首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
马铃薯晚疫病在我国南方降雨较多的省份十分常见,该病害严重时,马铃薯植株会提早枯死,产量受损严重。通过计算机对马铃薯晚疫病识别很有必要。对Faster R-CNN网络进行微调,对图片进行预处理,将马铃薯叶片病害图片进行多种旋转,改变亮度值和对比度,增加噪点,并且使用迁移学习,最后实现了马铃薯晚疫病图像的精准识别。  相似文献   

2.
基于改进Faster R-CNN的马铃薯芽眼识别方法   总被引:3,自引:0,他引:3  
为提高对马铃薯芽眼的识别效果,提出一种基于改进Faster R-CNN的马铃薯芽眼识别方法。对Faster R-CNN中的非极大值抑制(Non maximum suppression, NMS)算法进行优化,对与M交并比(Intersection over union, IOU) 大于等于Nt的相邻检测框,利用高斯降权函数对其置信度进行衰减,通过判别参数对衰减后的置信度作进一步判断;在训练过程中加入采用优化NMS算法的在线难例挖掘 (Online hard example mining, OHEM) 技术,对马铃薯芽眼进行识别试验。试验结果表明:改进的模型识别精度为96.32%,召回率为90.85%,F1为93.51%,平均单幅图像的识别时间为0.183s。与原始的Faster R-CNN模型相比,改进的模型在不增加运行时间的前提下,精度、召回率、F1分别提升了4.65、6.76、5.79个百分点。改进Faster R-CNN模型能够实现马铃薯芽眼的有效识别,满足实时处理的要求,可为种薯自动切块中的芽眼识别提供参考。  相似文献   

3.
为了快速而准确地统计视频监测区域内的水稻穗数,提出了一种基于改进Faster R-CNN的稻穗检测方法.针对稻穗目标较小的问题,在Inception ResNet-v2的基础上引入空洞卷积进行优化;对于不同生长期稻穗差别大的问题,设计了针对标注框尺度的K-means聚类,为候选区域生成网络提供先验知识,从而提高了检测精...  相似文献   

4.
基于改进Faster R-CNN的田间黄板害虫检测算法   总被引:2,自引:0,他引:2  
针对黄板诱捕的害虫体积小、数量多和分布不均匀,难以进行害虫识别的问题,引入当前主流目标检测模型Faster R-CNN对黄板上的小菜蛾、黄曲条跳甲和烟粉虱等主要害虫进行识别与计数,提出一种基于改进Faster R-CNN的田间黄板害虫检测算法(Mobile terminal pest Faster R-CNN,MPF ...  相似文献   

5.
海参目标检测是实现海参自动化捕捞的前提。为了解决复杂海底环境下背景和目标颜色相近以及遮挡导致的目标漏检问题,本文在Faster R-CNN框架下,提出了Swin-RCNN目标检测算法。该算法的骨干网络采用Swin Transformer,同时在结构上融入了多尺度特征提取层和实例分割功能,提高了算法的自适应特征融合能力,从而提高了模型在复杂环境下对不同尺寸海参的识别能力。实验结果表明:本文方法对海参检测的平均精度均值(mAP)达到94.47%,与Faster R-CNN、SSD、YOLO v5、YOLO v4、YOLO v3相比分别提高4.49、4.56、4.46、11.78、22.07个百分点。  相似文献   

6.
针对采摘机器人对场景中目标分布密集、果实相互遮挡的检测及定位能力不理想问题,提出一种引入高效通道注意力机制(ECA)和多尺度融合特征金字塔(FPN)改进Faster R-CNN果实检测及定位方法。首先,利用表达能力较强的融合FPN的残差网络ResNet50替换原VGG16网络,消除了网络退化问题,进而提取更加抽象和丰富的语义信息,提升模型对多尺度和小目标的检测能力;其次,引入注意力机制ECA模块,使特征提取网络聚焦特征图像的局部高效信息,减少无效目标的干扰,提升模型检测精度;最后,采用一种枝叶插图数据增强方法改进苹果数据集,解决图像数据不足问题。基于构建的数据集,使用遗传算法优化K-means++聚类生成自适应锚框,提高模型定位准确性。试验结果表明,改进模型对可抓取和不可直接抓取苹果的精度均值分别为96.16%和86.95%,平均精度均值为92.79%,较传统Faster R-CNN提升15.68个百分点;对可抓取和不可直接抓取的苹果定位精度分别为97.14%和88.93%,较传统Faster R-CNN分别提高12.53个百分点和40.49个百分点;内存占用量减少38.20%,每帧平均计算时间缩短40.7%,改进后的模型参数量小且实时性好,能够更好地应用于果实采摘机器人视觉系统。  相似文献   

