首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Biochar addition to soils has been frequently proposed as a means to increase soil fertility and carbon (C) sequestration. However, the effect of biochar addition on greenhouse gas emissions from intensively managed soils under vegetable production at the field scale is poorly understood. The effects of wheat straw biochar amendment with mineral fertilizer or an enhanced‐efficiency fertilizer (mixture of urea and nitrapyrin) on N2O efflux and the net ecosystem C budget were investigated for an acidic soil in southeast China over a 1‐yr period. Biochar addition did not affect the annual N2O emissions (26–28 kg N/ha), but reduced seasonal N2O emissions during the cold period. Biochar increased soil organic C and CO2 efflux on average by 61 and 19%, respectively. Biochar addition greatly increased C gain in the acidic soil (average 11.1 Mg C/ha) compared with treatments without biochar addition (average ?2.2 Mg C/ha). Biochar amendment did not increase yield‐scaled N2O emissions after application of mineral fertilizer, but it decreased yield‐scaled N2O by 15% after nitrapyrin addition. Our results suggest that biochar amendment of acidic soil under intensive vegetable cultivation contributes to soil C sequestration, but has only small effects on both plant growth and greenhouse gas emissions.  相似文献   

2.
Abstract

The effects of liming (7 500 kg CaCO3/ha) and rate of urea application (0,50,100, and 200 kg N/ha) and its placement at the surface or at 5 cm depth on grain yield and nutrient uptake by corn grown on an acidic tropical soil (Fluventic Eutropept) were studied. Liming significantly increased grain yield, N uptake, and P and K uptake although Ca and Mg uptake, generally, were unaffected. Sub‐surface application of urea increased N uptake only. Yield response to applied N was observed up to 50 kg N/ha when limed but at all rates in the absence of liming. It therefore, reduced the fertilizer N requirement for optimum grain yield. Liming the acidic soil also reduced exchangeable Al but increased nitrification rate and available P in the soil profile (at least up to 0.6 m depth).  相似文献   

3.
Effects of repeated application of urea (UN) and calcium nitrate (CN) singly and together with crop straw biochars on soil acidity and maize growth were investigated with greenhouse pot experiments for two consecutive seasons. Canola straw biochar (CB), peanut straw biochar (PB) and wheat straw biochar (WB) were applied at 1% of dried soil weight in the first season. N fertilizers were applied at 200 mg N kg?1. In UN treatments, an initial rise in pH was subjected to proton consumption through urea hydrolysis, afterwards nitrification of NH4+ caused drastic reductions in pH as single UN had soil pH of 3.70, even lower than control (4.27) after the 2nd crop season. Post-harvest soil analyses indicated that soil pH, soil exchangeable acidity, NH4+, NO3? and total base cations showed highly significant variation under N and biochar types (< 0.05). Articulated growth of plants under combined application with biochars was expressed by 22.7%, 22.5%, and 35.7% higher root and 25.6%, 23.8%, and 35.9% higher shoot biomass by CB, PB and WB combined with CN over UN, respectively. Therefore, CN combined with biochars is a better choice to correct soil acidity and improve maize growth than UN combined with biochars.  相似文献   

4.
Winter forage grazing systems in New Zealand cause compaction of soil by grazing animals, especially when the soil is wet. However, there is little information on the effects of animal trampling on denitrifiers in soil, despite their importance for N2O production. Here, we report a field study of the abundance of the denitrifying genes nirS, nirK, and nosZ and N2O emissions following the application of dairy cow urine in a free‐draining stony soil. Importantly, we found that simulated animal trampling altered some of the denitrifying microbial communities, thus leading to increased N2O emissions. Over the 111 day measurement period, the abundance of nitrite (NO2?)‐reducing nirS gene copy numbers increased significantly by 87% in the trampled soil with urine (P < 0.01) and increased by 40% in the trampled soil without urine (P < 0.05), but the nirS gene abundance did not change significantly in the nontrampled soil. The abundance of NO2? reducing nirK gene copy numbers was not affected by trampling, but increased significantly following urine application. The abundance of N2O‐reducing nosZ clade I and nosZ clade II gene copy numbers increased significantly in the trampled soil, but did not change significantly in the nontrampled soil. N2O emissions from the trampled soil were about twice that from the nontrampled soil without urine (1.20 and 0.62 kg N2O‐N per ha, respectively) and about eight times greater (6.24 kg N2O‐N per ha) than from nontrampled soil (0.80 kg N2O‐N per ha) when urine was applied. These results strongly suggest that animal trampling during winter forage grazing can have a major impact on denitrifying communities in soil, which in turn stimulate greater denitrification with increased N2O emissions.  相似文献   

