首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Snow/wind damage is one of the important natural disturbances in forest ecosystems, especially in a montane secondary forest. However, the effects of snow/wind damage remain unclear which affects the management of these forests. Therefore, we investigated the responses of species, individual tree traits and stand structure to snow/wind damage in a montane secondary forest. Results show that, amongst the canopy trees, Betula costata exhibited the most uprooting, bending and overall damage ratio (the number of damaged stems to the total number of stems in a plot); Quercus mongolica showed the highest breakage ratio and Fraxinus mandshurica and Juglans mandshurica the least overall damage ratios. Among the subcanopy trees, Carpinus cordata, Acer mono, Acer tegmentosum and Acer pseudo-sieboldianum showed the least uprooting and breakage, and the most bending damage. A. pseudo-sieboldianum demonstrated the lowest breakage and highest bending damage ratios. These findings indicate that different species have various sensitivities to snow/wind damage. Larger trees (taller, wider crowns) tend to break and become uprooted, while smaller trees are bent or remain undamaged, suggesting that tree characteristics significantly influence the types of damage from snow and wind. Stands of Q. mongolica and B. costata had the highest damage ratios, whereas A. pseudo-sieboldianum had the lowest snapping ratio. In summary, the severity and type of snow/wind damage are related to individual tree attributes and stand-level characteristics. Therefore, selection of suitable species (e.g., shorter, smaller with deep root systems, hard wood, bending resistance and compression resistance) and appropriate thinning are recommended for planting in the montane secondary forests.  相似文献   

2.
Previous studies have demonstrated a clear relationship between diameter at breast height (DBH) and tree transpiration (Q T) in multi-specific broadleaved forests. However, these studies were conducted with a limited range of tree sizes and species, and thus many multi-specific broadleaved forests fall outside these conditions. Therefore, this study examined the relationship between DBH and Q T in a warm-temperate multi-specific broadleaved forest (n = 12 species) with a wide range of tree sizes (5.0–70.0 cm DBH) using the Granier-type heat dissipation method. The results showed that, although sap flow density varied between individual trees and species, there was a significant relationship between log Q T and log DBH (r 2 = 0.66, P < 0.001) because of the strong dependence of sapwood area on DBH. This study confirmed the applicability of the relationship for the stand transpiration (E C) estimates even in a multi-specific broadleaved forest with a wide variation in DBH. Our results also revealed that selecting the sample trees in descending order of DBH effectively reduced potential errors in E C estimates for a specific sample size, as larger trees contribute more to E C. This information should be useful for future studies investigating the transpiration of multi-specific broadleaved forests, reducing errors during the scaling-up procedure.  相似文献   

3.

Key message

More accurate diameter at breast height (dbh)-growth models are needed for developing management tools for mixed-species forests in Mexico. Individual distance-dependent dbh growth models that quantify local neighborhood effects have been developed for four species groups in such forests. The performance of the models is improved by distinguishing between inter- and intraspecific group competitions.

Context

The management of mixed-species forests in the northwest of Durango, Mexico, is mainly based on the selection method. Understanding the interspecific and intraspecific competition is critical to developing management tools for such mixed-species forests.

Aims

An individual-based distance-dependent modeling approach was used to model the growth of dbh and to evaluate neighborhood effects for four species groups in Mexican mixed-species stands.

Methods

Twenty-two species were classified into four groups: Pinus (seven species), other conifers (three species), other broadleaves (four species), and Quercus (eight species). Four methods were used to select neighboring trees and 12 competition indices (CIs) were calculated. Comparisons of the neighboring trees selection methods and CIs and tests of assumptions about neighborhood effects were conducted.

Results

Intra-species-group competition significantly reduced diameter growth for all species groups, except for the Quercus group. The Pinus, other conifers, and Quercus groups had significant and negative neighborhood effects on the other broadleaves species group, and not vice versa. The Quercus group also had negative neighborhood effect on the Pinus and other conifers species groups, and not vice versa. The Pinus and other conifers species groups had negative neighborhood effects on each other. All fitted age-independent dbh growth models showed a good of fit to the data (adjusted coefficient of determination larger than 0.977).

