首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the process of wood drying inevitable stresses are induced. This often leads to checking and undesired deformations that may greatly affect the quality of the dried product. The purpose of this study was to propose a new rheological model representation capable to predict the evolution of stresses and deformations in wood cantilever as applied to wood drying. The rheological model considers wood shrinkage, instantaneous stress–strain relationships, time induced creep, and mechano-sorptive creep. The constitutive law is based on an elasto–viscoplastic model that takes into account the moisture content gradient in wood, the effect of external load, and a threshold viscoplastic (permanent) strain which is dependent on stress level and time. The model was implemented into a numerical program that computes stresses and strains of wood cantilever under constant load for various moisture content conditions. The results indicate that linear and nonlinear creep behavior of wood cantilever under various load levels can be simulated using only one Kelvin element model in combination with a threshold-type viscoplastic element. The proposed rheological model was first developed for the identification of model parameters from cantilever creep tests, but it can be easily used to simulate drying stresses of a piece of wood subjected to no external load. It can therefore predict the stress reversal phenomenon, residual stresses and maximum stress through thickness during a typical drying process.  相似文献   

2.
Summary An especially designed open microwave applicator was analysed using wood as the material to be heated and dried. The idea was to develop an on line microwave construction consisting of several small open applicators, each fed by a small standard magnetron (for example 1.4 kW main power). The process was analysed by measuring the wood temperature during heating using an IR-camera and detecting the moisture distribution during drying by CT-scanning. Pine and birch wood samples were used in the experiments, mainly 40 mm in thickness. The experiments show that the power distribution differs between dry wood and moist wood. The analysis of the temperature fields captured by the IR-camera during the first minutes allows a rather accurate determination of the MW power. Consequently, the drying proceeds unevenly in the wood specimens, especially in the longitudinal direction. The dimensions of the applicator and its relation to the wood dimension are very important. However, the wood was not destroyed, the temperature and moisture gradients did not affect the wood in terms of checks or deformations. The drying rate in different positions of the specimen varied between 0.30 and 0.80 percentage moisture content/min. The uneven energy, meaning temperature and field distribution, is to be compensated in the future by a moving wood load and by alternating the position of each applicator in a larger scale microwave pilot plant. Received 25 February 1997  相似文献   

3.
A three-dimensional theory for the numerical simulation of deformations and stresses in wood during moisture variation is described. The constitutive model employed, assumes the total strain rate to be the sum of the elastic strain rate, the moisture-induced strain rate and the mechano-sorption strain rate. Wood is assumed to be an orthotropic material with large differences between the longitudinal, radial and tangential directions in the properties found. The influence of the growth rings, the spiral grain and the conical shape of the log on the orthotropic directions in the wood is taken account of in the model. A finite element formulation is used to describe the deformation process and the stress development during drying.The research presented in this paper is a part of the national research programme in Sweden concerning wood physics and drying. It was financially supported by the Research Foundation of Swedish Sawmills and the Swedish Council for Forestry and Agricultural Research.  相似文献   

4.
木材干燥过程含水率和温度变化的数学模型研究   总被引:1,自引:0,他引:1  
木材干燥过程存在着热质互换和能量的转移,这为从热力学的角度研究木材干燥过程提供了前提条件,因此提出利用热力学原理分析木材干燥过程含水率和温度变化规律的数学模型.首先建立描述含水率和温度变化的高阶非线性偏微分方程组,然后采用有限元分析原理将方程组离散化,再经过一系列数学运算得到方程的收敛解,具体方法为牛顿迭代法,最后通过对木材含水率和温度变化情况仿真结果的分析,验证该方法的可行性及数学模型的准确性.  相似文献   

5.
 Steam conditioning of softwood boards after kiln drying is of critical importance for relief of residual drying stresses and to improve distribution of final moisture content. The conditioning practice in New Zealand includes two steps: immediately after high temperature (HT) drying the load is cooled until the core wood temperature is 75 to 90°C, and then the stack is steam conditioned for a period of 1 to 4 hours depending on the lumber thickness and moisture content after drying. In this work, experimental and theoretical studies were performed to better understand the conditioning process and to investigate factors which influence its effectiveness. In the experiment, 50 mm thick Pinus radiata sapwood boards were first dried at 120/70°C for 11, 12, 13, 16 and 18 hours, respectively, to varying moisture contents, and then cooled and steam conditioned for 1 hour. To assess the effectiveness of conditioning, moisture pick-up, moisture gradient, and transverse residual drying stress (indicated by cup and strain) were measured. It was found that drying wood to a low moisture content (below 6%) increased the conditioning effectiveness. A separate matched stack was conditioned for 4 hours after 13 hours drying which showed better results than 1 hour conditioning. A mathematical model for wood drying was extended to include both the cooling and conditioning phases. The model was numerically solved to examine the wood temperature and moisture content changes during the whole process of drying, cooling and final steam conditioning. Increase in wood temperature, moisture pickup and moisture gradient during steam conditioning were predicted and validated by the experimental data. This information is currently being used at the New Zealand Forest Research Institute in simulation of stress development and relief for drying of Pinus radiata lumber. Received 6 July 1998  相似文献   