5.
A 90‐day laboratory incubation study was carried out using six contrasting subtropical soils (calcareous, peat, saline, noncalcareous, terrace, and acid sulfate) from Bangladesh. A control treatment without nitrogen (N) application was compared with treatments where urea, ammonium sulfate (AS), and ammonium nitrate (AN) were applied at a rate of 100 mg N (kg soil)–1. To study the effect of N fertilizers on soil carbon (C) turnover, the CO2‐C flux was determined at nine sampling dates during the incubation, and the total loss of soil carbon (TC) was calculated. Nitrogen turnover was characterized by measuring net nitrogen mineralization (NNM) and net nitrification (NN). Simple and stepwise multiple regressions were calculated between CO2‐C flux, TC, NNM, and NN on the one hand and selected soil properties (organic C, total N, C : N ratio, CEC, pH, clay and sand content) on the other hand. In general, CO2‐C fluxes were clearly higher during the first 2 weeks of the incubation compared to the later phases. Soils with high pH and/or indigenous C displayed the highest CO2‐C flux. However, soils having low C levels (i.e., calcareous and terrace soils) displayed a large relative TC loss (up to 22.3%) and the added N–induced TC loss from these soils reached a maximum of 10.6%. Loss of TC differed depending on the N treatments (urea > AS > AN >> control). Significantly higher NNM was found in the acidic soils (terrace and acid sulfate). On average, NNM after urea application was higher than for AS and AN (80.3 vs. 71.9 and 70.9 N (kg soil)–1, respectively). However, specific interactions between N‐fertilizer form and soil type have to be taken into consideration. High pH soils displayed larger NN (75.9–98.1 mg N (kg soil)–1) than low pH soils. Averaged over the six soils, NN after application of urea and AS (83.3 and 82.2 mg N (kg soil)–1, respectively) was significantly higher than after application of AN (60.6 mg N (kg soil)–1). Significant relationships were found between total CO2 flux and certain soil properties (organic C, total N, CEC, clay and sand content). The most important soil property for NNM as well as NN was soil pH, showing a correlation coefficient of –0.33** and 0.45***, respectively. The results indicate that application of urea to acidic soils and AS to high‐pH soils could be an effective measure to improve the availability of added N for crop uptake.  相似文献   

6.
ABSTRACT

How to restore the soil fertility and productivity in a damaged and then reclaimed area with extremely low fertility is a big concern worldwide. To explore the method of soil restoration in the coal mining subsidence area, the effects of biochar application coupled with organic fertilizer (animal manures) on the process of organic nitrogen (N) mineralization were studied in a 149 days leaching experiment. Biochar were applied (wt/wt) at the rates of 0%, 1%, and 3%. Two organic fertilizers with different C/N ratio (chicken and sheep manures) were applied at the rate of 200 mg N·kg?1 soil. A vegetable soil with high-fertility was used as the comparison. The results showed that when treated with chicken manure, the reclaimed soil had 11.13% lower mineralization potential and 20.00% lower inorganic nitrogen production from mineralization than the vegetable soil. Compared with the non-biochar treatment, biochar at both application rates decreased N leaching in chicken manure-treated reclaimed soil, i.e., by 21.49% (1% biochar) and 28.31% (3% biochar), respectively, whereas only high rate of biochar application decreased N leaching in chicken manure-treated vegetable soil by 8.10%. However, N leaching in sheep manure-treated reclaimed soil was unaffected by the biochar application. Thus, the effect of the biochar on the organic nitrogen mineralization was affected by both soil and organic fertilizer type.  相似文献   