Conclusion

The growth models can be used to predict dbh growth for species groups and competition in mixed-species stand from Durango, Mexico.
  相似文献   

4.
The deciduous linden tree (Tilia amurensis Rupr.) is protected at National Level II in China as a species of ecological and economic importance. The objective of this study was to assess and compare the ectomycorrhizal communities associated with T. amurensis in natural versus urban forests of central Heilongjiang Province. The percentage of T. amurensis colonisation by ectomycorrhiza was more than 60 % in urban forests, compared to 34–49 % in natural forests. Use of a combination of morphological and molecular methods documented 18 ECM (ectomycorrhizal) types among three sites; 12–13 ECM species were identified in the natural sites versus 9 species in the urban site. Four ECM species (Boletus sp., Tuber sp., Inocybe sp.2, Leccinum sp.1) were the dominant mycorrhizal symbionts, and Cenococcum geophilum and Russula sp. were found only in the natural forests.  相似文献   

5.
Elm (Ulmus, Ulmaceae) is one of the most popular and important trees in urban and landscape areas in Iran. A severe decline of elm trees has recently been observed in some areas of Kerman and Shiraz cities. However, the identity of the causal agents has not yet been investigated. The purpose of this study, carried out in the years 2012–2014, was to isolate and identify fungal trunk pathogens associated with decline symptoms observed in elm trees. Samples were collected from trunks and branches of trees showing various disease symptoms and internal wood lesions. Fungal isolations were made from discolored or decayed wood tissue. In Kerman some elm trees were attacked by the beetle Aeolesthes sarta; therefore, samples were also collected from larvae and adults of beetles associated with trees showing wood damage. Fungal isolates were identified by morphological, cultural and molecular characteristics. Thirteen fungal species, Phaeoacremonium (P.) minimum, P. parasiticum, P. sicilianum, P. alvesii, P. fraxinopennsylvanicum, Spencermartinsia viticola, Dothiorella (Do.) sarmentorum, Neoscytalidium hyalinum, Diatrype (Di.) whitmanensis, Cosmospora viridescens, Phoma (Pho.) herbarum, Phellinus (Phe.) tuberculosus and Inonotus levis were identified. Phaeoacremonium parasiticum was the only species isolated from both larvae and adult beetles. Pathogenicity trials were performed on detached shoots of elm under greenhouse conditions. Dothiorella sarmentorum was the most virulent species based on the length of wood necrosis. This study is the first report of P. sicilianum, C. viridescens and Phe. tuberculosus in Iran. In addition, most of the isolated species are reported for the first time on elm trees in the world.  相似文献   

6.
Elevational changes in patterns of diversity are important to understanding of the influence of global changes, yet few studies have addressed the distribution of microorganisms, e.g. soil micro-fungi. We studied the diversity of the forest soil micro-fungi in four vegetation belts along an elevation gradient on the north slope of Changbai Mountain in Changbai National Nature Reserve.The four belts were characterized as coniferous–deciduous mixed forest, coniferous forest, Erman's birch forest, and alpine tundra. We estimated the quantity and distribution of the fungal species in each belt and calculated three indices,viz. Shannon–Wiener diversity(H'), Pielou's evenness(J'),and Margalef's abundance(E), to depict fungal species diversity. A total of 932 strains were recorded and identified, representing 53 genera, and 108 species. Among these, Penicillium, Aspergillus, Trichoderma, Mucor, Rhizopus and Fusarium were the dominant genera. With increasing elevation, the quantity of fungi and values of H',E, and J' gradually declined.  相似文献   

