首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.

为了提高无人机遥感对冬小麦叶面积指数(leaf area index,LAI)反演模型的精度与泛化能力,该研究利用无人机搭载多光谱相机获取不同氮素处理和不同复种方式的冬小麦生长实测数据,结合PROSAIL辐射传输模型生成包含机理信息的模拟数据,基于不同组合方式建立了5种LAI反演混合数据集,结合多种机器学习方法,以期构建经验与机理相结合的LAI高精度反演模型。由于LAI反演受近红外波段(near infrared,NIR)反射率影响大,该研究筛选7种与NIR波段相关的植被指数提取冬小麦光谱特征,构建与混合数据集LAI的相关系数矩阵,进一步探究不同光谱特征对冬小麦LAI的影响程度。在此基础上,采用具有代表性和普适性的4种机器学习方法,即贝叶斯岭回归模型、线性回归模型、弹性网络模型和支持向量回归模型,构建不同冬小麦LAI反演模型,用以评估基于半经验半机理数据反演冬小麦LAI的可行性,进一步探索其对不同氮素水平和复种方式的冬小麦长势评估能力。结果表明:1)筛选的与NIR波段相关的植被指数与冬小麦LAI之间存在较强的相关性,其中归一化差异植被指数、增强植被指数、归一化差异红边指数、比值植被指数、红边叶绿素植被指数、土壤调节植被指数与LAI呈正相关,结构不敏感色素植被指数与LAI呈负相关;2)辐射传输模型中体现了冬小麦LAI影响太阳光线传播的机理,结果表明,与实测数据混合建立的模型,具有较强的鲁棒性和泛化能力。相比于其他3种模型,支持向量回归模型在各种数据组合下均取得了较好的LAI预测性能,在C1、C2、C3、C4这4种训练-测试组合的训练集中R2依次为0.86、0.87、0.88、0.91,RMSE依次为0.47、0.45、0.45、0.41;在测试集的R2依次为0.85、0.19、0.89、0.87,RMSE依次为0.45、1.31、0.49、0.50;3)使用支持向量机生成试验区LAI反演图,对4种氮素水平和2种复种方式的冬小麦长势评估,结果表明,适当的施加氮素处理能提高冬小麦LAI值,麦-豆复种方式下的冬小麦LAI值普遍高于麦-玉复种的LAI值。该研究为冬小麦LAI的反演提供了一种有效的方法,并为高效评估冬小麦长势研究提供了参考。

  相似文献   

2.
基于无人机遥感的农作物长势关键参数反演研究进展   总被引:3,自引:9,他引:3  
无人机遥感是生态-环境-资源领域新兴的重要研究手段,近年来在农作物长势研究中得到了迅速的发展与应用。清楚、透彻地认识基于无人机遥感的农作物长势研究现状及存在问题,有利于更好地把握当前的核心领域并开展更进一步的研究。首先回顾了国际上"基于无人机遥感农作物长势研究"为主题的论文发表情况,其次对无人机遥感平台及不同传感器的基本遥感原理、反演的参数类型、各自的优势及局限性进行梳理,并概述了基于无人机遥感的农作物长势反演流程。在此基础上,一方面将农作物长势参数归纳为形态指标、生理生化指标、胁迫指标、产量指标等4类;另一方面将农作物长势参数的反演方法归纳为经验统计回归与机器学习法、形态特征与光谱特征识别法、辐射传输模型法、多角度航拍与卫星-无人机影像结合法等4类,并针对不同反演方法的优势与不足进行总结。最后综合国内外的研究现状进行了讨论分析与展望评价。该文通过综述近10 a来无人机遥感农作物长势关键参数反演的研究成果,可为今后基于无人机遥感方法的农作物长势研究的理论基础与技术支持方面提供参考。  相似文献   