7.
We performed a series of experiments in controlled conditions to assess the potential of hardwood‐derived biochar either as a source or as a removing additive of macronutrients [nitrate‐nitrogen (NO3‐N), ammonium‐N (NH4‐N), potassium (K), phosphorus (P), and magnesium (Mg)] in solution. In addition, a 3‐year field trial was carried out in a commercial nectarine orchard to evaluate the effect of increasing soil‐applied biochar rates on tree nutritional status, yield, fruit quality, soil pH, soil NO3‐N, and NH4‐N concentration and soil water content. In controlled conditions, the concentrations of K, P, Mg, and NH4‐N in solution were significantly increased and positively correlated with biochar rates. Biochar was ineffective in removing NO3‐N, K, P, and Mg from enriched solutions, while at the rate of 40 g L?1 biochar removed almost 52% of the initial NH4‐N concentration. In a mature, irrigated, fertilized, commercial nectarine orchard (Big Top/GF677) on a sandy‐loam soil in the Italian Po Valley, soil‐applied biochar at the rates of 5, 15, and 30 t ha?1 were effective in reducing the leached amount of NH4‐N in the top 0.25 m soil layer over 13 months, as estimated by ion exchange resin lysimeters. Nevertheless, independent of the rate, biochar did not affect soil pH, soil N mineral availability, soil moisture, tree nutritional status, yield, and fruit quality. We conclude that, unless an evident constraint is identified, in non‐limiting conditions (e.g., water availability and soil fertility), potential benefits from biochar application in commercial orchards are hidden or negligible.  相似文献   

8.
【目的】控释尿素已被证明对于提高氮素利用率、减少氮素损失和增产有积极意义,且不同包膜的控释尿素由于包膜材料的不同,对于氮素的释放和供应强度有所不同。本文在黄淮海区域采用玉米田间试验,探讨硫膜和树脂膜控释尿素在氮素供应和减少氮素损失等方面的效应,以期为黄淮海区域夏玉米在高温多雨的种植条件下两种控释尿素的选择和应用提供依据。【方法】以硫膜和树脂膜控释尿素为研究对象,采用田间试验研究0—100 cm土壤剖面中的硝态氮含量,玉米整个生育期的土壤氮素平衡和玉米产量以及氮素利用率。【结果】与相同施氮量的普通尿素相比,硫膜和树脂膜控释尿素均具有"前控后保"的特性,使玉米苗期0—100 cm土层的土壤硝态氮含量降低了11.7%~56.7%和28.8%~68.2%,玉米灌浆期和收获期0—40 cm土层的硝态氮含量分别提高了16.3%~46.7%、0.5%~60.7%;两种控释尿素均能有效降低玉米整个生育期土壤残留的无机氮量、氮素表观损失量和盈余量,降幅分别为12.0%~18.4%、13.2%~66.4%和15.6%~30.9%,使玉米产量提高14.6%~37.5%,氮素利用率提高12.3~20.8个百分点。在N 210 kg/hm2、N 300 kg/hm2两种施氮量条件下,与相同施氮量的硫膜控释尿素相比,树脂膜控释尿素处理的玉米苗期0—60 cm土层的硝态氮含量降低了26.4%~39.1%,灌浆期0—40 cm土层和收获期0—20 cm土层的硝态氮含量分别提高了10%~21.8%和9.6%~16.4%,土壤残留无机氮量、氮素表观损失量和盈余量分别降低了2.3%~6.0%、44.6%~61.3%和17.0%~17.7%,玉米产量提高了6.8%~8.3%,氮素利用率提高了7.1~8.4个百分点,说明树脂膜控释尿素的效果优于硫膜控释尿素。树脂膜控释尿素和硫膜控释尿素在施氮量N 300 kg/hm2时均比N 210 kg/hm2条件下玉米整个生育期不同土层的硝态氮含量提高了1.2%~90.9%和2.0%~56.7%,玉米整个生育期土壤残留无机氮量、氮素表观损失量和盈余量分别提高了42.1%~47.6%、66.2%~137.9%、52.5%~53.8%,玉米产量和氮素利用率分别提高了20.8%和22.5%、6.5和5.2个百分点,施氮量N 300 kg/hm2优于N 210 kg/hm2。【结论】树脂膜控释尿素在减少夏玉米农田土壤剖面硝态氮残留、维持土壤氮素平衡和提高氮素利用率等方面的效果优于硫膜控释尿素和普通尿素。综合考虑保证土壤氮素供应、减少氮素损失、提高玉米产量及氮素利用率等因素,在黄淮海区域高温多雨气候条件下种植夏玉米,以施氮量N 300 kg/hm2的树脂膜控释尿素或者硫膜和树脂膜控释尿素二者配合施用效果最佳。  相似文献   

