首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
研究模拟氮沉降下凋落物分解特征对其持水性的影响,旨在为氮沉降背景下森林生态系统养分循环和水分循环相关研究提供理论依据。以滇中高原常绿阔叶林和高山栎林为研究对象,在野外开展模拟氮沉降下凋落叶、枝原位分解研究试验,设置0(对照CK),10(低氮LN),20(中氮MN),25(高氮HN) g/(m2·a)N共4种处理,利用尼龙网袋法和室内浸泡法,探究不同处理下凋落叶、枝质量残留率、持水量和持水率及吸水速率变化特征。结果表明:(1) 2种林分凋落叶、枝质量残留率随分解时间延长而减少;与CK质量残留率相比,LN处理2种林分凋落叶、枝无显著影响(p>0.05),MN和HN处理使常绿阔叶林凋落叶分解第16,19,23,24个月和HN处理高山栎林凋落叶分解第16个月分别增加5.05%~7.45%,7.88%~8.62%,4.72%。(2)与CK分解95%所需时间相比,LN处理使常绿阔叶林凋落叶、枝和高山栎林凋落枝分别增加0.549,0.366,0.402年,高山栎林凋落叶则减少1.011年,MN和HN处理使2种林分落叶、枝增加0.236~3.638年。(3)分解时间和氮沉降...  相似文献   

2.
[目的]开展凋落叶分解速率研究,探讨凋落叶分解速率与初始质量的关系,为甘肃省兴隆山森林生态系统物质循环研究提供依据。[方法]采用凋落物分解袋法,以兴隆山青杄、山杨和白桦3种主要树种的凋落叶为研究对象,进行凋落叶分解速率及凋落叶初始质量的研究,明确凋落叶分解速率与初始质量的关系。[结果]青杄中龄林针叶分解速率为0.16,95%分解期为19.08a;青杄近熟林针叶分解速率为0.13,95%分解期为23.70a;山杨和白桦凋落叶分解速率均为0.11,95%分解期分别为28.57a和27.27a;山杨和白桦凋落叶分解速率明显要小于青杄针叶,这很可能是凋落叶分解主场效应和分解袋孔径较小所致。凋落叶分解速率与氮含量呈显著线性正相关,与木质素含量、碳/氮值、木质素/氮值和钾含量呈显著线性负相关,特别是与木质素含量、氮含量和木质素/氮值,相关系数均达0.700 0以上;钾含量、木质素含量、木质素/氮、碳/磷和纤维素含量是影响兴隆山森林凋落叶分解速率的重要指标。[结论]木质素/氮值是影响凋落叶分解速率的关键质量指标,凋落叶初始木质素/氮值越高,分解速率越低。  相似文献   

3.
为揭示森林生态系统养分循环和水分循环对氮沉降的响应机制,以滇中高原华山松(Pinus armandii)和云南松(Pinus yunnanensis)为研究对象,开展野外氮添加下凋落叶、枝原位分解研究试验,设置对照、低氮、中氮和高氮共4个处理,利用尼龙网袋法和室内浸泡法,探究凋落叶、枝养分元素残留率、持水量和持水率及吸水速率对氮添加的响应。结果表明:(1)随着分解时间的持续,2种林分凋落叶、枝碳(C)、氮(N)、磷(P)分别呈释放、富集—释放、富集过程,凋落叶C、N、P残留率显著小于凋落枝(p<0.05);(2)凋落叶最大持水量和最大吸水速率显著大于凋落枝(p<0.05),分解24个月时,与CK相比,LN处理下2种林分凋落叶、枝C,华山松凋落叶N残留率降低1.98%~7.27%,10.79%,HN处理下2种林分凋落叶、枝C,华山松凋落叶、枝和云南松凋落枝N,华山松凋落枝P残留率则增加4.26%~9.08%,11.94%~44.51%,42.42%;(3)分解24个月时,与CK相比,LN、MN和HN处理华山松凋落叶、枝和云南松凋落叶最大持水量和最大吸水速率分别降低11.44%~25.24%,5.81%~32.23%,云南松凋落枝则增加15.48%~24.26%,17.97%~23.74%。 (4)2种林分凋落叶、枝持水量随浸泡时间延长而增加,而吸水速率则为降低,持水量与浸泡时间的关系均呈对数函数关系(m=a+bln t),吸水速率与浸泡时间的关系呈幂函数关系(v=at-b)。(5)C与云南松凋落枝持水性呈正相关关系(p<0.05),N与华山松凋落枝、P与华山松和云南松凋落叶持水性呈负相关关系(p<0.05)。综上,氮添加通过改变凋落物分解过程中C、N、P养分元素残留特征进而影响其持水性。  相似文献   