3.
无人机影像反演玉米冠层LAI和叶绿素含量的参数确定   总被引:2,自引:4,他引:2  
小型低空无人机(Unmanned Aerial Vehicle, UAV)机动灵活、操作简便,可以按需获取高空间分辨率影像,是育种玉米长势监测的一种重要技术手段。针对UAV影像反演玉米冠层叶面积指数(LAI, Leaf Area Index)和叶绿素含量的参数确定问题,该研究以DJI S1000+无人机为平台,搭载法国Parrot Sequoia相机,获取海南三亚市崖城玉米育种基地的多光谱影像。基于预处理后的UAV影像,采用重采样的方式获得不同分辨率下(0.1~1 m)的不同植被指数,所构建的植被指数包括归一化植被指数(Normalized Difference Vegetation Index,NDVI)、叶绿素指数(Grassland Chlorophyll Index,GCI)、比值植被指数(Ratio Vegetation Index,RVI)、归一化红边红指数(Normalized Difference rededge-red Index,NDIrer)、归一化红边绿指数(Normalized Difference rededge-green Index,NDIreg)和重归一化植被指数(Renormalized Difference Vegetation Index,RDVI),通过将不同分辨率下的不同植被指数与地面实测数据进行回归分析,以获得各分辨率下植被指数与冠层LAI和叶绿素含量的关系模型及其决定系数,以决定系数的大小为依据来确定玉米冠层LAI和叶绿素含量反演的最优空间分辨率和最优植被指数。通过试验发现,在分辨率为0.6 m时,NDVI与地面实测LAI之间的决定系数R2为0.80,决定系数达到了最大,利用该分辨率下的NDVI反演得到的LAI验证精度R2达到0.73;在分辨率为0.1 m时,NDIreg与地面实测叶绿素含量之间的决定系数R2为0.70,决定系数达到最大,利用该分辨率下的NDIreg反演得到的叶绿素含量验证精度R2达到了0.63。因此得出结论:1)植被指数的选择:① 对于玉米冠层LAI的反演来说,不包含绿波段的植被指数的LAI反演精度较高,这说明绿波段对LAI的变化不敏感;② 对于玉米冠层叶绿素含量反演来说,包含红边波段的植被指数的反演精度较高,因此影像的红边波段对叶绿素含量的变化非常敏感。2)UAV影像空间分辨率的选择:反演LAI的最优分辨率是0.6 m,此时NDVI与实测LAI的决定系数达到最大;反演冠层叶绿素含量的最优分辨率是0.1~0.3 m范围内,此时NDIreg与实测叶绿素含量的决定系数达到最大。该研究可为UAV反演玉米表型参数时的分辨率和植被指数选择提供参考。  相似文献   

4.
基于人工神经网络方法的冬小麦叶面积指数反演   总被引:1,自引:2,他引:1  
实践中,大尺度上测量叶面积指数(LAI)很难实现,利用遥感技术进行LAI的定量反演成为当前研究的重点。该文应用MODIS地表反射率数据反演冬小麦叶面积指数,假设MODIS像元由作物和土壤混合,建立了SAILH模型与裸土反射率组成的线性光谱混合模型,基于人工神经网络的方法进行LAI反演,获得了北京顺义冬小麦种植区在2001年4月1个时间序列的LAI。研究表明,此方法能够较好的获取大区域尺度上的LAI,对冬小麦长势监测具有重要意义。  相似文献   

5.
大面积区域作物叶面积指数(LAI)遥感反演,对指导作物管理具有重要的意义。该文基于2008年5-7月在黑河流域开展的大型星-机-地遥感综合试验获取的多角度高光谱PROBA/CHRIS数据及地面同步观测数据,利用PROSAIL辐射传输模型和神经元网络方法反演春小麦LAI,并利用地面实测LAI进行验证和分析,结果表明:PROBA/CHRIS数据的最佳组合波段为band 4(555.1 nm)、band 9(696.9 nm)和band15(871.5 nm),利用PROBA/CHRIS数据反演LAI时,3角度组合(0°、36°、55°)反演LAI精度最高(R2=0.854,RMSE=0.344;MAE=0.213)。随着观测角度增加LAI反演精度相应提高,但超过3个角度后,多观测角度数据会带来较大不确定性,影响神经元网络建模,导致LAI反演精度下降。  相似文献   