7.
基于Faster R-CNN的田间西兰花幼苗图像检测方法   总被引:4,自引:0,他引:4  
为解决自然环境下作物识别率不高、鲁棒性不强等问题,以西兰花幼苗为研究对象,提出了一种基于Faster R-CNN模型的作物检测方法。根据田间环境特点,采集不同光照强度、不同地面含水率和不同杂草密度下的西兰花幼苗图像,以确保样本多样性,并通过数据增强手段扩大样本量,制作PASCAL VOC格式数据集。针对此数据集训练Faster R-CNN模型,通过设计ResNet101、ResNet50与VGG16网络的对比试验,确定ResNet101网络为最优特征提取网络,其平均精度为90. 89%,平均检测时间249 ms。在此基础上优化网络超参数,确定Dropout值为0. 6时,模型识别效果最佳,其平均精度达到91. 73%。结果表明,本文方法能够对自然环境下的西兰花幼苗进行有效检测,可为农业智能除草作业中的作物识别提供借鉴。  相似文献   

8.
为研究在自然场景下柑橘叶片病害检测和识别技术,提出一种基于二值化的Faster R-CNN(Binary Faster R-CNN)区域检测神经网络模型。改进模型将原始的Faster R-CNN全连接层神经网络转变为二进制全卷积神经网络。试验结果表明,该模型对柑橘的黑斑病、溃疡病、黄龙病、疮痂病、健康叶片的平均准确率分别为87.2%、87.6%、89.8%、86.4%和86.6%,总平均准确率为87.5%;模型识别时间相较于Faster R-CNN网络提高0.53 s,每幅图像的检测时间为0.31 s,模型大小缩小到15.3 MB,FLOPs为2.58×109;同时在保证模型检测有效性的情况下可快速收敛。该方法对复杂自然环境下的柑橘叶片病害检测具有较好的识别速度和鲁棒性,对柑橘类疾病预防有重要的研究意义。  相似文献   

9.
棉铃作为棉花重要的产量与品质器官,单株铃数、铃长、铃宽等相关表型性状一直是棉花育种的重要研究内容。为解决由于叶片遮挡导致传统静态图像检测方法无法获取全部棉铃数量的问题,提出了一种以改进Faster R-CNN、Deep Sort和撞线匹配机制为主要算法框架的棉铃跟踪计数方法,以实现在动态视频输入情况下对盆栽棉花棉铃的数量统计。采用基于特征金字塔的Faster R-CNN目标检测网络,融合导向锚框、Soft NMS等网络优化方法,实现对视频中棉铃目标更精确的定位;使用Deep Sort跟踪器通过卡尔曼滤波和深度特征匹配实现前后帧同一目标的相互关联,并为目标进行ID匹配;针对跟踪过程ID跳变问题设计了掩模撞线机制以实现动态旋转视频棉铃数量统计。试验结果表明:改进Faster R-CNN目标检测结果最优,平均测量精度mAP75和F1值分别为0.97和0.96,较改进前分别提高0.02和0.01;改进Faster R-CNN和Deep Sort跟踪结果最优,多目标跟踪精度为0.91,较Tracktor和Sort算法分别提高0.02和0.15;单株铃数计数结果决定系数、均方...  相似文献   

10.
杂草是导致农作物减产不保量的重要因素,针对田间自然环境下杂草识别精度低和识别范围局限的问题,提出一种基于改进Faster R-CNN与迁移学习的农田杂草识别算法。首先,采集多场景下不同时段不同角度的杂草图片,通过旋转、裁剪和调节色彩等方式扩充数据集;然后,在原始Faster R-CNN网络的基础上利用改进的双阈值非极大抑制算法(Non Maximum Suppression,NMS)查找置信度较高的边界框;最后,将AlexNet、GoogleNet、VGG16和ResNet50等作为模型的区域建议网络,并将其最优模型参数迁移至农田杂草识别任务中。通过在多样本数据集和少量物种样本数据集上进行测试验证,试验结果表明,算法可以实现96.58%的精确率、94.82%的召回率和95.06%的F1-score,相比当前主流算法在保持识别精度较高的基础上,具有更广的识别范围。  相似文献   