6.
Currently computed tomography (CT) scanning provides a non-destructive method to determine moisture content in wood in three dimensions. With the current methodology two measurements are needed, one with the scanned piece of wood’s moist state and one after drying. Then the difference of the images can be calculated. The drawback and challenge is that dimensional changes due to shrinkage of wood in the drying process have to be compensated for by image processing. In this study a dual-energy CT scanning method is tested based on the consecutive scanning of wood samples at different energy levels to differentiate water from wood, without the necessity to dry the sample and thus without the need for complex image correction. Not quantified but visible differentiations due to moisture content were obtained on small cubical pine samples of different densities by quick consecutives scans at 60 and 200?kV. The results suggest that given that the pixels in the CT images are representing absorption coefficients it should be possible to directly measure moisture content in wood non-destructively in small volume elements inside solid wood in three dimensions. Further applications of this technique in industrial CT scanning of wood are discussed.  相似文献   

7.
When solid wood dries from a green condition to a moisture content used for further processing, moisture-induced fracture and stresses can occur. The drying stresses arise because of internal deformation constraints that are strongly affected by the cross-sectional moisture gradient differential shrinkage and the inhomogeneity of the material. To obtain a better understanding of how stresses develop during climatic variations, the field histories of stresses (and strains) in cross sections in their entirety need to be studied. The present paper reports on experiments and numerical simulations concerned with analysing the development of strains and stresses during the drying of 15-mm-thick discs of Norway spruce timber log. The samples were dried at 23 °C and relative humidity of 64 % from a green condition to equilibrium moisture content. The moisture gradient in the longitudinal direction was minimised by use of thin discs simplifying the moisture history of the samples studied. The strain field history was measured throughout the drying process by use of a digital image correlation system. Numerical simulations of the samples agreed rather well with the experimental strain results obtained. The stress results also indicated where in the cross section and when fractures could be expected to occur during drying. More optimal drying schemes showed markedly reduced stress generation.  相似文献   

8.
木材干燥过程中声发射信号分析   总被引:2,自引:0,他引:2  
对木材在干燥过程中产生的声发射信号进行采集和特征分析,结果表明:木材干燥过程中主要采集到两种不同类型的声发射信号:一种信号来自木材内部自由水的蒸发,与木质部导管内水分空穴化过程的声发射信号一致;另一种信号与木材干燥过快时自身形变开裂相关.作为一种木材干燥质量的控制方法,测量和分析声发射信号,可为木材干燥温度和湿度的控制提供依据,实现防止木材干裂、提高木材干燥质量的目的.  相似文献   

9.
 Experimental investigation and computational analysis were performed to evaluate the influence of the ambient air parameters during the drying process on the temperature, moisture and resulting deformations and stresses in wood samples. The numerical procedure uses the Finite Volume Method to discretise the equations governing heat, mass and momentum balance and takes into account the anisotropic nature of wood. The comparison of the numerical and experimental results shows very good agreements, implying that the proposed numerical algorithm can be used as a useful tool in designing wood drying schedules. Received 31 March 1999  相似文献   

10.
To elucidate the origin of the shrinking anisotropy of wood during the drying process, as well as to begin to gain an understanding of the interaction between the moisture and the cell wall components, the shrinking process of a single wood fiber regarding water desorption was simulated by using an analytical model which was developed in the previous report (Part 1). Resulting data were compared with the experimental ones in this paper. The following conclusions were obtained: (1) The matrix substance, as a skeleton in the secondary wall, tends to shrink isotropically. However, the cellulose microfibrils, as a rigid framework of the cell wall, almost did not shrink at all due to the water desorption. As result, wood shrinks anisotropically during a drying process. The microfibril angle in the S2 layer is one of the most important factors related to the degree of shrinking anisotropy of the wood while drying. (2) According to the simulation, the expansive strain caused in the matrix skeleton by the water sorption increases by 15% (= 150,000 micro-strains) from the oven-dried condition to the green condition. Based on this value, the moisture content at the fiber saturation point is calculated to be about 35%, which is close to the experimentally obtained one. These results give quantitative evidences that the hygroexpansion of the wood cell wall is controlled by the mechanism of the reinforced matrix hypothesis. Received: 28 July 1998  相似文献   