9.
Field trials were conducted over two years to investigate the effect of increasing N supply on apparent fertilizer N recovery by winter cereal crops (4 × wheat and 2 × barley) and on non‐recovered N. Apparent fertilizer N recovery was calculated by comparing N in fertilized and unfertilized crops. Non‐recovered N is defined as N which was neither found in crops nor soil mineral N (Nmin = NH4‐N + NO3‐N). At N supply levels according to common farming practice (Ncfp = 190 to 220 kg N/ha), 60— 93% of the fertilizer N was recovered in crops at harvest, while at high N supply levels of 265 to 273 kg N/ha 58—76% of fertilizer N was recovered. There were small differences in soil Nmin in 0—200 cm between Ncfp and unfertilized plots, but substantial increases in Nmin occurred at the highest N supply. Amounts of non‐recovered N differed substantially between sites (maximum value of 84 kg N/ha). Non‐recovered N increased with increasing N rate on only 3 out of the 6 sites, indicating that N immobilization was not necessarily dependent on N rate. The fate of non‐recovered N was studied for a further year by growing catch crops on the sites after cereal harvest. N re‐mineralization deduced from changes in catch crop N and in Nmin indicated that non‐recovered N had been immobilized in the soil. At three sites, crop N uptake was found between milk‐ripe stage and harvest (19 to 60 kg N/ha) suggesting substantial uptake of N mineralized from soil. However, grain yields were lower with N rates below Ncfp, indicating that late net soil N mineralization could not compensate for reductions in N fertilizer rate in these trials.  相似文献   

10.
氮肥减量配施生物炭对于提升土地生产力、提高土壤碳汇能力以及缓解气候变暖具有重要意义。依托大田试验,设置5个氮肥用量梯度(T0~T4):100%化肥氮,90%化肥氮,80%化肥氮,70%化肥氮,60%化肥氮,采用等氮原则,氮肥减少量用等氮量生物炭替代,以不施肥为对照(CK),结合室内矿化培养,揭示稻田有机碳矿化及酶活性对氮肥减量配施生物炭的响应。结果表明:与T0处理相比,T3处理(70%化肥氮+7.5 t/hm~2生物炭氮)土壤全氮,碱解氮及速效磷依次显著提高了6.67%,8.36%及30.94%(P0.05),T4处理的速效钾含量最高,显著提高了23.78%(P0.05)。氮肥减量配施生物炭可有效提升土壤有机碳(SOC)含量,且随配施生物炭比例的增大而增大;与矿化前相比,各处理矿化后SOC,微生物量碳(MBC)及微生物熵(qMB)依次下降1.39~1.75 g/kg, 24.62~67.57 mg/kg及0.13%~0.32%(P0.05)。SOC矿化速率在培养的第1天达到峰值,第1阶段(第1~6天)迅速下降,第2阶段(第6~30天)缓慢下降,第3阶段(第30~45天)矿化速趋于平稳,矿化速率与培养时间呈对数函数关系(P0.01)。培养结束时SOC累积矿化量和累积矿化率的变化范围分别为1.39~1.75 g/kg和6.02%~8.43%,均以T3处理最低。与CK和T0处理相比,T3处理的过氧化氢酶、脲酶和蔗糖酶活性最高,T1处理的酸性磷酸酶活性最高。水稻产量以T3处理(7.37 t/hm~2)最高,比T0处理增产39.58%(P0.05)。综上,氮肥减量30%配施生物炭可明显提高土壤肥力,减少SOC矿化,增加土壤固碳,提高土壤酶活性及水稻产量。  相似文献   