4.
对岷江上游连香树、糙皮桦、云南松和云杉4种主要人工林凋落叶进行了凋落叶混合分解试验,探讨了凋落叶混合分解过程中的残留率以及分解过程中C,N含量和C,N释放率的动态变化,为试验区最佳混交树种的选择提供理论指导.结果表明,不同凋落叶分解速率存在显著差异.糙皮桦与云杉,糙皮桦与云南松,连香树与云南松凋落叶混合后对分解过程具有明显的促进作用,连香树与云杉凋落叶的混合对分解的促进作用不明显.放置于阔叶林地的针阔混合凋落叶分解速率较之放置于针叶林地快,且针阔混交有益于凋落叶的分解.在分解过程中凋落叶C含量呈减小趋势,但其释放率反之;N含量在分解过程中,连香树、云杉、云南松凋落叶表现为增加(富集)减小(释放)趋势,糙皮桦表现为减小—增大—减小的变化趋势.针阔林地凋落叶混合后促进了针叶林地凋落叶C和N的释放.  相似文献   

5.
[目的]研究不同生境条件下(林内、林外、林缘)藏东南急尖长苞冷杉林(Abies georgei var.smithii)凋落物分解特征与土壤养分特征之间的关系,为深入了解高寒高山森林生态系统物质循环过程提供依据。[方法]采用野外分解袋法和室内分析相结合,在林内、林外、林缘3种不同生境条件下对藏东南急尖长苞冷杉林凋落物进行了原位分解试验。[结果]分解速率总体上呈现出:林内林缘林外的特点,逐月分解率的变异系数表现为:林内(34.83%)林缘(57.35%)林外(72.09%);Olson指数衰减模型的模拟结果显示不同生境条件下(林内、林缘、林外)凋落物分解50%需要的时间为2.11,2.52,2.34 a,分解95%需要的时间为8.96,10.01,10.84 a;3种不同生境土壤养分在空间上差异显著,林内生境中与凋落物分解速率呈现极显著相关的土壤养分因子有土壤总有机碳(TOC)含量、N含量、土壤微生物量碳(SMBC)含量、土壤微生物量氮(SMBN)含量以及W_C∶W_N值;林外、林缘生境中与凋落物分解速率相关性最大的为土壤TOC含量,其次为W_C∶W_N值。[结论]生境条件的差异对凋落物分解速率有显著影响,在不同的生境条件下对凋落物分解影响起主导作用的土壤养分因素不同,凋落物—土壤生物地化循环紧密联系,相互作用关系复杂,生境作用效应突出。  相似文献   

6.
以亚热带常绿阔叶林建群种米槠(Castanopsis carlesii)凋落叶为研究对象,对照地表环境,研究了溪流和间歇性溪流凋落叶分解过程中水溶性有机碳、氮、磷含量变化及其累积损失特征。结果表明:(1)3种生境中凋落叶水溶性有机碳的含量在分解过程中均表现出逐渐降低的趋势,但在溪流中降低程度最大,损失率达92.18%;水溶性氮含量在溪流和间歇性溪流释放时间提前,其变化程度相对较小;相比于地表和间歇性溪流,溪流中的凋落叶水溶性磷含量在分解过程中持续降低,损失率达86.75%。(2)相对于地表,溪流和间歇性溪流显著促进了凋落叶中的水溶性有机碳、氮、磷的释放速率,表明源头溪流持续流动的水体促进凋落叶水溶性组分的释放。(3)尽管3种生境中凋落叶水溶性有机碳、氮、磷元素的损失率共同受到温度、降水、环境中营养元素含量的影响,但源头溪流持续流动的水流和间歇性溪流频繁的干湿交替促进凋落叶水溶性组分的释放。研究结果为揭示亚热带山地森林凋落叶分解过程中水溶性碳氮磷在不同生境中的释放动态提供基础数据。  相似文献   