6.
基于支持向量机回归的冬小麦叶面积指数遥感反演   总被引:4,自引:12,他引:4  
利用单一植被指数反演叶面积指数(LAI)时,存在不同程度的饱和性且每种指数只能包含部分波段的信息,该文提出利用支持向量机回归的方法进行叶面积指数的反演,可以用更多的波段信息作为输入参数以提高LAI反演精度。选取冬小麦起身期、拔节期和灌浆期的实测光谱和叶面积指数数据,用统计回归的方法分别建立NDVI-LAI和RVI-LAI模型,用支持向量机回归(SVR)方法分别建立以NDVI、RVI以及蓝、绿、红和近红外4个波段数据作为输入参数的回归预测模型,即NDVI-SVR、RVI-SVR和NRGB-SVR模型。上述5个模型分别利用对应时期的环境星HJ-CCD数据进行验证。结果表明:NDVI和RVI与叶面积指数(LAI)的回归模型预测的结果与实测值的RMSE分别为0.98与0.97;预测精度分别为59.2%与59.3%。以NDVI和RVI结合实测叶面积指数(LAI)训练并预测的结果与实测值的均方根误差RMSE分别为0.71与0.83预测精度分别为70.4%与67.1%。以蓝(B)、绿(G)、红(R)以及近红外(NIR)波段作为输入参数回归并预测的RMSE值为0.42,预测精度为81.7%。通过支持向量机回归预测具有更好的拟合效果,可以输入更多波段信息,提高了叶面积遥感反演精度,对冬小麦的多个生育期均具有较好的适用性。  相似文献   

7.
WOFOST(world food studies)模型可用于模拟冬小麦全生育期内的时序叶面积指数(leaf area index, LAI),各器官生物量以及最终产量,对冬小麦的长势监测与产量预估有着重要意义。但将WOFOST模型用于中国具体区域的冬小麦生长模拟时,存在着参数定标困难、模拟结果不够准确等严重问题。目前对该模型的定标大多依靠研究者的经验进行,虽已总结出了一套从标定到模拟应用的研究方法,但在区域模拟时仍然存在很多问题。为此,该文以较易获取的LAI为参考指标,结合潜在生长水平模式下的WOFOST模型在衡水地区的应用,提出了一种"区域优化标定,像元同化修正"的研究方法:首先在区域尺度上对WOFOST模型进行优化标定,利用扩展傅里叶幅度灵敏度检验法(extend fourier amplitude sensitivity test, EFAST)分析模型各个参数的敏感性,在此基础上选择了可以迅速找到全局最优解的SCE(shuffled complex evolution)算法对总敏感度最高的5个参数进行优化,并将优化前后的时序LAI曲线进行对比;其次运用第一步确定的模型最优参数,在对区域内每个像元进行模拟时,结合Sentinel-2卫星数据反演所得的各个像元LAI,利用集合卡尔曼滤波(ensemble kalman filter, EnKF)在像元尺度上对LAI进行同化修正,并结合采样点的2次实测LAI数据对同化所得结果进行验证。试验发现,优化标定后的WOFOST模型模拟所得LAI曲线更接近所给的LAI真值,在此基础上结合数据同化模拟得出的衡水地区每个像元LAI的R2达到0.87,RMSE仅为0.62。因此,与原来只能通过经验进行定标的方法相比,该方法有效地解决了WOFOST模型在具体应用中亟待解决的复杂标定问题,并且结合同化修正有效地提高了模型在各个像元的模拟精度,R2由0.70~0.83提升至了0.87,RMSE由0.89~1.36降低至了0.62。同时该文也提供了从模型标定到具体模拟整个过程中各个环节的思路与方法,有利于促进WOFOST模型在区域尺度上的应用。  相似文献   

8.
冬小麦叶面积指数高光谱遥感反演方法对比   总被引:13,自引:13,他引:13  
冬小麦叶面积指数(LAI,leafarea index)是评价其长势和预测产量的重要农学参数,高光谱遥感能够实现快速无损地监测叶面积指数。该文旨在将田间监测与高光谱遥感相结合,探索研究不同冬小麦叶面积指数高光谱反演方法的模拟精度及适应性。针对国际上普遍应用的2种高光谱遥感反演LAI模型方法,即回归分析法和BP神经网络法,在介绍2种LAI反演模型的基础上,选择位于黄淮海平原的山东省济南市长清区为研究区域,通过ASD地物光谱仪和SunScan冠层分析系统对冬小麦的冠层光谱及LAI变化进行田间观测,然后利用回归分析法和BP神经网络法构建冬小麦LAI反演模型,将模型估算LAI值和田间观测LAI值进行比对,分析评价2种方法的反演精度。结果表明,BP神经网络法较回归分析法估算冬小麦LAI的精度有较大提高,检验方程的决定系数(R2)为0.990、均方根误差(RMSE)为0.105。利用BP神经网络法构建反演模型能较好的对冬小麦LAI进行反演。研究结果可为不同冬小麦长势遥感监测提供理论和技术上的支持,并为大尺度传感器监测冬小麦长势和估产提供参考。  相似文献   

