首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
针对现有蓖麻收获装备采摘损失率较高、对低矮植株收获适应性差的问题,该研究结合蓖麻植株的生理特性,设计一种圆盘切割式蓖麻采摘装置。该装置配套于水稻或玉米联合收获机,通过双圆盘刀对蓖麻植株进行切割分离,再经过收割机的清选完成蓖麻收获。通过对装置关键部件的受力及作业原理分析,设计其关键结构参数。并以割茬高度差和采摘损失率为评价指标,以刀盘结构类型、刀盘转速、前进速度为试验因素进行三因素三水平的正交试验,在保证割茬高度差的前提下,以采摘损失率为主要指标,利用综合平衡法确定较优参数组合。田间验证试验表明:刀盘结构类型为波浪形,刀盘转速为600 r/min,前进速度为1.1 m/s时,平均割茬高度差为0.85 mm、平均采摘损失率为3.13%,切割过程平稳、损失率低,对种植农艺适应性好,满足蓖麻收获的田间作业要求。该研究可为蓖麻收获装备的研究和设计提供参考。  相似文献   

2.
为了解决油茶果机械化采摘漏采率高、损伤率大和耗能过大的问题,针对摇枝式油茶果采摘装置,该文通过对油茶果振动脱落过程的分析,建立油茶果振动脱落模型并求解,得出影响油茶果脱落的主要因素为作用在枝条上的外力的振幅、频率、作用时间以和夹持位置,并通过预试验和正交试验得到摇枝式油茶果采摘装置的作业参数范围及漏采率最低情况下的作业参数组合。利用高速摄像对油茶果振动脱落过程进行记录,然后回放录像并分析,以油茶果脱落时间作为评价指标,得出采摘效率较高的振动频率、振幅范围为6~10 Hz和20~40 mm,根据平均落果时间范围确定采摘装置的振动作用时间约为4~12 s。根据油茶果在树上的主要分布范围(距离树冠表层260 mm左右),设计四因素三水平正交油茶果采摘试验,得出漏采率最低的作业参数组合为振动夹持位置在距离树梢末端260 mm以内、振动频率10 Hz、振幅20 mm、振动时间8 s,此时油茶果的漏采率为10.87%,花苞损伤率为31.80%。机械夹持方式和铁质的夹持材料对花苞损伤较大,需进一步优化采摘装置作业参数,优化夹持方式和采用柔软的夹持材料,实现油茶果的机械采摘。  相似文献   

3.
唐宇翀  戴炜  喻娜 《南方农业》2021,(13):39-41
青花椒作为广安特色农业产业,发展势头迅猛.针对当前影响广安青花椒生长及产量的主要病害花椒锈病,通过对其预防和治疗药剂的筛选,发现广安青花椒锈病的预防可选用15%粉锈宁600~1000倍液、70%代森锰锌600~1000倍液和70%甲基托布津600~1000倍液;治疗可选用600~1000倍的25%粉锈宁和43%戊唑醇;...  相似文献   

4.
梳夹式红花丝采摘头等高采收性能试验与参数优化   总被引:2,自引:6,他引:2  
为验证梳夹式红花丝采摘头设计理论参数的合理性及提升其工作性能,以新疆广泛种植红花品种"裕民无刺"为试验对象,以梳齿长度、梳齿间隙、梳齿转速为影响因素,采净率、掉落率、破碎率为响应指标,进行二次旋转正交试验。通过数据优化软件Design-Expert 8.6.0建立了响应指标与影响因素之间的数学模型,基于响应面法进行参数优化,得出最佳组合参数。以优化参数组合梳齿长度40 mm,梳齿间隙3.5 mm,梳齿转速为80 r/min,在梳夹式红花丝采摘头性能试验台上进行验证试验,其结果为:采净率为82%,掉落率2.29%,破碎率2.45%,基本与优化结果吻合。在该优化参数组合下的田间试验结果显示,梳夹式红花采摘装置采净率为81.88%,掉落率2.25%,破碎率2.43%,表明梳夹式红花丝采摘头可以较好的完成对一定高度下红花丝的采摘作业。该研究为梳夹式红花丝采摘机的改进提供了参考价值,对推动红花丝机械化盲采具有一定的意义。  相似文献   