11.
An accurate estimation of nitrous oxide (N2O) emission from 110 million ha of upland in China is essential for the adoption of effective mitigation strategies. In this study, the effects of different tillage practices combined with nitrogen (N) fertilizer applications on N2O emission in soils were considered for a winter wheat (Triticum aestivum L.) – summer maize (Zea mays L.) double cropping system. Treatments included conventional tillage plus urea in split application (CTF1), conventional tillage with urea in a single application (CTF2), no‐tillage with straw retained plus reduced urea in a split application (NTSF1) and no‐tillage with manure plus reduced urea in a split application (NTMF1). The amounts of N input in each treatment were 285 and 225 kg N/ha for wheat and maize, respectively. Both NTSF1 and NTMF1 were found to reduce chemical N fertilizer rates by 33.3% (wheat) and 20% (maize), respectively, compared to CTF1 and CTF2. N2O emissions varied between 3.2 (NTSF1) and 9.9 (CTF2) kg N2O‐N/ha during the wheat season and between 7.6 (NTFS1) and 14.0 (NTMF1) kg N2O‐N/ha during the maize season. The yield‐based emission factors ranged from 21.9 (NTSF1) to 60.9 (CTF2) g N2O‐N/kg N for wheat and 92.5 (NTSF1) to 157.4 (NTMF1) g N2O‐N/kg N for maize. No significant effect of the treatments on crop yield was found. In addition to reducing production costs involved in land preparation, NTSF1 was shown to decrease chemical fertilizer input and mitigate N2O emissions while sustaining crop yield.  相似文献   

12.
Abstract

In a laboratory study, ammonia (NH3) was trapped from 10 g soil units treated with 10 mg urea‐N, 10 mg urea‐N plus 50 ug N‐(n‐butyl) thiophosphoric triamide (NBPT), or 10 mg urea‐N plus 50 ug phenyl‐phosphorodiamidate (PPD). The soil was a Dothan loamy sand with pH levels adjusted to 6.0, 6.5, and 6.9 prior to N application. After 12 days, NBPT reduced NH3 volatilization 95 to 97%, while PPD reduced it 19 to 30%. Although NH3 loss was positively related to initial soil pH, there was no interaction between pH and urease inhibitor. In a field study, NH3 was trapped in semi‐closed chambers from 134 kg N/ha surface applied to corn (Zea mays L.) 6 weeks after planting. Nine days after N application, NH3 losses were 20.5, 1.5, 1.5, and 0.2 kg N/ha from urea, urea plus 0.25% NBPT, urea plus 0.50% NBPT, and ammonium nitrate, respectively. Covariance analysis showed that percent organic matter was negatively related to NHL losses. The soil properties, initial pH, CEC, and percent sand, did not vary enough to affect NH3 volatilization. In conclusion, in both the laboratory and the field, NBPT exhibited strong control of NH3 volatilization, and could thereby prevent significant loss of surface‐applied urea‐N to crops.  相似文献   

13.
In temperate forest soils, N net mineralization has been extensively investigated during the growing season, whereas N cycling during winter was barely addressed. Here, we quantified net ammonification and nitrification during the dormant season by in situ and laboratory incubations in soils of a temperate European beech and a Norway spruce forest. Further, we compared temperature dependency of N net mineralization in in situ field incubations with those from laboratory incubations at controlled temperatures. From November to April, in situ N net mineralization of the organic and upper mineral horizons amounted to 10.9 kg N (ha · 6 months)–1 in the spruce soil and to 44.3 kg N (ha · 6 months)–1 in the beech soil, representing 65% (beech) and 26% (spruce) of the annual above ground litterfall. N net mineralization was largest in the Oi/Oe horizon and lowest in the A and EA horizons. Net nitrification in the beech soil [1.5 kg N (ha · 6 months)–1] was less than in the spruce soil [5.9 kg N (ha · 6 months)–1]. In the range of soil temperatures observed in the field (0–8°C), the temperature dependency of N net mineralization was generally high for both soils and more pronounced in the laboratory incubations than in the in situ incubations. We suggest that homogenization of laboratory samples increased substrate availability and, thus, enhanced the temperature response of N net mineralization. In temperate forest soils, N net mineralization during the dormant season contributes substantially to the annual N cycling, especially in deciduous sites with large amounts of litterfall immediately before the dormant season. High Q10 values of N net mineralization at low temperatures suggest a huge effect of future increasing winter temperature on the N cycle in temperate forests.  相似文献   