7.
Average population growth in the African Sudanian belt is 3 % per year. This leads to a significant increase in cultivated areas at the expense of fallows and forests. For centuries, rural populations have been practicing agroforestry dominated by Vitellaria paradoxa parklands. We wanted to know whether agroforestry can improve local rainfall recycling as well as forest. We compared transpiration and its seasonal variations between Vitellaria paradoxa, the dominant species in fallows, and Isoberlinia doka, the dominant species in dry forests in the Sudanian belt. The fallow and dry forest we studied are located in northwestern Benin, where average annual rainfall is 1200 mm. Sap flow density (SFD) was measured by transient thermal dissipation, from which tree transpiration was deduced. Transpiration of five trees per species was estimated by taking into account the radial profile of SFD. The effect of the species and of the season on transpiration was tested with a generalized linear mixed model. Over the three-year study period, daily transpiration of the agroforestry trees, V. paradoxa (diameters 8–38 cm) ranged between 4.4 and 26.8 L day?1 while that of the forest trees, I. doka, (diameters 20–38 cm) ranged from 9.8 to 92.6 L day?1. Daily transpiration of V. paradoxa was significantly lower (15 %) in the dry season than in the rainy season, whereas daily transpiration by I. doka was significantly higher (13 %) in the dry season than in the rainy season. Our results indicate that the woody cover of agroforestry systems is less efficient in recycling local rainfall than forest cover, not only due to lower tree density but also to species composition.  相似文献   

8.
Bark beetles (Coleoptera: Curculionidae, Scolytinae) are commonly recognised as important agents of tree mortality in coniferous forests of the Western Carpathians. They, together with weevils, are consistently associated with ophiostomatoid fungi. Information regarding conifer beetle-associated fungi in the Western Carpathians remains incomplete and unreliable, particularly with respect to fir-infesting bark beetles. This study aims to clarify associations between fungi in the genera Graphilbum, Leptographium, Ophiostoma and Sporothrix (Ophiostomatales) and their beetle vectors in Norway spruce (Picea abies), European larch (Larix decidua) and silver fir (Abies alba). Samples associated with 20 bark beetle species and weevils were collected from nine stands in Poland and the Czech Republic. Fungi were isolated from adult beetles and galleries. Isolates were identified based on morphology, DNA sequence comparisons for four gene regions (ITS, LSU, ß-tubulin, TEF 1-α) and phylogenetic analyses. In total, 46 distinct taxa were identified, including 25 known and 21 currently unknown species. Several associations between fungi and subcortical insects were recorded for the first time. In addition, O. borealis and O. quercus were detected from A. alba for the first time. The composition of the fungal communities varied among the studied tree species and to a lesser degree among the beetle species. The spruce-infesting bark beetles were commonly associated with species of Leptographium s. l. and Ophiostoma s. str.; the larch-infesting bark beetles were often associated with Ophiostoma s. str. and Sporothrix, while the fir-infesting bark beetles were commonly associated with Ophiostoma s. str. and Graphilbum. The most commonly encountered fungal associates of the examined insects were (a) Grosmannia cucullata, G. piceiperda, Grosmannia sp. 1, Ophiostoma macroclavatum and O. piceae with the spruce-infesting bark beetles; (b) O. pseudocatenulatum and Sporothrix sp. 1 with the larch-infesting bark beetles; and (c) O. piceae, Ophiostoma sp. 2 and Graphilbum sp. 2 with the fir-infesting bark beetles. The differences in fungal associates among the bark beetle species occurring on P. abies, L. decidua and A. alba could be linked to the different habitats that these beetles occupy.  相似文献   