5.
针对旱地干红花人工采收时不易捏取导致采摘效率低、掉落率高等问题,该研究结合红花的物理特性和种植模式,设计了立式辊刷干红花收获机采摘装置。根据机具结构对刷丝排布方案进行理论分析,确定刷丝排布方案为螺旋式,螺旋升角为30°,旋向为右旋。对辊刷采摘干红花进行力学分析,得出使花丝脱离果球的关键作用力为法向力FN。采用Hertz弹性接触理论对FN进行分析,并建立刷丝-果球接触力学模型,揭示干红花的采摘原理,明确影响采摘质量的主要因素为刷丝材质、丝径、长度和辊刷转速,进一步对立式辊刷结构与运动参数进行分析,得出采摘装置优化参数组合为:辊刷长度300 mm,辊刷直径100 mm,辊刷转速360 r/min,刷丝材质为聚酰胺610(PA-610),刷丝长度30 mm,刷丝丝径0.3 mm。通过植株通过率试验确定立式辊刷与栅条架的间隙为12 mm。田间采摘试验表明,该装置的红花采摘率和伤果率分别为87.04%和4.19%,机具采摘效率为人工采摘效率的7.71~10.92倍。研究结果可为辊刷式干红花收获机的设计与优化提供参考。  相似文献   

6.
针对蓖麻机械化采收时采净率低、破损率高等难题,结合蓖麻物理特性和种植模式,研究设计了辊刷式蓖麻收获机采摘机构。首先在分析采摘机构总体结构的基础上阐述了辊刷式采摘原理,阐明了辊刷、螺旋输送器、传动系统等关键部件的设计。进一步地,为探究采摘机构相关参数的最优组合,提高蓖麻采摘质量,采用Box-Benhnken响应面试验设计理论,以前进速度、辊刷转速、刷丝长度为影响因素,以采净率、籽粒破损率及含杂率为作业质量评价指标,进行参数优化试验。建立各影响因素与指标之间的回归数学模型,并分析各因素对响应值的交互影响,同时对模型进行了综合优化,获得最优参数组合为:前进速度0.72 m/s、辊刷转速371.69 r/min、刷丝长度56.60 mm,对应的采净率、籽粒破损率、含杂率分别为90.81%、0.17%、11.27%。对优化结果进行验证试验,试验结果表明在最优参数组合下,采净率为91.36%、籽粒破损率为0.18%、含杂率为11.67%,各评价指标与预测值均很接近。研究结果可为辊刷式蓖麻收获机进一步完善结构设计和工作参数优化提供参考。  相似文献   

7.
批次式种子清选装置设计与试验   总被引:3,自引:3,他引:0  
针对试验小区种质材料\  相似文献   

8.
拱棚自动插架装置设计与试验   总被引:1,自引:1,他引:0  
目前建造拱棚主要以手工为主,为了提高其机械化、自动化水平以及建造拱棚的效率,该文设计与研制了拱棚智能插架覆膜机的拱棚自动插架装置。基于拱棚搭建的入土深度、棚架宽度、棚架高度等技术要求和曲柄存在的条件,对其关键部件曲柄滑块机构和弯折手臂进行结构设计与优化。当曲柄的长度为230 mm,连杆的长度为220 mm,偏心距为220 mm时,达到最好的传力效果和运动效率;同时对曲柄滑块机构进行运动分析,确定插架作业时曲柄的初始角度和最大位置角度分别为132°和30°;设计弯折手臂使棚杆变弯,确保棚杆垂直入土;然后基于ANSYS分析拱棚抗风性能,当棚度架宽与棚杆长度的比值在0.60~0.66之间时,拱棚抗风性最强;最后通过田间试验测量分析棚架平均宽度、棚杆平均入土深度和棚架平均高度分别为93.85、15.23和56.19 cm,获得棚架高度、棚架宽度的稳定系数均为99%。装置插架效果满足农艺需求,进一步验证了装置设计的正确性和方案的可行性。研究结果可为实现拱棚的自动插架覆膜机研制提供理论基础。  相似文献   

9.
为了实现枸杞机械化采摘,该文研究了枸杞振动采摘机理,并建立振动采摘力学模型,分析求解得到枸杞挂果枝条受迫振动时各节点处枸杞和花朵所受惯性力的通解。运用MATLAB对振动式枸杞采摘机工作参数进行优化和仿真试验,优化得到合理的迫振载荷和驱动轮转速组合,仿真试验得到受迫振动枸杞挂果枝条各节点处枸杞与花朵所受采摘惯性力随转速变化规律仿真曲线,对转速取值进行调整。最后进行了枸杞采摘试验,试验得到合理的驱动轮转速为2 870 r/min,该转速水平在仿真得到的合理的转速区间为2 868.84~2 871.21 r/min。试验转速为2870 r/min时,成熟枸杞采摘效率为815颗/min,成熟枸杞采净率为86.70%,未成熟枸杞采摘率为7.36%,花朵采摘率为7.43%,成熟枸杞损伤率为8.62%,机采人采效率比为5.43,试验结果与仿真结论一致。研究结果可为枸杞振动采摘机的研制提供参考。  相似文献   