11.
基于Faster R-CNN的松材线虫病受害木识别与定位   总被引:2,自引:0,他引:2  
松材线虫病是一种毁灭性松树传染病,其传播速度快、发病时间短、致病力强,及时发现、确定受害木的位置,并采取安全处理措施是目前控制松材线虫病蔓延的有效手段。本文通过小型无人机搭载可见光RGB数码相机获取超高空间分辨率影像,采用Faster R-CNN目标检测算法实现对染病变色松树的自动识别,与传统受害木识别方法不同,本文考虑了其他枯死树和红色阔叶树对受害木识别的影响。实验结果表明,根据受害木的冠幅大小修改区域生成网络中的锚框(anchor)尺寸,并考虑其他枯死树和红色阔叶树的影响,有利于提高受害木识别效果和检测精度。改进后受害木识别总体精度从75.64%提高到82.42%,提高了6.78个百分点,能够满足森林防护人员对受害木定位处理的需求。通过坐标转换的方式得到受害木的精确位置信息与空间分布情况,结合点位合并过程,最终正确定位出494棵受害木。本文通过无人机遥感结合目标检测算法能监测松材线虫病的发生和获取受害木的分布情况,可为松材线虫病的防控提供技术支持。  相似文献   

12.
基于深度学习与复合字典的马铃薯病害识别方法   总被引:4,自引:0,他引:4  
为解决自然环境下小样本病害叶片识别率低、鲁棒性不强的问题,以马铃薯病害叶片为研究对象,提出一种基于深度卷积神经网络与复合特征字典结合的病害叶片识别方法。首先,利用迁移学习技术对Faster R-CNN模型进行训练,检测出病害叶片的斑块区域;然后,采用高密度采样方法对整个斑块区域提取颜色特征和SIFT特征,建立颜色特征和SIFT特征词汇表,再由K-均值聚类算法对两类表观特征词汇表进行聚类,构造出复合特征字典;最后,将病害区域提取的特征在复合特征字典中映射后获得特征直方图,利用支持向量机训练出病害的识别模型。试验结果表明,复合特征字典中视觉单词数为50时,病害识别的鲁棒性和实时性最佳,平均识别准确率为90.83%,单帧图像耗时1.68 s;在颜色特征和SIFT特征组合下,本文方法在自然光照条件下对病害的平均识别准确率最高,达到84.16%;在相同数据集下,与传统词袋法相比,本文方法的平均识别准确率提高了25.45个百分点。  相似文献   

13.
王铁伟  赵瑶  孙宇馨  杨然兵  韩仲志  李娟 《农业机械学报》2020,51(S1):457-463,492
为解决不同成熟度冬枣的样本数量相差悬殊导致的识别率低的问题,本文提出了一种基于数据平衡的Faster R-CNN的冬枣识别方法。该方法针对自然环境下不同成熟度的冬枣,首先从不同角度进行了数据平衡的Faster R-CNN冬枣识别方法研究,然后将所提出的方法与基于YOLOv3的识别方法进行了对比试验研究。研究结果表明:所提出的数据平衡的Faster R-CNN方法在样本数量不足和类别不平衡的情况下,增强了模型的泛化效果,对片红冬枣识别的平均精确度达到了98.50%,总损失值小于0.5,其识别平均精确度高于YOLOv3。该研究对解决冬枣自动化和智能化采摘的识别问题具有一定的实际意义和应用价值。  相似文献   

14.
基于优化Faster R-CNN的棉花苗期杂草识别与定位   总被引:2,自引:0,他引:2  
为解决棉花苗期杂草种类多、分布状态复杂,且与棉花幼苗伴生的杂草识别率低、鲁棒性差等问题,以自然条件下新疆棉田棉花幼苗期的7种常见杂草为研究对象,提出了一种基于优化Faster R-CNN和数据增强的杂草识别与定位方法.采集不同生长背景和天气条件下的杂草图像4694幅,对目标进行标注后,再对其进行数据增强;针对Faste...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号