9.
为探讨无人机多源影像特征融合估测作物叶面积指数的能力,该研究以冬小麦为研究对象,利用多旋翼无人机搭载高清数码相机和UHD185成像光谱仪获取研究区冬小麦关键生育期(扬花期、灌浆期)的可见光和高光谱影像。综合考虑可见光、高光谱影像特征与冬小麦叶面积指数的相关性及影像特征重要性进行特征筛选,然后,以可见光植被指数、纹理特征、可见光植被指数+纹理特征、高光谱波段、高光谱植被指数及高光谱波段+植被指数分别作为输入变量构建多元线性回归、支持向量回归和随机森林回归的叶面积指数估测模型(单传感器数据源);以优选的两种影像特征结合支持向量回归、随机森林回归构建叶面积指数估测模型(两种传感器数据源),比较分析单源与多源影像特征监测冬小麦叶面积指数的性能。进一步地,考虑到小区土壤空间异质性会影响冬小麦叶面积指数估测结果,该研究探讨了不同影像采样面积下基于单源遥感数据构建的小麦叶面积指数估测模型精度。研究结果表明:在扬花期和灌浆期,使用两种影像优选特征构建的随机森林回归估测模型精度最佳,验证集决定系数分别为0.733和0.929,均方根误差为0.193和0.118。可见光影像采样面积分别为30%和50%,高光谱影像采样面积为65%时,基于单源影像特征构建的随机森林回归估测模型在扬花期和灌浆期效果最好。综上,该研究结果可为无人机遥感监测作物生理参数提供有价值的依据和参考。  相似文献   

10.
为了进一步挖掘无人机载激光雷达(Light Detection and Ranging,LiDAR)在农作物长势监测方面的潜力,探究机载LiDAR与多光谱遥感数据融合反演冬小麦叶面积指数(Leaf Area Index,LAI)的效果,以无人机载LiDAR和可见光-近红外多光谱为研究手段,获取试验区冬小麦孕穗期的无人机...  相似文献   

11.
物候信息是研究植被与气候、环境间关系的重要资料。近年来,遥感技术为物候研究提供了新的手段,物候遥感监测数据已经被广泛应用于植物物候监测、时空变化及其变化响应的研究。然而,有限的遥感物候产品已经限制了遥感物候监测的应用和发展。在总结已有遥感物候监测方法和遥感物候产品的基础上,该文提出一种更具普适性,相对稳定、可靠的遥感物候产品反演生产方法。以2007年中国区域为例,利用地面物候观测数据对结果验证,平均绝对误差为20.6~15.3d,均方根误差达4.0~33.5,二者的相关系数达0.404~0.887,生长周期数反演准确率达到90.12%,该文算法反演成功率达99.93%,较MODIS MLCD产品83.06%的成功率提高了16.87%。  相似文献   

12.
基于热点植被指数的冬小麦叶面积指数估算   总被引:1,自引:1,他引:1  
针对传统植被指数方法中利用单一方向的光谱特性估测LAI容易出现饱和现象和冠层结构信息不足的缺陷,以二向反射特性的归一化植被指数(NHVI)为基础,将表征叶片空间分布模式的热暗点指数(HDS)引入土壤调整型植被指数(SAVI),增强型植被指数(EVI)中,构建具有二向反射特性的土壤调整型热点植被指数(SAHVI)和增强型热点植被指数(EHVI)。同时使用红光,近红外,蓝光和绿光波段计算HDS,选择对LAI敏感性较高的HDS参与构建新型植被指数,并利用试验测量的小麦冠层二向反射率数据和叶面积指数,研究新型植被指数与LAI的线性关系。结果表明:基于蓝光和红光波段计算的HDS参与构建的EHVI、SAHVI与LAI的线性相关程度要优于EVI、SAVI,且较NHVI有进一步提高,能有效缓解LAI估算中植被指数饱和现象。  相似文献   