9.
The introduced tree species, Robinia pseudoacacia (black locust), has spread extensively in many countries. Because of its active regeneration and rapid initial growth, R. pseudoacacia has not been successfully eradicated despite many efforts. To manage this species, developing information on the growth of R. pseudoacacia as a biomass resource is desirable, and this will motivate logging and could contribute to the extermination or sustainable use of this species. In the present study, the stand volume and growth of R. pseudoacacia forests in riverbeds along the Chikumagawa River in Nagano Prefecture in Japan were examined by tree ring and stem analyses. Seven plots were established in R. pseudoacacia riparian forests of varying ages, and 611 measurements of diameter at breast height and 386 measurements of tree height were made. Stand volumes, which were estimated using equations of stem volume curve based on the results of stem analysis of 47 sample trees, were almost the same as or higher than those of native broadleaf forests in Japan. Stand volumes continued to increase for more than 20 years. Current annual increments of four plots (aged 13–22 years) indicated that it could take <5 years after regeneration for the annual increment of R. pseudoacacia forests to reach a maximum level. Growth of R. pseudoacacia was comparable to or faster than native broadleaved species in Japan, showing the possibility of short rotation harvesting.  相似文献   

10.

Key message

Quercus secondary forests show a gradual transition toward mixed forests, with sweet chestnut ( Castanea sativa ) becoming increasingly abundant in the western Spanish Central System. Additionally, in chestnut-dominated stands, it shows a certain resistance to competitive displacement by Quercus pyrenaica . Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.

Context

Sweet chestnut, Castanea sativa, is a component of European broadleaf forests and is one of the most managed trees. Due to a reduction in cultural inputs, chestnut-dominated stands tend to be invaded by other species, and it is unclear how chestnut is able to persist in natural mixed forests.

Aims

Our work aimed to identity the main factors that limit the establishment of C. sativa and to analyze the recruitment and mortality processes of C. sativa trees.

Methods

The age, growth ring patterns, regeneration density, and the spatial structure of trees and saplings in 11 plots in the Spanish Central System were analyzed.

Results

Chestnut seedling density increased with C. sativa basal area, but transition toward the sapling stage appeared limited owing to light availability. In Quercus pyrenaica secondary forests, sparse canopies did not constrain chestnut regeneration, and in old chestnut stands, C. sativa showed a certain resistance to competitive displacement. By contrast, mixed young coppices showed a high mortality, most likely due to competition with other vigorous resprouters.

Conclusion

Quercus secondary forests showed a gradual transition toward mixed forests with sweet chestnut becoming increasingly more abundant. In old stands, C. sativa is likely to persist under a gap-phase mode of regeneration. Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.
  相似文献   

11.

Key message

Geometric morphometric analyses (GMMs) of the leaf shape can distinguish two congeneric oak species Quercus dentata Thunberg and Quercus aliena Blume in sympatric areas.

Contexts

High genetic and morphological variation in different Quercus species hinder efforts to distinguish them. In China, Q. dentata and Q. aliena are generally sympatrically distributed in warm temperate forests, and share some leaf morphological characteristics.

Aims

The aim of this study was to use the morphometric methods to discriminate these sympatric Chinese oaks preliminarily identified from molecular markers.

Methods

Three hundred sixty-seven trees of seven sympatric Q. dentata and Q. aliena populations were genetically assigned to one of the two species or hybrids using Bayesian clustering analysis based on nSSR. This grouping served as a priori classification of the trees. Shapes of 1835 leaves from the 367 trees were analyzed in terms of 13 characters (landmarks) by GMMs. Correlations between environmental and leaf morphology parameters were studied using linear regression analyses.

Results

The two species were efficiently discriminated by the leaf morphology analyses (96.9 and 95.9% of sampled Q. aliena trees and Q. dentata trees were correctly identified), while putative hybrids between the two species were found to be morphologically intermediate. Moreover, we demonstrated that the leaf morphological variations of Q. aliena, Q. dentata, and their putative hybrids are correlated with environmental factors, possibly because the variation of leaf morphology is part of the response to different habitats and environmental disturbances.

