首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
    
《Soil Use and Management》2018,34(3):306-315
Quantifying temporal and spatial variation of soil phosphorus (P) input, output and balance across Chinese arable land is necessary for better P management strategies. Here, we address this challenge using a soil P budget to analyse the soil P balance in arable land across the whole of China, for the period 1980–2012. Results indicated that the total P input to soil increased from 22.5 kg P/ha in 1980 to 79.1 kg P/ha in 2012. However, the total P output from soil only increased from 17.9 kg P/ha in 1980 to 36.9 kg P/ha in 2012. Therefore, the average net soil P surplus in China increased from 4.6 kg P/ha in 1980 to 42.1 kg P/ha in 2012. Our research found great variation in soil P balances across different regions. Soil P balance varied between regions with the order of southeast (SE) > north central (NC) and the middle and lower reaches of Yangtze River (MLYR) > southwest (SW) > northwest (NW) > northeast (NE). Phosphorus that has accumulated in agricultural soil across China could theoretically meet crop P demands for approximately 4.8–12.0 yrs, depending on the bioavailability of P stored in soils. Increasing the return rates of manure and straw could substantially reduce the demand for fertilizer‐P. This paper represents a basis for more targeted, regionally informed P fertilizer recommendations in Chinese soils.  相似文献   

2.
Archived soil samples from the beginning and end of three long‐term field trials conducted in central France were analysed for total uranium (U) and thorium (Th) contents to evaluate the effect of 15–30 yr of phosphorus (P) fertilizer treatments on the accumulation of these elements in the topsoil. For comparison, the soil samples were also analysed for total P. Three treatments were compared: no P application (P0), 26 kg P/ha/yr (P26) and 52 kg P/ha/yr (P52). Significant effects of P fertilizer were observed on U content and, to a lesser extent, on Th content as a result of the P52 treatment at two of the field trials. This effect was demonstrated both in the analyses at the end of the field trials [P52–P0: +0.25 and +0.44 mg U/kg soil, +0.58 (not significant) and +1.03 mg Th/kg soil] and when considering the changes in U and Th contents between the beginning and the end of the field trials (end–start: +0.18 and +034 mg U/kg soil, +0.35 and +0.45 mg Th/kg soil). The P fertilizer effect was also supported by the correlations of U and Th with total levels of P in the soil. However, in one of the three trials, no significant accumulation of U or Th because of fertilizer could be seen, suggesting either that less U and Th were applied using a different P fertilizer and/or that soil heterogeneity masked significant effects.  相似文献   

3.
    
Under the conditions of a long‐term fertilizer experiment, this study aimed to determine the contents of total and exchangeable aluminium in soil as well as the Al concentration in the soil solution. Additionally, Al speciation was evaluated with the use of the MINTEQA2 software. The results obtained indicated that under the conditions of long‐term application of different mineral fertilizers or farmyard manure, the soil reaction changed to a great extent (pH 3.58–6.78). At the same time, the content of total Al in soil fluctuated from 18.85 to 22.13 g/kg and that of exchangeable Al ranged from 1.42 to 102.66 mg/kg. The concentration of Al in the soil solution was highly differentiated (5.19–124.07 μmol/L) as well as that of free aluminium ions (Al3+) (0–16.9 μmol/L). In acidic soils, aluminium complexes with organic matter are the predominant forms of Al in the soil solution. In soils with neutral soil reaction, there were no free aluminium ions. Soil liming and addition of organic amendment were the treatments that restricted the presence of toxic aluminium forms in soil.  相似文献   

4.
    