14.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

15.
Nutrient effects on the growth of Crassulacean acid metabolism plants have received little attention. Agave deserti and A. lechuguilla were therefore selected for study because their rate of leaf unfolding from the central spike relates closely to growth, thus providing a convenient means for monitoring the effect of nutrient applications. The greater fractional influence of nitrogen fertilization on leaf unfolding for A. deserti can be explained by its lower soil level of N than for A. lechuguilla; high application levels of N near 500 kg ha‐1 proved slightly inhibitory compared with 100 kg N ha‐1 during the first year after application but not during the second year for A. deserti. Agave deserti occurred in soils much higher in phosphorus, potassium, and boron than for A. lechuguilla; consistent with this, application of these three nutrients in the field had little influence on the rate of leaf unfolding for A. deserti tut could significantly increase the leaf unfolding rate for A. lechuguilla. Applications of nutrient levels that greatly stimulated leaf unfolding for A, lechuguilla, such as 100 kg N ha‐1 or 500 kg P ha‐1 , led to large increases in net COg uptake over 2k h; applications of 500 kg K ha‐1 or 100 kg B ha"1 led to lower enhancements in CO2 uptake and in the leaf unfolding rate, but again prevented any major decrease in net COg rate during the night. In agreement with studies on other CAM plants, the macronutrients N, P, and K and the micronutrient B can enhance the growth of agaves, depending on the relative level of these nutrients in the soil.  相似文献   

16.
Biogas residues contain microbial biomass, which contributes to the formation of soil organic matter. Whether the potential of biogas residues to increase soil organic matter can be enhanced by co‐application with compost, biochar or manure is unknown, however. The aim of this paper is to evaluate the effects of co‐amendment on the mineralization of biogas residues, carbon dioxide emissions and the carbon flow within the microbial food web. We determined the fate of 13C‐labelled microbial biomass present in biogas residues applied together with compost, biochar and manure to soil, by analysing CO2 and biomarker phospholipid fatty acids. Although the rate of mineralization constant of the slowly degrading carbon pool was not affected by co‐amendments, co‐amendment with manure resulted in a larger rate of mineralization constant of the readily degrading carbon pool of biogas residues. The incorporation of carbon was mainly to Gram‐negative biomass and was the smallest with manure co‐amendment, which indicated differences in bioavailability of the carbon source.  相似文献   

17.
Indicators of soil quality associated with N‐cycling were assessed under different land‐use systems (native forest – NAT, reforestation with Araucaria angustifolia or Pinus taeda and agricultural use – AGR) to appraise the effects on the soil potential for N supply. The soil total N ranged from 2 to 4 g/kg (AGR and NAT, respectively), and the microbial biomass N ranged from 80 to 250 mg/kg, being higher in NAT and A. angustifolia, and lower in P. taeda and AGR sites. Activities of asparaginase (ca. 50–200 mg NH4+‐N/kg per h), glutaminase (ca. 200–800 mg NH4+‐N/kg per h) and urease (ca. 80–200 mg NH4+‐N/kg/h) were also more intense in the NAT and A. angustifolia‐reforested soils, indicating greater capacity for N mineralization. The NAT and AGR soils showed the highest and the lowest ammonification rate, respectively (ca. 1 and 0.4 mg NH4+‐N/kg per day), but the inverse for nitrification rate (ca. 12 and 26%), indicating a low capacity for N supply, in addition to higher risks of N losses in the AGR soil. A multivariate analysis indicated more similarity between NAT and A. angustifolia‐reforested sites, whilst the AGR soil was different and associated with a higher nitrification rate. In general, reforestation with the native species A. angustifolia had less impact than reforestation with the exogenous species P. taeda, considering the soil capacity for N supply. However, AGR use caused more changes, generally decrease in indicators of N‐cycling, showing a negative soil management effect on the sustainability of this agroecosystem.  相似文献   

18.
Strongly acidic soil (e.g. pH < 5.0) is detrimental to tea productivity and quality. Wheat, rice and peanut biochar produced at low temperature (max 300 °C) and differing in alkalinity content were incorporated into Xuan‐cheng (Ultisol; initial pHsoil/water = 1/2.5 4.12) and Ying‐tan soil (Ultisol; initial pH soil/water = 1/2.5 4.75) at 10 and 20 g/kg (w/w) to quantify their liming effect and evaluate their effectiveness for acidity amelioration of tea garden soils. After a 65‐day incubation at 25 °C, biochar application significantly (< 0.05) increased soil pH and exchangeable cations and reduced Al saturation of both tea soils. Association of H+ ions with biochar and decarboxylation processes was likely to be the main factor neutralizing soil acidity. Further, biochar application reduced acidity production from the N cycle. Significant (< 0.05) increases in exchangeable cations and reductions in exchangeable acidity and Al saturation were observed as the rate of biochar increased, but there were no further effects on soil pH. The lack of change in soil pH at the higher biochar rate may be due to the displacement of exchangeable acidity and the high buffering capacity of biochar, thereby retarding a further liming effect. Hence, a significant linear correlation between reduced exchangeable acidity and alkalinity balance was found in biochar‐amended soils (< 0.05). Low‐temperature biochar of crop residues is suggested as a potential amendment to ameliorate acidic tea garden soils.  相似文献   