7.
[目的] 揭示亚热带不同喀斯特林分凋落物组成对其持水性能的影响,为丰富森林生态水文研究和加深凋落物层与水文功能关系的认识提供科学依据。 [方法] 收集亚热带喀斯特区的青冈林、青冈+光蜡树林、化香树+密花树林3种代表性林分的凋落物层,将其分为半分解、未分解枝、未分解叶和其他未分解凋落物4种成分,选择每种林分前3种主要成分分别按0%,20%,40%,60%,80%和100%比例混合成21组质量相同、组成比例不同的处理(3种林分共63组处理)。采用浸水法研究其持水性能。 [结果] ①3种林分类型不同组成凋落物的持水率和吸水速率分别与浸水时间呈对数函数关系(R2≥0.718)和幂函数关系(R2≥0.998);在各浸水时段的持水率和吸水速率以化香树+密花树林纯未分解叶凋落物最大,青冈+光蜡树林纯未分解枝凋落物最小; ②凋落物的持水率和吸水速率均与未分解叶比例呈极显著正相关关系(p<0.01),与未分解枝的比例呈极显著负相关关系(p<0.01),与半分解凋落物的比例无明显关系; ③3种林分类型凋落物层的总蓄积量及其最大持水量无显著差异,但青冈林凋落物层的最大吸水速率显著高于化香树+密花树林。 [结论] 凋落物组成显著影响其持水性能。在凋落物生态水文效应研究中应综合考虑凋落物蓄积量及其组成的影响。  相似文献   

8.
采用凋落物分解网袋法对草海湿地流域森林优势植物青冈(Cyclobalanopsis glauca)、白栎(Quercus fabri)、桤木(Alnus cremastogyne)、滇杨(Populus yunnanensis)、云南松(Pinus yunnanensis)和杉木(Cunninghamia lanceolata)凋落物叶分解残留率、分解率、分解模型及凋落物叶分解过程中的水文特征进行研究。结果表明:(1)分解12个月后,凋落物叶累积分解率分别为青冈(24.0±1.4)%,白栎(24.1±2.0)%,桤木(26.6±2.6)%,滇杨(26.0±0.7)%,云南松(13.8±2.6)%,杉木(13.8±0.9)%,凋落物叶累积分解率差异极显著(F=10.28,P0.01)。(2)凋落物叶分解方程符合Olson指数衰减模型Lr=ae-kt。阔叶植物凋落物叶分解常数在0.019~0.024之间,而针叶植物凋落物叶分解常数在0.011~0.012之间。凋落物叶的分解率受叶形态影响较大,阔叶凋落物分解率明显高于针叶。阔叶植物凋落物叶分解半衰期和分解95%所需时间在2.27~3.06年和10.46~13.16年,针叶植物叶凋落物半衰期和分解95%所需时间在4.61~5.20年和20.60~20.64年。(3)凋落物叶持水率(Rl)与分解残留率(Lr)呈显著线性相关关系Rl=aLr+b(P0.05)。(4)土壤含水率(Rs)与凋落物叶持水率(Rl)呈显著反函数相关关系Rs=a/Rl+b(P0.05)。  相似文献   

9.
龙门山断裂带主要森林类型凋落物累积量及其持水特性   总被引:1,自引:1,他引:1  
采用野外实地调查与室内控制浸提相结合的方法,对龙门山断裂带常绿阔叶林、落叶阔叶林、针阔混交林、常绿针叶林4种森林类型的凋落物储量、持水量、吸水速率进行了研究。结果发现,不同森林类型凋落物总储量大小顺序为:常绿针叶林(8.26t/hm2)落叶阔叶林(6.80t/hm2)针阔混交林(5.52t/hm2)常绿阔叶林(4.61t/hm2),且未分解层累积量所占比例均小于半分解层。不同森林类型不同分解程度凋落物的持水量和持水率与浸泡时间均呈对数关系,其吸水速率与浸泡时间呈幂函数关系。研究区4种森林类型半分解层凋落物的持水能力均强于分解层,而落叶阔叶林和针阔混交林持水能力较强,其次是常绿针叶林,常绿阔叶林最低。研究表明,在该区森林植被恢复和重建过程中,应充分考虑半分解层凋落物对水土保持的作用,且宜优选落叶阔叶林和针阔混交林模式进行森林植被恢复。  相似文献   