The Humboldt‐University of Berlin conducts several long‐term field trials designed to assess the effects of tillage methods, crop rotations, organic fertilization, mineral nitrogen, phosphorus, and potassium fertilizers, liming, irrigation, and weather conditions. On silty sand soils shallow ploughing resulted in a distinct accumulation of soil organic matter and phosphorus in the tilled soil layer while potassium and pH values were unaffected. On average shallow ploughing increased yields, with a tendency for higher yields in spring crops and lower yields in winter cereals. Different amounts of organic and mineral fertilizers applied over 30 years resulted in a great differentiation in soil organic matter content. In the following 32 years this variation stayed more or less unchanged, but with an overall reduction in the carbon content. In variants in which phosphate and potassic fertilizers were omitted, 16 kg ha—1 P and 15 kg ha—1 K per year were still being mobilized in the soil after 60 years. In treatments with mineral fertilization, the phosphorus is nearly balanced whilst only 60 % of the potassium is withdrawn from the soil. Additional organic fertilizers, given as farm yard manure, led to a nutrient surplus of 19 kg ha—1 a—1 P and 99 kg ha—1 a—1 K. Omitted liming caused an acidification of the soil to such an extent that crop production became impossible.  相似文献   

5.
    
The soil of the long‐term experiment laid out 1949 in Halle has the potential to supply much P. The P taken up by plants where no P (P0) or 15 kg ha−1 yr−1 (P1) was applied was much greater than the P applied as fertilizer (P1). A decrease in yield was measured only after the first 25 years on P0 soils but the P1 treatment has, so far, shown no decrease. Lactate extractions of the soil did not reflect P‐uptake suitably. The release of P from insoluble into water soluble forms was at a minimum after 30 years in P0 soils. P1 soils have now also declined to this minimum value and it remains to be seen whether yields decrease in this treatment in the future. Parallel to this trend, the P sorption increased in P0 soils. The subsoil also seems to be an important source for P supply, possibly influenced by root exudates. Further work is needed to gain a better understanding of soil P dynamics in connection with root exudates and microbes and to identify parameters which will provide more reliable means of calculating fertilizer P requirements.  相似文献   

6.
    
Archived soil samples are a valuable tool for any long‐term soil research. We analysed total carbon (C) and nitrogen (N) content and soil organic matter fractions in 38 archived soil samples that were stored for up to 21 years and compared air‐dried storage to frozen storage conditions. Samples include top‐ and upper subsoils, different soil texture and land use with C contents between 4.3 and 174 mg g?1. The results from this study reveal no changes in total C and N contents with storage time up to 21 years or type of storage (freezing vs. air drying). The analyses of soil physical fractions also revealed no significant differences between air‐dried stored and frozen stored samples for most samples. However, we found indications, that freezing of soil material might lead to changes in the mineral fractions for soils containing high amounts of water. Therefore, and as archiving soils in a frozen state is more expensive than storing air‐dried samples, we recommend the use of air‐dried samples for C quality analyses of archived soil samples.  相似文献   

7.
    
On the basis of long‐term fertilization experiments in Skierniewice, being conducted since 1923 at the Experimental Field of Warsaw Agricultural University, the fate (or balance) of nitrogen for a period of 35 years and that of phosphorus and potassium for 20 years, was studied. The balance includes N, P and K rates applied in mineral fertilizers and farmyard manure (FYM), uptake of these nutrients by the crop plants and the changes in the content of total N and total P and of slow release K in the soil during that time. The nitrogen balance shows a loss of this nutrient of 11—14 kg N ha—1 y—1, which corresponds to 15% of the applied ammonium nitrate on fields without FYM but to 23% on fields with FYM, in spite of crop yields being considerably greater on fields treated with FYM. The phosphorus balance indicated that in the 0—70 cm soil layer less than 4% of P from superphosphate was not found. In the treatment not fertilized with potassium for many years, the plants took up 49 kg K ha—1 y—1 from slow release forms because the fraction of available K did not change during that period. When calculating the potassium balance only 1.6% of K from potash salt were not found in plots without FYM but 12.3% of the applied KCl were not recovered in treatments with FYM. The comparison of the P‐ and K‐uptake from organic and mineral fertilizer in the two crop rotations indicates a higher P‐ and K‐efficiency from FYM than from inorganic fertilizer.  相似文献   

8.
    