11.
In order to explore the feasibility of using X-ray to measure moisture content in the drying process and have a further study on the effect of precision of moisture content when scanning through different grain directions,X-ray scanning method and weighting method were used to measure average moisture content of Cunninghamia lanceolata during hot air drying.The results show that the moisture content values of two methods were very close to one another,the determination coefficients of both were highly correlated with a value over 0.99,and the absolute deviation was below 2%;when scanning along radial direction and longitudinal direction,the precisions of average moisture content were higher than that of the tangential direction,but the deviation can be negligible in the actual measurement;in the practical application,the effect of grain direction on precision of moisture content measurement could not be taken into account when using X-ray to measure the moisture distribution of wood.  相似文献   

12.
This study focuses on the transfer of bound water and liquid water in wood. The moisture changes and distribution of six wood species (three softwoods and three hardwoods) were investigated in the longitudinal direction exposed to long-term moisture sorption in static environmental conditions. Most species used for the experiment reached an estimated maximum moisture content, which indicated that there might be no significant hysteresis in the capillary pressure curve due to air entrapment. The experimental data for the different samples were found to vary considerably. Using initial values obtained by the Boltzmann transformation, the Levenberg-Marquardt method was used to determine the moisture diffusivity from measured moisture content changes with time and moisture profiles. The validity was ascertained by comparing the numerical results with the corresponding experimental measurements. There was a point of discontinuity and an abrupt change in the slope of the diffusivity function around the fiber saturation point, which might slow the numerical solution process.  相似文献   

13.
Summary The transport of heat and moisture during the convective drying of southern pine was examined experimentally. Moisture distribution within the wood samples was measured using gamma attenuation. The accuracy of these measurements was found to be moisture content dependent with estimated uncertainties ranging from 29.5% at 10% moisture content to 6.8% at 120% moisture content. Local moisture content measurements reveal large inflections at high moisture contents. Peaks in moisture content are closely correlated with low fwood density and vice versa. Above the fiber saturation point the measured drying rate is not a well defined function of the moisture content. This is perhaps due to the biological variability of wood as well as grain orientation, although no definite conclusions could be drawn from the data with regard to the effect of grain orientation. The drying rate does not appear to be highly temperature dependent at high moisture contents. Below the fiber saturation point where diffusion is expected to be the dominant transport mechanism, the drying rate is less affected by biological variability and grain orientation, however, the effects of temperature are evident.The authors wish to acknowledge the support of this work by the National Science Foundation under Grant Number CME-7906367. We must also express our appreciation to staff members at Weyerhaeuser Technology Center who supplied us with wood samples. In addition to the authors, Mr. T. R. Brown, S. H. Moen, and D. Chow played a critical role in gathering much of the data  相似文献   

14.
鉴于百度试验法时木材干燥特性研究的不全面性,首先利用百度试验法开展了滇产黄毛青冈材干燥特性的初步研究,提出了预报干燥基础,再据此以地板坯料为干燥对象开展干燥工艺的试验研究,以全面归纳分析黄毛青网材的干燥特性。百度法研究表明:黄毛青冈材的初期开裂为4级,内裂为5级,截面变形1—3级,干燥速度为1-2级。地板料干燥工艺研究表明:采用研究提出的预报基准,23mm厚黄毛青冈地板坯料从初含水率52.3%干燥到12.9%,干燥周期为492h,但干燥质量达不到国家标准中对地板料干燥质量的要求,严重变形和过高的含水率偏差是此中主要原因。综合评定后认为,黄毛青冈属难干材,文中还就其干燥工艺的优化提出了建议。  相似文献   

15.
将人工神经网络应用于木材干燥控制研究中,建立可用于木材含水率预测的时延神经网络基准模型,并给出其网络辨识结构。通过3个树种的实际干燥数据对所建立的网络模型进行训练和验证,仿真结果表明预测模型是可行而有效的,具有较好的动态跟踪能力和预报特性,实现了木材干燥基准的数学模型化,对进一步优化木材干燥基准实施与控制具有重要的指导意义和应用价值。  相似文献   