10.
非对称式大小圆盘开沟装置设计与试验   总被引:4,自引:4,他引:0  
为解决东北一年一熟区玉米秸秆覆盖地免耕播种玉米存在的秸秆覆盖量大导致机具堵塞严重和双圆盘开沟器入土困难等问题,该文设计了一种非对称式大小圆盘开沟装置,该装置采用大、小圆盘一前一后非对称设置,大圆盘预先切割秸秆、残茬,小圆盘完成秸秆拨离并开出种沟,为玉米免耕播种提供清洁种床。无秸秆覆盖下的EDEM离散元仿真试验和田间试验,预先验证了开沟装置的作业性能。秸秆覆盖下的田间试验表明:该装置在秸秆覆盖条件下仍可实现较为稳定可靠的开沟效果,平均开沟深度为71.41 mm,平均开沟宽度为38.27 mm,满足玉米免耕播种作业要求;不同秸秆覆盖条件下,该装置作业流畅、种沟整洁,无明显堵塞和连续晾仔、断条现象,切茬、入土性能良好。该研究可为玉米少免耕播种开沟装置的改进及研发提供理论支持和技术基础。  相似文献   

11.
大蒜取种装置取种清种性能离散元模拟与试验   总被引:2,自引:2,他引:0  
针对当前大蒜机械化种植单粒率低的问题,采用"取多留一"的设计思路,设计了爪式循环单粒取种装置,采用离散元技术建立大蒜充种与清种动力学模型,通过单因素仿真试验明晰了该装置完成单粒取种的内在机理。充种过程以取种爪中间板圆弧半径、圆心角及侧板横向间距为试验因素,以目标率为试验指标,通过Box-Behnken试验设计原理进行多因素仿真试验,得到影响目标率的参数依次为取种爪侧板横向间距、中间板圆心角、中间板圆弧半径;清种过程以清种栅板倾角为试验因素,以合格率、漏播率为试验指标,通过One-Factor试验设计原理进行清种性能试验,得到其响应曲线。采用Design-Expert8.0.6进行取种参数优化,结果表明各参数最优值分别为中间板圆弧半径为48.52 mm,中间板圆心角为72.59°,侧板横向间距为25.11 mm,栅板倾斜角度为7.41°;模型预测的目标率为90.64%,合格率为92.52%,漏播率为3.30%。开展了室内及大田试验,试验数据与优化结果一致,为大蒜机械化播种单粒取种技术研究提供了参考。  相似文献   

12.
番茄钵苗移栽机自动取苗装置作业参数优化与试验   总被引:5,自引:5,他引:0  
针对新疆地区番茄移栽机械自动化程度低、劳动强度大、作业效率低等问题,该文分析了一种番茄钵苗自动取苗装置的夹苗器凸轮运动过程,得到了凸轮运动过程参数,结合钵苗取苗作业要求搭建取苗试验台,对自动取苗装置主要工作参数进行优化。以适栽期番茄钵苗为试验对象,利用自动取苗试验台进行单因素试验。进一步结合理论分析及单因素试验,选取苗针长度、苗针开度、取苗频率为影响因素,以伤苗率、漏苗率和取苗成功率为评价指标进行三因素三水平二次旋转正交组合试验,通过Design-Expert.V8.0.6软件,得到理论最优参数组合:苗针长度198 mm,苗针开度19 mm,取苗频率57株/min,此参数组合下伤苗率为3.91%,漏苗率为1.56%,取苗成功率为94.69%。在自动取苗试验台上进行验证试验,取苗装置伤苗率为3.44%,漏苗率为1.72%,取苗成功率为94.38%,与优化结果基本吻合,验证了所建模型与优化参数的合理性。田间取苗试验伤苗率为3.65%,漏苗率为2.08%,取苗成功率为94.27%。田间试验取苗成功率与优化结果的误差为0.44%,表明取苗装置抗干扰能力较强。该研究结果可为番茄全自动移栽机取苗装置的结构改进和作业参数控制提供参考。  相似文献   

13.
目前,藜蒿栽植主要依靠人工扦插。分苗装置是实现藜蒿机械化扦插的关键部件,为实现藜蒿苗杆的有序进给,该文设计了一种基于振动机理的藜蒿扦插机分苗装置。在分析振动式分苗装置振动机构-曲柄滑块机构运动分析基础上,利用Matlab优化了振动式分苗装置的结构参数,即当该曲柄摇杆机构的连杆、摇杆分别取499 mm、273 mm时,机构达到最好传力效果。利用Ansys对分苗装置的振动特性进行了模态分析,为防止弹簧钢板变形,振动频率应小于98.66 Hz。而后,以曲柄长度、振动频率、轨道倾角为试验因素,开展了藜蒿分苗装置的试验研究。极差分析结果表明,试验台倾角对分苗合格率影响较大,振动频率次之,偏心距影响最小,优化组合为:振动频率36 Hz、轨道倾角6°、曲柄长度14 mm,此优化组合参数下藜蒿苗杆分苗合格率可达86.3%。该研究工作实现了藜蒿苗杆的机械化分苗,为藜蒿扦插机械的进一步研究提供了参考。  相似文献   