Paddy soils in subtropical China are usually deficient in phosphorus (P) and require regular application of chemical fertilizers. This study evaluated the effects of chemical fertilizers on the distribution of soil organic carbon (SOC), total nitrogen (N) and available P, and on the activity of the associated enzymes in bulk soil and aggregates. Surface soils (0–20 cm) were collected from a 24‐yr‐old field experiment with five treatments: unfertilized control (CK), N only (N), N and potassium (NK), N and P (NP), and N, P and K (NPK). Undisturbed bulk soils were separated into >2, 1–2, 0.25–1, 0.053–0.25 and <0.053 mm aggregate classes using wet sieving. Results showed that both NP‐ and NPK‐treated soils significantly increased mean weight diameter of aggregates, SOC, available P in bulk soil and aggregates, as compared to CK. Most SOC and total N adhered to macro‐aggregates (>0.25 mm), which accounted for 64–81% of SOC and 54–82% of total N in bulk soil. The activities of invertase and acid phosphatase in the 1–2 mm fraction were the highest under NPK treatment. The highest activity of urease was observed in the <0.053 mm fraction under NP treatment. Soil organic carbon and available P were major contributors to variation of enzyme activities at the aggregate scale. In conclusion, application of NP or NPK fertilizers promoted the formation of soil aggregates, nutrient contents and activities of associated enzymes in P‐limited paddy soils, and thus enhanced soil quality.  相似文献   

9.
本文的研究结果表明,分区平衡施肥技术能明显提高氮肥利用率,在小麦和玉米上分别平均提高12.7和14.2个百分点。该技术能使养分盈亏趋于合理,分区平衡施肥的氮素平衡盈余显著低于习惯施肥,有利于减少氮素损失及其对环境的污染;磷素平衡盈余则明显高于习惯施肥,有利于改善土壤磷素状况;钾素平衡存在一定程度的亏缺,需通过增加无机、有机钾源来调节土壤钾素平衡。  相似文献   

10.
    
A better appraisal of the plant availability of soil phosphorus (P) added with animal manure is crucial to alleviate environmental impacts from over‐application of P. This study compares the availability of P to maize in the Askov long‐term experiments using unmanured plots and plots receiving corresponding rates of nitrogen (N), P and potassium (K) in mineral fertilizers or manure. Total‐P and water extractable P (Pw) in soil, and plant height, dry weight, P concentration and P uptake were determined in early August. Final yields were determined in late October. Soil Pw was similar for plots receiving corresponding rates of P in mineral fertilizer or manure form. With a strong relationship between Pw, and maize growth and final yields, Pw was a reliable indicator of P availability to maize. Plant dry weight, P concentration and P uptake in early August were 23%, 8% and 31% higher, respectively, for maize grown on soil receiving manure compared with mineral fertilizer, while final maize yield in late October was 13% higher. Plant height and dry weight determined in early August suggested that maize development at this growth stage defined final maize yield. We conclude that the availability of P was similar after long‐term application of corresponding rates of P in animal manure and mineral fertilizers, and that animal manure improves the growth of maize compared to mineral fertilizers. This is ascribed to micronutrients and residual N effects from previous additions of manure.  相似文献   

11.
    
Six of originally eight long‐term trials in Halle (Saale), Germany, are still continuing. Five are situated at Julius‐Kühn‐Feld, an experimental station launched by Julius Kühn in Halle in 1866. Apart from the Eternal Rye trial established in 1878, those are phosphorus, potassium, lime, and organic fertilization long‐term trials, all being launched by Karl Schmalfuß in 1949. Other long‐term trials have been terminated, but data are available on the effects of nitrogen fertilization and the physiological reaction of fertilizers. Another long‐term trial in Halle (Adam‐Kuckhoff‐Straße 17b) investigates the influence of fertilization on soil formation from loess. Up to now, the major results are as follows: 1. Changes in soil‐ecological properties due to fertilization and rotation were only evident after 30 years, and new steady states sometimes took 70 years to occur. 2. In the long term, the C‐ and N‐contents of the soil largely depend on the amount of hardly decomposable organic matter applied with organic fertilization. High mineral‐N doses, with consequent high crop and root residues, increased the humus content of the soil. 3. Mineral fertilization can replace organic fertilization in terms of sustainable yield capacity provided equal nutrient amounts were applied. 4. The high P‐supply ability of the soil in Halle could not be explained by traditional soil analysis methods of calculating plant‐available P. With some restrictions, the same is valid for K. 5. At the experimental site, soluble salts (nitrate, sulphate) accumulated in the subsoil. 6. A regular lime demand of central German chernozems could be proved, especially in case of low soil organic matter (SOM) and physiologically acid fertilization.  相似文献   