13.
易秋香 《农业工程学报》2019,35(16):189-197
棉花叶面积指数(leaf are index, LAI)的快速、准确获取对棉花长势监测、发育期诊断、面积提取以及产量估算等遥感监测具有重要意义。该研究利用2017年和2018年的Sentinel-2多光谱卫星数据及大面积田间试验观测获取的棉花不同发育期LAI实测数据,构建了基于单波段反射率及各类植被指数的棉花不同发育期及全发育期LAI估算模型,并采用留一验证(LOOCV, leave-one-out cross validation)和交叉验证对模型精度进行了检验。结果表明:1)对于单波段反射率,基于中心波长为842 nm波宽为145 nm的B8近红外波段对不同发育期LAI估算精度最优均方根误差(RMSE, root mean square error, RMSE=0.378);2)对于各类植被指数,花蕾期(20170616)和花铃期(20170802)时增强植被指数(EVI, enhanced vegetation index,)表现最佳(RMSE分别为0.352和0.367),开花期(20180623)时校正土壤调节植被指数(MSAVI2, modified soil adjusted vegetation index 2,)估算精度最高(RMSE=0.323);3)单波段反射率和各类植被指数对全发育期LAI的估算均要优于对单个发育期LAI的估算,其中基于IRECI指数的(inverted red-edge chlorophyll index)全发育期LAI估算模型精度最佳,LOOCV检验RMSE=0.425,交叉检验RMSE=0.368;将基于IRECI的全发育期LAI估算模型应用到单个发育期LAI估算并与各单个发育期LAI估算模型精度对比,发现交叉验证RMSE平均值仅比LOOCV验证RMSE平均值高0.07,反映了全发育期LAI估算模型良好的普适性。该研究为农作物LAI估算提供了新的数据选择,完善了Sentinel-2卫星数据在LAI估算中的应用领域。  相似文献   

14.
基于无人机数码影像的冬小麦叶面积指数探测研究   总被引:17,自引:1,他引:17  
叶面积指数(LAI)是评价作物长势的重要农学参数之一,利用遥感技术准确估测作物叶面积指数(LAI)对精准农业意义重大。目前,数码相机与无人机系统组成的高性价比遥感监测系统在农业研究中已取得一些成果,但利用无人机数码影像开展作物LAI估测研究还少有尝试。为论证利用无人机数码影像估测冬小麦LAI的可行性,本文以获取到的3个关键生育期(孕穗期、开花期和灌浆期)冬小麦无人机数码影像为数据源,利用数字图像转换原理构建出10种数字图像特征参数,并系统地分析了3个生育期内两个冬小麦品种在4种氮水平下的LAI与数字图像特征参数之间的关联性。结果表明,在LAI随生育期发生变化的同时,10种数字图像特征参数中R/(R+G+B)和本文提出的基于无人机数码影像红、绿、蓝通道DN值以及可见光大气阻抗植被指数(VARI)计算原理构建的数字图像特征参数UAV-based VARIRGB也有规律性变化,说明冬小麦的施氮差异不仅对LAI有影响,也对某些数字图像特征参数有一定影响;在不同条件(品种、氮营养水平以及生育期)下的数字图像特征参数与LAI的相关性分析中,R/(R+G+B)和UAV-based VARIRGB与LAI显著相关。进而,研究评价了R/(R+G+B)和UAV-based VARIRGB构建的LAI估测模型,最终确定UAV-based VARIRGB为估测冬小麦LAI的最佳参数指标。结果表明UAV-based VARIRGB指数模型估测的LAI与实测LAI拟合性较好(R2=0.71,RMSE=0.8,P0.01)。本研究证明将无人机数码影像应用于冬小麦LAI探测是可行的,这也为高性价比无人机遥感系统的精准农业应用增添了新成果和经验。  相似文献   