14.
大蒜果秧分离机构参数优化及试验   总被引:3,自引:14,他引:3  
为了提高大蒜果秧分离机构的作业质量,降低蒜头的平均留茎长度、伤损率、提高切痕合格率,该文运用Box-Benhnken的中心组合试验设计理论,在构建的大蒜果秧分离试验台上,对主夹持链输送速度、蒜株夹持角度、蒜株夹持高度、夹持株数等影响其作业质量的4个因素进行四因素三水平的响应面试验。建立了响应面数学模型,分析了各影响因素对作业质量的影响,同时,对各影响因素进行了综合优化。结果表明试验因素对果秧分离质量有较大影响,综合优化结果为主夹持链输送速度1.05 m/s,蒜株夹持角度77°,蒜株夹持高度220 mm,夹持株数2株,此时平均留茎长度为36.9 mm、伤损率为2.23%、切痕合格率为98.29%。研究结果可为大蒜果秧分离机构的结构完善设计和作业参数优化提供依据。  相似文献   

15.
为提高机械式排种器的工作性能,该文从增加充种区种群活跃度、降低种群内摩擦力的角度出发,设计一种自扰动内充型孔轮式玉米精量排种器,分析了种子在扰种条上运动情况和充种原理,完成排种盘的参数设计。采用离散元软件EDEM对排种器进行仿真试验,以排种盘转速、扰种条形式、排种盘圆台锥角、扰种条半径为试验因素,以排种单粒率、重播率、漏播率为试验指标进行单因素试验和二次正交回归旋转组合试验。应用Design-Expert8.0.6对试验数据进行分析,得到了单粒率、重播率、漏播率和试验指标之间的数学模型,对试验结果进行多目标优化,得出最佳参数为:排种盘转速8.4 r/min,螺旋扰种条,排种盘圆台锥角38.6?,扰种条半径1.24 mm,此时排种单粒率为96.29%,重播率为2.55%,漏播率为1.15%。在最优参数组合下进行台架试验,排种器的单粒率、重播率和漏播率分别为95.4%、1.6%和3.0%;且当排种盘转速在8.40~16.67 r/min(对应工作速度为4.94~9.75 km/h)时,排种单粒率大于91.4%,重播率小于1.6%,漏播率小于7.3%,伤种率小于0.44%,排种效果优于勺轮式排种器,满足玉米单粒精播的农艺要求,对播种机作业速度适应范围广。基于EDEM离散元法的排种器仿真试验为排种器性能参数的确定提供参考且缩短设计周期,该研究可为提高机械式排种器充种性能提供参考,为玉米精量播种机的设计提供研究基础。  相似文献   

16.
针对当前大蒜机械化播种单粒合格率低、漏充率高的问题,该研究设计了一种双充种室大蒜单粒取种装置。通过分析与计算,确定了取种装置关键部件参数,阐述了双充种室结构可降低蒜种漏充的作业机理。采用EDEM软件进行了单因素仿真试验,分析了一级取种勺速度、种层厚度对充种性能及种群规律的影响,得到第二充种室内充入蒜种与被清掉蒜种的速度变化关系,证明了装置设计合理性。运用Box-Behnken中心组合试验方法,以一级取种勺速度、取种速比、种层厚度作为试验因素,以单粒合格率和漏充率作为评价指标,开展了三因素三水平正交试验。利用Design-Export8.0.6数据分析软件,建立各试验因素与评价指标的数学回归模型,并对试验因素进行了参数优化。圆整后一级取种勺速度为0.12 m/s、取种速比为0.75的条件下,种层厚度范围为360~390 mm开展室内验证试验,单粒合格率、漏充率、重播率均值分别为95.38%、1.18%、3.44%,变异系数分别为0.32%、6.11%和4.15%,验证试验结果与模型预测值相对误差小于5%。品种适应性试验试验结果表明取种装置对3类供试大蒜Ⅱ级蒜种适应性较优,蒜种机械损伤率为0.52%,符合标准要求。田间试验结果与优化结果一致,作业效果优于现有爪式循环、勺链式、轮勺式大蒜单粒取种装置,该研究可为解决大蒜播种机取种漏充问题提供指导参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号