Conclusion

GMMs were able to correctly classify individuals from the two species preliminary identified as Q. dentata or Q. aliena by nSSR. The high degree of classification accuracy provided by this approach may be exploited to discriminate other problematic species and highlight its utility in plant ecology and evolution studies.
  相似文献   

12.
Pinus tabulaeformis has been widely planted in order to conserve soil and water and improve the ecological environment in China. This study aimed to unravel how soil aggregates and soil carbon (C) stock stability of a P. tabulaeformis plantation change after 60 years of natural development and was performed in Vitex negundo var. heterophylla and Ziziphus jujuba var. spinosa shrub (shrub), a P. tabulaeformis forest (pine), and a coniferous broadleaf P. tabulaeformis mixed forest (pine-oak). Afforestation increased the stability of soil aggregates in the 0–10 cm soil layer but resulted in a decrease in the 10–20 cm soil layer. However, the presence of deciduous broadleaf species in the pine plantation improved the stability of soil aggregates. The total soil C stock was increased by afforestation, especially in the pine-oak forest, where it reached a significant level. The mineral soil C stock in the shrub stand was higher than that in pine and lower than that in pine-oak forests, but the C fractions had a different change. Afforestation increased the C fraction of macroaggregates in the 0–10 cm soil layer but decreased it in the 10–20 cm soil layer. This result suggested that afforestation could improve soil C stabilization in deeper soil. However, the pine-oak forest had a higher C fraction of macroaggregates than the pine forest in the 10–20 cm soil layer, indicating that soil C stabilization of the P. tabulaeformis plantation decreased when deciduous broadleaf species were present and thus formed the coniferous broadleaf mixed forest.  相似文献   

13.

? Key message

Natural regeneration of P. abies (L.) H. Karst. may reach high densities in lower mountain elevations. The highest densities were found in sites with moderate light availability, with low pH, and not near the riverbank. However, age-height classes differed in the predicted magnitude of response, but were consistent in response directions. Mosses and understory species typical of coniferous forests were positively correlated with regeneration density.

? Context

Norway spruce Picea abies (L.) H. Karst. in Central Europe is at risk under climate change scenarios, particularly in mountain regions. Little is known about the impact of environmental factors on the natural regeneration of P. abies in low-elevation mountain forests.

? Aims

We aimed to assess impacts of distance from the riverbank, soil pH, and light availability on natural P. abies regeneration. We hypothesized that (1) natural P. abies regeneration would depend on light availability and soil pH and (2) there are understory plant species which may indicate the microsites suitable for natural regeneration of P. abies.

? Methods

The study was conducted in the Sto?owe Mountains National Park (SW Poland, 600–800 m a.s.l.). We established 160 study plots (25 m2) for natural regeneration, light availability, soil pH, and understory vegetation assessment.

? Results

The highest densities of natural regeneration of P. abies were observed in sites with moderate light availability (0.1–0.2 of open sky) and low pH (3.5–4.5), and located relatively far from the riverbank. Cover of 22 understory plant species were correlated with natural P. abies regeneration densities, mostly positively.

? Conclusion

Different stages of natural regeneration of P. abies revealed different regeneration niches. Most understory plant species (bryophytes and herbs typical of coniferous forests) do not compete with natural regeneration of P. abies.
  相似文献   

14.
Studying species interactions in mixed forests allows us to assess their potential benefits and adapt current silvicultural tools developed in monospecific stands to multi-specific stands. We analyzed tree interactions in a Pinus halepensis Mill. and Pinus pinea L. mixed plantation using individual tree neighborhood models and competition indices that accounted for symmetric and asymmetric competition, to analyze whether the growth of each species was better explained by symmetric or asymmetric competition. We also split the competition indices into their intra- and interspecific forms, to test for competition effects on growth change based on competitor identity. Finally, we analyzed whether P. halepensis and P. pinea trees had different growth responses to competition. When calculating competition indices, we explored how spatial information and size of competitor trees contributed to the quantification of the process. Competition measurements were optimized to more precisely describe interactions. Results showed that the inclusion of competition indices generated important improvements in growth models. The main mode of competition was symmetric, which could be related to water restrictions typical of the Mediterranean climate. Considering competitor identity did not improve the growth models, while measurement without discriminating competitors by species generated more parsimonious models. P. halepensis and P. pinea trees had similar growth responses to competition, indicating that the two species cope with competition in similar ways. However, P. pinea showed lower average growth than P. halepensis in the period analyzed. Results suggest that preventing the onset of intense interspecific competition processes could help slow down the long-term replacement of P. pinea by P. halepensis and could have benefits for silvicultural management in systems with two species that share ecological niches but are capable of generating different goods and services.  相似文献   