12.
Declining global P reserves require a better understanding of P cycling in soil and related plant uptake. On managed grasslands, application of lime and fertilizer affects not only soil nutrient status, but also plant‐species composition of the sward. We examined the P fractionation in the Rengen Grassland Experiment (RGE) on a naturally acid Stagnic Cambisol in the Eifel Mts. (Germany) 69 y after the setup of the experiment. A modified sequential Hedley fractionation was carried out for samples from 30 plots at 0–10 cm depth. Application of inorganic phosphorus fertilizer had diverse effects on inorganic (Pi) and organic P (Po) fractions. Resin‐Pi, NaHCO3‐Pi, NaHCO3‐Po, NaOH‐Pi, HCldil‐Pi, HClconc‐Pi, and HClconc‐Po contents increased, while NaOH‐Po significantly decreased and residual‐P remained unaffected. Strongest enrichment occurred in the HCldil‐Pi fraction, probably due to the chemical nature of the basic Thomas slag applied as P fertilizer. Without P fertilization, all fractions except residual‐P were more or less depleted. Strong P limitation of the vegetation in the limed treatments without P led to lowered contents also for NaOH‐Pi and NaOH‐Po. However, NaOH‐Po was largest in the Control and even exceeded the respective content in the treatments with P. It remained unclear why species adapted to a low soil P status did not access this P fraction though being P‐limited. Published theory on the availability of Hedley P fractions does neither match P exploitation nor P nutritional status of the vegetation in the RGE. Regarding NaOH‐Po as stable and HCldil‐Pi as moderately labile led to a more realistic evaluation of plant P uptake. Evaluation of P availability on the basis of chemical extractions alone is questionable for conditions like in the RGE. On long‐term grassland, plant‐species composition has to be taken into account to estimate access of plants to soil P.  相似文献   

13.
    
Repeated application of phosphorus (P) as superphosphate either alone or in conjunction with cattle manure and fertilizer N may affect the P balance and the forms and distribution of P in soil. During 7 years, we monitored 0.5 M NaHCO3 extractable P (Olsen‐P) and determined the changes in soil inorganic P (Pi) and organic P (Po) caused by a yearly dose of 52 kg P ha—1 as superphosphate and different levels of cattle manure and fertilizer N application in a soybean‐wheat system on Vertisol. In general, the contents of Olsen‐P increased with conjunctive use of cattle manure. However, increasing rate of fertilizer nitrogen (N) reduced the Olsen‐P due to larger P exploitation by crops. The average amount of fertilizer P required to increase Olsen‐P by 1 mg kg—1 was 10.5 kg ha—1 without manure and application of 8 t manure reduced it to 8.3 kg ha—1. Fertilizer P in excess of crop removal accumulated in labile (NaHCO3‐Pi and Po) and moderately labile (NaOH‐Pi and Po) fractions linearly and manure application enhanced accumulation of Po. The P recovered as sum of different fractions varied from 91.5 to 98.7% of total P (acid digested, Pt). Excess fertilizer P application in presence of manure led to increased levels of Olsen‐P in both topsoil and subsoil. In accordance, the recovery of Pt from the 0—15 cm layer was slightly less than the theoretical P (P added + change in soil P — P removed by crops) confirming that some of the topsoil P may have migrated to the subsoil. The P fractions were significantly correlated with apparent P balance and acted as sink for fertilizer P.  相似文献   

14.
    