10.
森林凋落物分解研究进展   总被引:15,自引:0,他引:15  
 森林凋落物分解是森林生态系统养分生物循环的重要环节,而分解过程中所释放的CO2是全球碳素收支的重要组分,开展森林凋落物分解研究是充分认识森林生态系统结构和功能的基础。研究认为:凋落物分解的预测指标可分为3类,即环境指标(如实际蒸散量)、凋落物物理质量(如叶抗张强度)和化学质量指标(如C/N比、木质素/N比和C/P比等);凋落物分解过程中养分释放机制极其复杂,养分动态模式主要有淋溶—释放、淋溶—富集—释放和富集—释放3种,并因凋落物种类、分解阶段和元素本身性质的不同而异;凋落物混合分解并非单一树种分解的简单叠加,因树种组成和比例不同,基质的化学组成会发生变化,从而影响分解者的多样性、丰富度和生理活性,进而直接和间接地影响其分解速率;凋落物混合分解中可能存在无效应、促进效应和抑制效应;现有的研究结果显示,凋落物混合分解的适宜比例应与群落中不同树种的种群比例相一致;CO2浓度升高不仅影响凋落物的化学性质,而且与分解环境中土壤的生物活性密切相关,但CO2浓度升高并不改变凋落物质量与分解速率之间的关系;越来越多的研究显示,CO2浓度升高的环境下,植物群落的物种组成会产生变化,这种变化对养分循环速率的影响远大于单纯大气CO2浓度变化的影响。  相似文献   

11.
杉木取代阔叶林后林下水源涵养功能差异评价   总被引:1,自引:5,他引:1  
为研究杉木人工林取代常绿落叶阔叶混交林后土壤水源涵养能力的变化,采用室内浸水法和环刀法分别研究杉木纯林和常绿落叶阔叶混交林的枯落物与土壤的持水特性。结果表明:(1)枯落物平均蓄积量表现为常绿落叶阔叶混交林(3.42 t/hm^2)>杉木纯林(3.12 t/hm^2),枯落物平均厚度表现为杉木纯林(9.17 cm)>常绿落叶阔叶混交林(5.42 cm)。(2)最大持水量表现为常绿落叶阔叶混交林(6.23 t/hm^2)>杉木纯林(5.57 t/hm^2),最大持水率也表现出相同的规律,即常绿落叶阔叶混交林(184.40%)>杉木纯林(179.50%);有效拦蓄量表现为常绿落叶阔叶混交林(4.48 t/hm^2)>杉木纯林(4.13 t/hm^2),最大拦蓄量表现为常绿落叶阔叶混交林(5.41 t/hm^2)>杉木纯林(4.97 t/hm^2)。(3)枯落物层的吸水量与浸水时间符合对数函数Q=aln(t)+b,而吸水速率与浸水时间符合指数函数V=at^b,常绿落叶阔叶混交林的蓄水能力强于杉木纯林。(4)土壤水分最大吸持贮水量表现为常绿落叶阔叶混交林(43.58 mm)>杉木纯林(41.88 mm),可以看出常绿落叶阔叶混交林内的土壤可以更好地为植被提供良好的水分供其生长;土壤水分最大滞留贮存量表现为常绿落叶阔叶混交林(8.20 mm)<杉木纯林(10.22 mm),即杉木纯林内的土壤具有更好的涵养水源能力。从枯落物最大持水量、有效拦蓄量以及土壤毛管孔隙度、非毛管孔隙度等多个因素的计算综合推断可知,杉木人工林水源涵养能力优于常绿落叶阔叶混交林。  相似文献   

12.
两种森林凋落物分解及其土壤效应的研究   总被引:1,自引:0,他引:1  
本文对田林老山杉木林和常绿落叶阔叶混交林凋落物的分解状况、微生物数量及凋落物分解的土壤效应进行了初步研究。结果表明:经287d 杉木林和常绿落叶阔叶混交林凋落物的失重率地表样分别为23.8%和24.9%,埋置样分别为35.8%和37.2%;C:N 缩小地表样分别为41.0和32.4,埋置样分别为22.4和20.0。凋落物腐解过程中微生物数量明显上升,但冬季显著下降。凋落物腐解刺激相应土层土壤微生物增长,有机质含量和腐殖质 C,N 含量亦有提高。  相似文献   