15.
As a consequence of the recent introduction of the pine wood nematode Bursaphelenchus xylophilus in Portugal, nematodes of the genus Bursaphelenchus were looked for in various French pine forests, in trees attacked by Monochamus galloprovincialis, the vector insect of B. xylophilus, and in the insects themselves. Trap trees were felled in 12 localities distributed all over the country. Nematodes were extracted from transversal stem discs; insects emerging from the trap trees were studied. B. hellenicus, B. leoni, B. mucronatus and B. sexdentati were isolated, but not B. xylophilus. The presence of B. mucronatus and the absence of B. xylophilus were confirmed by molecular markers. B. mucronatus was isolated from several regions with an average prevalence of 19%. The infestation of M. galloprovincialis by B. mucronatus reached 26.7%. The wide distribution of B. mucronatus in France could have an effect on the extension of B. xylophilus in a case of an introduction.  相似文献   

16.
The taiga coniferous forests of the Siberian region are the main carbon sinks in the forest ecosystems. Quantitatively, the size of the carbon accumulation is determined by the photosynthetic productivity, which is strongly influenced by environmental factors. As a result, an assessment of the relationship between environmental factors and photosynthetic productivity makes it possible to calculate and even predict carbon sinks in coniferous forests at the regional level. However, at various stages of the vegetative period, the force of the connection between environmental conditions and the productivity of photosynthesis may change. In this research, correlations between the photosynthetic activity of Scots pine (Pinus sylvestris L.) with the environmental conditions were compared in spring and in autumn. In spring, close positive correlation of the maximum daily net photosynthesis was identified with only one environmental factor. For different years, correlations were for soil temperature (rs = 0.655, p = 0.00315) or available soil water supply (rs = 0.892, p = 0.0068). In autumn within different years, significant correlation was shown with two (temperature of air and soil; rs = 0.789 and 0.896, p = 0.00045 and 0.000006, respectively) and four factors: temperature of air (rs = 0.749, p = 0.00129) and soil (rs = 0.84, p = 0.00000), available soil water supply (rs = 0.846, p = 0.00013) and irradiance (rs = 0.826, p = 0.000001). Photosynthetic activity has a weaker connection with changes in environmental factors in the spring, as compared to autumn. This is explained by the multidirectional influence of environmental conditions on photosynthesis in this period and by the necessity of earlier photosynthesis onset, despite the unfavorable conditions. This data may be useful for predicting the flow of carbon in dependence on environmental factors in this region in spring and in autumn.  相似文献   

17.
Forest soil carbon(C) is an important component of the global C cycle. However, the mechanism by which tree species influence soil organic C(SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by ~(13) C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface(0–10 cm) and deep(40–60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil(from 10 to20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S.superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C_(60) and labile SOC was steeper than that between C_(60) and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools.  相似文献   

18.

Key message

The high flammability of some companion species in Quercus suber forests, estimated in laboratory tests, could potentially generate an increase in fire vulnerability and in fire risk.

Context

Recurrent wildfire is one of the main causes of forest degradation, especially in the Mediterranean region. Increased fire frequency and severity due to global change could reduce the natural resilience of cork oak to wildfire in the future. Hence, it is important to evaluate the flammability of companion species in cork oak forests in the particularly dry bioclimatic conditions of North Africa.

