant cover dynamics over three years after the fire. Post-fire regeneration functional groups (resprouter, seeder) modulated both pre- and post-fire activity of acid phosphatase and β-glucosidase, with higher activity in RR and SR patches than in SS patches and IP. However, we found no major differences in enzyme resistance and resilience between microsite types, except for a trend towards less resilience in SS patches. Fire similarly reduced the activity of both enzymes. However, acid phosphatase and β-glucosidase showed contrasting post-fire dynamics. While β-glucosidase proved to be rather resilient to fire, fully recovering three years after fire, acid phosphatase showed no signs of recovery in that period. Overall, the results indicate a positive influence of resprouter species on soil enzyme activity that is very resistant to fire. Long-lasting decrease in acid phosphatase activity probably resulted from the combined effect of P availability and post-fire drought. Our results provide insights on how plant functional traits modulate soil biochemical and microbiological response to fire in Mediterranean fire-prone shrublands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号