Improving manure management to benefit both agricultural production and the environment requires a thorough understanding of the long‐term effects of applied manure on soil properties. This paper examines the effect of 25 annual solid cattle manure applications on soil organic carbon (OC), total N (TN), and KCl‐extractable NO3‐N and NH4‐N under both non‐irrigated and irrigated conditions. After 25 annual manure applications, OC and TN contents increased significantly with the rate of manure application at the top two sampling depths (0–15 cm and 15–30 cm), and the increases were not affected by the irrigation treatment. The NO3 content increased at all sampling depths with greater increases observed under non‐irrigated conditions, while NH4 content was not affected by manure application rates or the irrigation treatment. The changes in OC and TN at the surface (0–15 cm) and 15–30 cm depth were dependent on the cumulative weight of manure added over the years. The relationships between cumulative manure OC added and soil OC content and between cumulative manure TN added and soil TN content were linear and not affected by the irrigation treatment. For every ton of manure OC added, soil OC increased by 0.181 g kg–1 in the topsoil (0–15 cm). Similarly, for every ton of manure TN added, surface soil TN increased by 0.192 g kg–1. The linear relationship between manure C added and soil C content suggests that the soil had a high capacity for short‐term C sequestration. However, the total amount of NO3‐N in the soil profile (0–150 cm) was affected by both the manure application rates and the irrigation treatment. A large amount of NO3 accumulated in the soil, especially under non‐irrigated conditions. The extremely high level of NO3 in the soil increases the potential risk of surface and groundwater pollution and losses to atmosphere as N2O.  相似文献   

15.
In a long‐term maize–wheat rotation at the Punjab Agricultural University, Ludhiana, India (subtropical climate), the effects of nitrogen (N), phosphorus (P), and potassium (K) addition on soil fertility and forms of inorganic P and K in the plow layer of an alkaline sandy loam soil were measured after 11 and 22 years of cropping. The treatments comprised four rates of N (0, 60, 120, and 180 kg N ha?1) as urea, three rates of P (0, 17.5, and 35 kg P ha?1) as single superphosphate, and two rates of K (0 and 33 kg K ha?1) as muriate of potash. The treatments selected for the present study were N0P0K0, N120P0K0, N120P17.5K0, N120P35K0, N120P17.5K33, and N120P35K33. A significant year × treatment interaction in decreasing available N [alkaline potassium permanganate (KMnO4)–oxidizable N) status of soils was found in all the treatments. Available P (Olsen P) in the control plot decreased over time whereas in plots with added P, available P increased significantly after years 11 and 22, with the greatest increase in the N120P17.5Ko treatment. Compared to the initial values, continuous P fertilization resulted in greater total P and chloride P concentrations after 11 and 22 years. Although sodium hydroxide (NaOH) P and sulfuric acid (H2SO4) P increased in P‐treated plots from the start of the trial to year 11, they decreased from year 11 to year 22. Among these inorganic P forms, chloride P was significantly positively correlated with P uptake (r = 0.811*). When only N and P were applied, available K [ammonium acetate (NH4OAc)–extractable K] significantly decreased over time. In plots without K addition, water‐soluble and exchangeable K decreased from their initial status. Compared to year 11, water‐soluble K increased, whereas exchangeable K decreased after year 22 in plots receiving no K fertilizer. Compared with NPK treatments, a significant decrease of total K in NP treatment plots suggests the release and uptake of nonexchangeable K. Water‐soluble K and exchangeable K were not correlated with K uptake. These results suggest that long‐term application of P fertilizers resulted in the accumulation of P in the soil, which could have resulted in saturation of P binding sites. Of the soil inorganic P fractions, only chloride P appears to be a good indicator of plant‐available P. The gradual loss in native soil K and release of nonexchangeable K indicates the need for adding K fertilizer to maintain soil fertility.  相似文献   

16.
    