13.
浙江省天台县不同森林类型枯落物及土壤水文特性   总被引:1,自引:0,他引:1  
[目的]掌握浙江省天台县不同森林枯落物和土壤的持水能力,为该区域今后在森林水源涵养等方面提供科学依据。[方法]采用野外调查和室内浸泡法,对天台县8种森林类型(毛竹林、阔叶混交林、针阔混交林、针叶混交林、马尾松林、杉木林、黑松林、木荷林)枯落物及林下土壤持水性进行了研究。[结果] 8种森林类型的枯落物蓄积量在8.05~23.84 t/hm~2之间;最大持水量变化范围为14.59~35.15 t/hm~2,其大小排序为:木荷林针阔混交林阔叶混交林马尾松林杉木林黑松林毛竹林针叶混交林;8种森林类型林下枯落物持水量与浸泡时间之间变化规律基本一致,持水量与浸泡时间呈对数函数关系,不同森林类型林下枯落物吸水速率与浸泡时间呈幂函数关系;各森林类型土壤容重介于0.83~1.21 g/cm~3,土壤持水力变化范围为200.74~575.70 t/hm~2,其大小依次为:黑松林针阔混交林木荷林杉木林毛竹林马尾松林阔叶混交林针叶混交林。[结论]阔叶林以及含有阔叶树种的森林类型枯落物以及林下土壤持水能力均较强,其中土壤持水能力最强的为黑松林。  相似文献   

14.
根据1984~1989年的定位观测,广西岑溪县七坪林场常绿阔叶林的凋落物量平均为8.062t/ha·a,N,P,K,Ca,Mg,S,Mn,Cu,Zn 9种营养元素的归还量平均为209.47kg/ha·a,分别比杉木林的高1.82倍和2.08倍。常绿阔叶林凋落物各组分的平均分解速率(g/g·a)为:叶1.0842,枝0.6502,果0.8871;而杉木林的分别为0.6084,0.3795和0.5255。表明常绿阔叶林在提高林地土壤肥力方面大于杉木林。  相似文献   

15.
[目的]探明亚热带不同森林类型的碳汇功能,为森林经营和针叶林改造中的树种选择提供指导。[方法]基于月动态监测,研究了罗卜岩自然保护区亚热带常绿阔叶林(米槠林)、常绿-落叶阔叶混交林(闽桦-闽楠林)和针叶林(马尾松林)3种森林类型的凋落物产量及碳氮归还动态变化。[结果](1) 3种林分中马尾松林的年总凋落量最高[9 815 kg/(hm2·a)],其次为闽桦-闽楠林[9 207 kg/(hm2·a)],米槠林最低[8 083 kg/(hm2·a)],叶是闽桦-闽楠林和马尾松林凋落物的主要组分,而米槠林凋落物以碎屑等其他组分为主;3种森林的总凋落量、叶、花果和其他组分凋落量月动态均呈双峰型曲线,峰值分别出现在11—12月和次年的4—5月。(2) 3种林分总凋落物碳归还量为马尾松林[4 970 kg/(hm2·a)]>闽桦-闽楠林[4 458 kg/(hm2·a)]>米槠林[3 804 kg/(hm2·a)],总凋落物氮归还量为闽桦-闽楠林[160 ...  相似文献   

16.
Leaf litter decomposition of Cunninghamia lanceolata, Michelia macclurei, and their mixture in the corresponding stands in subtropical China was studied using the litterbag method. The objective was to assess the influence of native evergreen broadleaved species on leaf litter decomposition. The hypotheses were: (1) M. macclurei leaf litter with lower C/N ratio and higher initial N concentration decomposed faster than C. lanceolata litter, (2) decomposition rates in litter mixtures could be predicted from single-species decay rates, and (3) litters decomposed more rapidly at the site that contained the same species as in the litterbag. The mass loss of leaf litter was positively correlated with initial N concentration and negatively correlated with C/N ratio. The decomposition rate of M. macclurei leaf litter was significantly higher than that of C. lanceolata needle litter in the pure C. lanceolata stand. Contrary to what would be predicted, the litter mixture decomposed more slowly than expected based on the results from component species decomposing alone. There was no significant difference in litter decomposition rate between different habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号