15.
高光谱数据估测稻麦叶面积指数和叶绿素密度   总被引:8,自引:6,他引:8  
该研究利用高光谱遥感技术分析水稻和小麦两种作物不同生育期的冠层光谱及其叶面积指数和叶绿素密度的变化,比较高光谱植被指数与两种作物的叶面积指数和叶绿素密度之间的关系,最后确定估算两种作物的叶面积指数和叶绿素密度最佳植被指数。结果表明:水稻和小麦两作物的叶面积指数和叶绿素密度在整个生育期内的变化规律基本一致,即先升高后下降的趋势,但两作物叶绿素密度与叶面积指数最大值出现的时期不同;稻麦两作物在整个生育期内的光谱反射率曲线,在可见光区域(400~700 nm)变化无明显规律,在近红外区域(700~1 000 nm),生育前期反射率由低到高,到生育后期则由高到低,其中最大值分别出现在抽穗期和灌浆期左右;通过14种植被指数与两作物的叶面积指数和叶绿素密度相关性比较分析得知,二次修正土壤调节植被指数(MSAVI2)与水稻农学参数相关性最好,相关系数r>0.91,而小麦在800 nm处的光谱反射率(R800)与其农学参数相关性最好,相关系数r>0.92;并利用线性回归的方法,建立了估算两作物叶面积指数和叶绿素密度的模型,决定系数R2>0.85。这样为不同环境条件下(水作和旱作)农作物的动态监测和科学管理及决策提供了技术支持。  相似文献   

16.
无人机多光谱遥感反演不同深度土壤盐分   总被引:1,自引:4,他引:1  
快速、精准获取作物覆盖下的土壤盐分信息,可以提高区域土壤盐渍化治理的有效性。该研究在内蒙古河套灌区沙壕渠灌域内试验地获取无人机多光谱遥感图像数据,并同步采集不同深度的土壤盐分数据。通过遥感图像数据提取光谱反射率并计算传统光谱指数,在此基础上引入红边波段建立新的光谱指数,同时使用Elastic-net算法(ENET)对光谱变量进行筛选,并将筛选后的光谱变量分为原始光谱变量组和改进光谱变量组;运用BP神经网络(Back Propagation Neural Networks,BPNN)、支持向量机(Support Vector Machine,SVM)和极限学习机(Extreme Learning Machine,ELM)3种机器学习方法,构建作物覆盖下不同土壤深度的土壤盐分反演模型,并基于最佳反演模型绘制试验区不同深度土壤盐分反演图。结果表明,使用ENET变量选择方法可以有效筛选出最优光谱变量,且基于改进光谱变量组构建的反演模型精度均高于原始光谱变量组;ELM模型反演效果优于SVM模型和BPNN模型,其验证集的决定系数为0.783,均方根误差为0.141,一致性相关系数为0.875;研究区域内,作物覆盖下的土壤盐分最佳反演深度为10~20 cm;在不同土壤深度下,基于改进光谱变量组构建的最佳反演模型绘制的土壤盐分反演图可以较为真实地反映试验区内的盐渍化程度,这说明引入红边波段构建光谱指数可以用于土壤盐分的反演。该研究为无人机多光谱遥感监测农田土壤盐渍化以及农田盐渍化治理提供了一种新途径。  相似文献   

17.
为了实现田间条件下小麦抗冻性状相关的数量性状基因座(quantitative trait locus, QTL)分析,该研究针对4个试验地491份小麦核心种质资源的抗冻性状,基于无人机多光谱遥感提出了一种高通量表型方法。首先通过光谱植被指数对小麦抗冻性状进行评估,基于机器学习分类算法使用16个光谱植被指数特征构建了小麦冻害评价模型,并完成了光谱特征相关性分析及对评价模型的贡献率分析。对比随机森林(random forests,RF)、分布式梯度增强(extreme gradient boosting,XGBoost)、梯度提升决策树(gradient boosting decision tree,GBDT)及支持向量机(support vector machine,SVM)算法建立的小麦冻害等级评价模型,结果表明,使用XGBoost建立的评价模型准确率最高,达67.94%;16个光谱特征相关性及其对评价模型的贡献率分析表明,简化冠层叶绿素含量指数(simplified canopy chlorophyii content index, SCCCI)对小麦抗冻表型鉴定的贡献率最大。其次,使用SCCCI作为小麦抗冻表型,结合通过全基因组关联分析检测小麦抗冻相关QTL,检测到3个已被证明与抗冻性状相关的QTL,证明了基于无人机获取的光谱特征可以作为小麦抗冻表型定性定量分析指标,可提供小麦抗冻性状遗传解析必需的表型信息。小麦冻害的无人机遥感高通量表型方法的提出促进了小麦抗冻基因功能解锁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号