The experiment was conducted in a 22nd cycle of rice-wheat rotation established in the eastern India with a randomized block designed with various combinations of inorganic and organic sources of nutrients like farm yard manure (FYM), paddy straw (PS), and green manure in rice crop only. Application of nitrogen, phosphorus, and potassium (NPK) and its combination with FYM, PS, and green manuring increased the grain yield of rice significantly. Rice yield declined only in control plots (?0.003 t ha?1 year?1), whereas positive yield trend was maintained in all the treatments. All organically amended plots showed a better uptake as well as use efficiencies of applied phosphorus (P) inputs over control. The apparent P balance showed positive value in control treatment over the years ranging from ?4.8 to 24.8 kg ha?1 year?1. The positive yield trend of rice was maintained due to buildup of P from various organic inputs.  相似文献   

17.
长期不同施肥对土壤和玉米锌含量的影响   总被引:1,自引:2,他引:1       下载免费PDF全文
利用棕壤肥料长期定位试验,研究不同施肥处理对耕层土壤pH值、有机质、不同形态Zn和玉米茎秆、籽粒中Zn含量的影响,揭示长期施肥条件下,Zn在土壤-植物系统中的迁移规律及其影响因素。试验开始于1979年,采用玉米-玉米-大豆轮作体系,试验处理为:N1P、N1PK、N1、N2、CK、M1N1P、M1N1PK、M1N1、M1N2、M1、M2N1P、M2N1PK、M2N1、M2N2、M2,其中CK为不施肥处理,N1和N2施氮量分别为120和180kg/hm2,M1和M2施有机肥量分别为13.5和27 t/hm2。在2015年玉米收获期,采集了不同施肥处理0~20 cm耕层土壤样品,分析了土壤pH值、有机质,测定了土壤不同形态Zn和玉米籽粒、茎秆中Zn含量。与1979年原始土壤相比,绝大多数处理土壤pH值都显著降低,化肥处理降低1~2个单位,有机肥和化肥配施降低0.5~0.8个单位,单独施用有机肥pH值有所增加。不施肥处理土壤有机质、全量Zn和有效态Zn均下降,施用化肥绝大多数处理土壤有机质、全量和有效态Zn含量基本保持不变;施用有机肥处理,土壤有机质、全量和有效态Zn含量均显著增加。施用有机肥也显著增加有机结合态和交换态Zn含量。玉米籽粒和茎秆中Zn含量也表现为不施肥处理最低,施用化肥或有机肥配施化肥处理显著增加。pH值与土壤有效锌之间没有显著负相关关系,土壤有机质与有效态Zn、全Zn、籽粒以及茎秆Zn之间均呈现显著性正相关关系。经过长期耕作和施肥,土壤pH值显著下降,施用氮肥是引起土壤pH值下降的主要原因。长期不施肥土壤和植物中Zn含量下降,而施用有机肥显著增加土壤和植物中Zn含量。施用有机肥主要是通过增加土壤有机质含量,从而提高有机结合态和可交换态Zn的储量来为土壤和植物提供更多的Zn。pH值降低对土壤锌的活化作用不显著。  相似文献   

18.
施肥和秸秆还田对土壤肥力质量及春小麦品质的影响   总被引:23,自引:2,他引:23       下载免费PDF全文
通过在青海省河湟灌区栗钙土上连续19年的春小麦连作长期定位试验,研究了施用化肥与秸秆还田对土壤肥力质量及春小麦产量、品质的影响。结果表明,在施氮、磷化肥的基础上增施钾肥和或秸秆还田可降低土壤容重1.2%~7.1%,提高土壤含水量4.7%~13.5%,增加土壤>0.25mm团聚体的数量,促进团聚体的稳定性;对土壤轻组有机质、有机质、土壤氮、磷、钾养分含量的提高也有明显的作用,尤其是提高土壤速效钾含量最高达2.6倍;对春小麦产量和品质也有一定的维持和促进作用。在施氮、磷的基础上增施适量无机钾肥或秸秆还田能够改善农田土壤肥力及质量状况,稳定和提高春小麦产量和品质。考虑矿质钾肥成本较高和资源有效利用,当地农业生产在氮、磷肥基础上半量秸秆还田可以替代无机钾肥。  相似文献   

19.
    