19.
Abstract

Current nitrogen (N) fertilizer recommendations for Kentucky bluegrass (Poa pratensis L.) seed production in northern Idaho are based on potential yield and annual precipitation. Soil test correlation information collected for other northern Idaho crops provide the basis for P, S and B recommendations. The objective of this paper is to assess the current recommendations with a series of forty field trials conducted on ten sites during four seed production seasons. All field trials were conducted on Alfisols and Mollisols initially containing less than 60 kg N/ha, 3.5 μg/g NaOAc extractable P, 40 kg extractable SO4‐S/ha and 0.5 μg/g extractable B. Fertilization rates evaluated included: 0, 50, 75, 100, 125, 150 and 200 kg N/ha; 0, 30 and 60 kg P2O5/ha; 0, 25, and 50 kg SO4‐S/ha, and 0 and 1.5 kg B/ha. Five field sites contained the cultivar ‘Argyle’ Kentucky bluegrass seed, while the other five sites contained the cultivar ‘South Dakota’.

Excellent relationships between percent maximum Kentucky bluegrass seed production and the sum of inorganic soil N + fertilizer N applied were observed for the ‘Argyle’ (R2=0.65) and ‘South Dakota’ (R2=0.72) cultivars. Phosphorus applications of 30 kg P2O5/ha improved seed yields from 10.0 to 51.6% when initial soil test values were less than 3.0 6 μg/g NaOAc extractable P. When initial SO4‐S soil values were less than 32 kg/ha fertilizer additions increased seed yields from 12.6 to 107.3%. Boron applications did not improve seed yields. Analysis of these trials indicates that adequate information is available to make satisfactory P, S and B fertilizer recommendations; however, additional soil test correlation information is needed for N recommendations.  相似文献   

20.
Abstract

The effect of nitrapyrin on the fate of fertilizer nitrogen (N) applied to soil needs further investigation. Our objective was to determine the effect of nitrapyrin under two different leaching regimes on the fate of ammonium sulfate‐nitrogen [(NH4)2SO4‐N] added to the soil, namely corn N uptake, denitrification, nitrate leaching and soil residual N. A Nunn sandy clay loam soil (fine, montmorillonitic, mesic, aridic, argiustoll), low in residual inorganic N was used. Nitrogen‐15 enriched (NH4)2SO4 (5 atom% N‐15) was applied at five rates (0, 50, 100, 200, and 400 mg/kg), nitrapyrin at three rates 0, 1.3, and 2.6 μL/kg (0, 2.36, and 4.72 L/ha) and leaching at two rates (0 and 1000 mL over field capacity in two 500‐mL increments at 3 and 6 weeks after planting) in a complete factorial arrangement with three replications. Corn (Zea mays L.) seeds were planted in pots (2 kg soil/pot) and allowed to grow for 80 days in a greenhouse. The atom% N‐15 values were determined in plant tops, leachates and soil samples using a mass spectrometer. The results showed that N fertilizer increased dry matter production, plant N concentration, leaching of nitrates and denitrification significantly. The effect of nitrapyrin on yield was not statistically significant, but, it at a rate equivalent to 4.72 L/ha reduced denitrification and nitrate (NO3) leaching and increased N uptake efficiency. Application of 4.72 L/ha of nitrapyrin versus control showed the following results respectively, N uptake: 46.3 versus 39.6%, denitrification: 26.3 versus 35.3% and NO3 leaching: 2.7 vesus 6.7% of fertilizer N‐15. Nitrapyrin increased soil residual fertilizer N‐15 in organic matter and roots. The result of this study show that application of nitrapyrin at an adequate rate decreases denitrification and NO3 leaching and increases N uptake efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号