16.
木材干燥过程中,介质循环速度是一个影响木材干燥的重要工艺参数.在木材各含水率阶段,通过试验分析研究不同介质循环速度对木材干燥速度的影响.结果表明,介质循环速度对干燥速度的影响显著,但其影响随木材含水率(MC)的降低而减弱.在低介质循环速度条件下,试件MC大于45%时,表现为木材干燥速度和木材含水率偏差(△MC)随循环风速的增加而增加,呈显著正相关关系;试件MC介于35% ~ 45%之间时,正相关关系存在但不显著;试件MC小于35%时,干燥室内循环风速的大小不影响木材的干燥速度和木材含水率偏差(△MC).对试件表层含水率分析,试件表层含水率大于25%时,试件表面循环风速对试件表层含水率的影响显著;试件表层含水率小于25%时,试件表面循环风速对试件表层含水率的影响很小,不同循环风速下试件表层含水率基本一样.  相似文献   

17.
All applications of wood involve drying the material from the green state. The cell wall may be viewed as a laminate consisting of different layers. The layers have different orientations and therefore different moisture expansion characteristics. As a result, stresses will develop in the layers due to drying. Micromechanical models for fibre composite materials were used in combination with a laminate analogy in order to calculate these drying stresses in the cell wall layers S1, S2 and S3. Resulting stresses were very high. In reality viscoelastic effects will significantly reduce stresses at high moisture content. However, at lower moisture content irreversible cell wall damage is likely to form as a result of the stresses computed by the model. Received 20 October 1998  相似文献   

18.
Abstract

Siberian larch (Larix sibirica Ledeb.) timber is suitable for many uses in the mechanical wood industry. Drying it without any decrease in value, however, is difficult and slow. The purpose of this research was to compare the drying quality of Siberian larch timber dried with three different conventional schedules taking into account the density and annual growth of wood. Five drying tests were performed. The final moisture content (MC), MC gradient, cracks, deformations (bow, crook, twist and cup) and case hardening were measured from the dried timber. The basic density particularly affected the MC, as shown in the differences regarding dried wood, with the denser wood having higher final MC and MC gradient. It was also found that large annual growth increased some deformations. Most of the measured factors were best after drying at the highest temperatures used; however, a slightly different trend was observed for bow, twist and cup. MC factors and twisting were the most problematic properties in drying according to this study. Sorting Siberian larch timber, particularly according to density, would improve the MC properties of dried timber by ensuring sufficient drying time, as economically as possible, for each timber piece.  相似文献   

19.
Wood exhibits a pronounced time dependent deformation behavior which is usually split into ‘viscoelastic’ creep at constant moisture content (MC) and ‘mechano-sorptive’ creep in varying MC conditions. Experimental determination of model rheological parameters on a material level remains a serious challenge, and diversity of experimental methods makes published results difficult to compare. In this study, a cantilever experimental setup is proposed for creep tests because of its close analogy with the mechanical behavior of wood during drying. Creep measurements were conducted at different load levels (LL) under controlled temperature and humidity conditions. Radial specimens of white spruce wood [Picea glauca (Moench.) Voss.] with dimensions of 110 mm in length (R), 25 mm in width (T), and 7 mm in thickness (L) were used. The influence of LL and MC on creep behavior of wood was exhibited. In constant MC conditions, no significant difference was observed between creep of tensile and compressive faces of wood cantilever. For load not greater than 50% of the ultimate load, the material exhibited a linear viscoelastic creep behavior at the three equilibrium moisture contents considered in the study. The mechano-sorptive creep after the first sorption phase was several times greater than creep at constant moisture conditions. Experimental data were fitted with numerical simulation of the global rheological model developed by authors for rheological parameter identification.  相似文献   

20.
Determination of diffusion coefficients for sub-alpine fir   总被引:5,自引:0,他引:5  
Estimates of the drying rate for sub-alpine fir lumber and the effect of process variables on final moisture contents are valuable information for kiln operators. The diffusion approach offers one generalized way to estimate the drying time required and the final moisture content distribution. The diffusion coefficients of normal wood and wet wood of sub-alpine fir lumber were determined by two types of approaches in this study: the traditional method and the inverse moisture diffusion algorithm. The results from both approaches indicate that the diffusion coefficient of normal wood is greater than that of wet wood for sub-alpine fir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号