Aims

This study aimed to assess and compare flammability parameters at laboratory scale among ten companion frequent species in cork oak forests.

Methods

Fuel samples were collected in a cork oak (Quercus suber L) forest in the southern part of the mountains of Tlemcen (Western Algeria). A series of flammability tests were carried out using a Mass Loss Calorimeter device (FTT ®). A cluster analysis to classify flammability of the selected species was conducted using the K-means algorithm.

Results

The results revealed differences in the four flammability parameters (ignitability, sustainability, combustibility and consumability), in both fresh and dried fine fuel samples from Quercus suber, Pinus halepensis, Quercus ilex, Quercus faginea, Erica arborea, Arbutus unedo, Pistacia lentiscus, Calicotome spinosa, Juniperus oxycedrus and Tetraclinis articulata. Application of the K-means clustering algorithm showed that C. spinosa, T. articulata, J. oxycedrus and P. halepensis are highly flammable because of their high combustibility and sustainability.

Conclusion

The findings identify species that could potentially increase the vulnerability of cork oak forests to forest fires.
  相似文献   

19.
Fasiakhali Wildlife Sanctuary is a protected area composed of tropical remnant rainforest that harbor substantial number of large,old Garjan(Dipterocarpus spp.)trees.The present study assessed composition,structure and diversity of the species in this protected area.A total of 32 trees species were recorded with DBH ≥ 11 cm belonging to 24 genera and 19 families.The forest is low in plant diversity as represented by Shannon–Wiener diversity and Simpson Dominance indices.Dipterocarpus turbinatus was the most dominant species with maximum relative density,frequency,dominance,and importance value index.Syzygium firmum and Tectona grandis followed in terms of dominance.The structural composition indicated higher number of individuals in the medium growth classes(41 to 511 cm DBH and 16–20 m height ranges),whereas D.turbinatus was the only species that dominated most of the growth classes.Poor stem density in lower growth classes indicated meager recruitment of regeneration which may be due to lower annual precipitation,increased grazing and encroachments.This study will help to understand the patterns of tree species composition and diversity in the remnant dipterocarp forests of Bangladesh.It will also contribute to identifying threatened plants to undertake D.turbinatus based conservation and sustainable management of the Fasiakhali Wildlife Sanctuary.  相似文献   

20.
Understanding the variation of mating patterns in disturbed habitats provide insight into the evolutionary potential of plant species and how they persist over time. However, this phenomenon is poorly understood in tropical dryland tree species. In the present study, we investigated how Acacia senegal reproduces in two different environmental contexts in Kenya. Open-pollinated progeny arrays of 10 maternal trees from each environmental context were genotyped using 12 nuclear microsatellite markers. Overall, A. senegal displayed a predominantly allogamous mating pattern. However, higher multilocus outcrossing rate (tm) was found in Lake Bogoria (tm = 1.00) than in Kampi ya Moto population (tm = 0.949). Higher biparental inbreeding (t m  ? t s  = 0.116) and correlation of outcrossed paternity (rp = 0.329) was found in Kampi ya Moto than in Lake Bogoria population (t m  ? t s  = 0.074, rp = 0.055), showing the occurrence of mating among relatives. Coefficient of coancestry (Θ = 0.208) showed that full-sibs constitute about 21% of the offspring in Kampi ya Moto population compared to about 14% (Θ = 0.136) in Lake Bogoria population. The results demonstrate that low adult tree density of A. senegal may be promoting seed production through consanguineous mating and suggest that man-made disturbance can affect mating patterns of the species. Despite these mating differences, trees from both populations can contribute as seed source for conservational plans, and to support effective genetic conservation and artificial regeneration programs of A. senegal. We suggest collection of seeds from at least 42 and 63 trees in Lake Bogoria and Kampi ya Moto populations, respectively, to retain a progeny array with a total effective population size of 150.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号