A long‐term field experiment on a Haplic Phaeozem, established 1949 with four levels of potassium (K) supply (5, 69, 133, and 261 kg K ha?1), was analyzed for the interaction between K supply and yield loss of five crop species by water shortage. The crop species were cultivated simultaneously side‐by‐side in the following rotation: potato (Solanum tuberosum L.), silage maize (Zea mays L.), spring wheat (Triticum aestivum L.), beet (Beta vulgaris L.), and spring barley (Hordeum vulgare L.). The treatment with 133 kg K ha?1 supply had a nearly balanced K budget. In the treatments with lower supply, the soil delivered K from its mineral constituents. On the low‐K plots (especially on those with only 5 kg K ha?1), crops suffered yield depressions of nearly all main harvest products (cereal grains, potato tubers, beet storage roots, silage maize) and by‐products (straw, beet leaves) by up to 40.7% of dry matter. Only wheat grains were an exception. Potassium concentrations in the harvested plant parts decreased nearly in parallel to the reduction of their dry matter yields, with the exception of cereal grains, which kept stable concentrations even in the treatment with only 5 kg K ha?1. A comparison of four year‐pairs with differing levels of precipitation in yield‐relevant periods showed an average water shortage‐induced depression of dry matter yields by 19.7% in the main harvest products. The severity of this yield depression was not mitigated by elevated K supply, with the exception of beet leaves, where the dry matter production was stabilized by high K supply. In this crop, the reduction of storage‐root yield was associated with a decrease in harvest index and was therefore obviously caused by an inhibition of assimilate translocation from the leaves into these organs, in contrast to cereals, where water shortage primarily affected dry matter production in vegetative organs. It is concluded that the physiological causes of yield reduction by drought stress and the possibility of its amelioration by K supply differ between plant species and organs.  相似文献   

20.
    
Soil‐quality assessment provides a tool for evaluating the sustainability of alternative soil‐management practices. Understanding the effects of the long‐term use of chemical fertilizers on soil quality is essential for sustaining soil productivity. The cumulative effect of a 17‐y‐old chemical‐fertilizer application on integrated soil quality was investigated in the surface (0–15 cm) and subsurface (15–30 cm) soils of a soy–broomcorn–millet cropping system with an experiment design of two factors with three levels for each factor. The treatments were N0P0, N0P1, N0P2, N1P0, N1P1 (local farmer' fertilization strategy), N1P2, N2P0, N2P1, N2P2, and a control NF. The objectives were to describe and quantify the effect of continuous applications of chemical fertilizer through soil‐quality index (SQI) and attempt to offer an efficient and appropriate nutrient‐supply strategy for the local region. Following 17 y of chemical fertilization, the SQI increased markedly in the studied soil layers, and soil chemical indicators changed more significantly than physical properties. The soil‐quality indicators in the surface soil layer were more variable and sensitive to fertilizer application than the subsurface layer. The indicators that sensitively responded to long‐term fertilization could be classified into three types: soil‐fertility indicators (soil organic matter [SOM], total P, and available N), soil‐texture indicators (clay, silt), and soil‐structure indicators (bulk density, mean weight diameter [MWD]). The simplified indicators (SOM, sand, available N, bulk density, and total P in the surface soil and SOM, MWD, and silt content in the subsurface soil) preferably reflected the status of the integrated soil quality as influenced by continuous fertilization. Among the fertilized treatments, the combined‐fertilizer treatments maintained a higher SQI than the single‐fertilizer treatments in the surface and subsurface soils. The N1P2 treatment maintained the highest SQI in both soil layers, followed by N1P1 treatment. However, for the slope cropland, given the relative costs, soil resource, and environmental protection, the traditional treatment of N1P1 may be the optimal fertilizer treatment in the local region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号