共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessing the effect of crop residue removal on soil organic carbon storage and microbial activity in a no‐till cropping system 下载免费PDF全文
Changes in agricultural management strategies have received much attention in recent years with a view to increasing or maintaining the amount of carbon (C) sequestered as soil organic C (SOC). In many parts of the world, minimum or no‐till management has been promoted as a means of improving soil quality, reducing losses of erosion and potentially increasing SOC stocks. However, no‐till systems can become problematic and potentially disease‐prone, especially due to high crop residue loadings. Consequently, residue removal either by harvesting or burning off may be employed to reduce these pressures. Here, we examined the effect of crop residue removal on C storage in soil that had been under no‐till management for 20 yr. We predicted improved physical properties (i.e. lower bulk density) and greater microbial activity under the residue retention soils due to greater readily available C and nutrients derived from crop residues. In contrast, we predicted relative reductions in SOC in the no residue soils due to a lack of available residue‐derived C for microbial use. Residue removal caused a relative C loss from the soil, which was related to C input, amount of nutrient availability and microbial activity. We demonstrate the importance of maintaining crop residue cover in no‐till cropping systems for soil function and highlight the potentially deleterious effects of changing management strategy to increased residue harvesting or removal by burning. 相似文献
2.
Prabhu Govindasamy Rui Liu Tony Provin Nithya Rajan Frank Hons Jake Mowrer Muthukumar Bagavathiannan 《Soil Use and Management》2021,37(1):37-48
Soil organic matter (SOM) is considered an important indicator of soil quality, which can be impacted by crop production practices such as tillage. In this study, two long‐term tillage regimes (conventional tillage [CT] and no tillage [NT], conducted for 36 years) were compared in continuous sorghum production in a sub‐tropical environment in southeast Texas. The positive effects of long‐term NT practice were more conspicuous at the soil surface compared with the deeper soil profiles. The SOC was greater (1.5 t C ha?1 greater) in the NT system compared with the CT system. Results from an incubation study indicate that the rate of C‐min at 0–5 cm soil depth was significantly greater (164 μg of CO2–C g?1 of soil greater) in NT than that of CT, but this trend was reversed at 10–20 cm depth wherein the C‐min rates were 106 μg of CO2–C g?1 of soil greater in CT compared with NT, which is likely because of soil disturbance during the study. Soil cumulative CO2‐C emissions were greater in the CT system (7.28 g m?2) than in the NT system (5.19 g m?2), which is primarily attributed to high soil temperature conditions in the CT system. Sorghum grain yield however was not influenced by the differences in SOC content in this long‐term experiment. Overall, the present study found that long‐term conservation tillage improved SOC stock and reduced carbon loss, thus had a positive impact on soil health and sustainability. 相似文献
3.
The sequestration of carbon in soil is not completely understood, and quantitative information about the rates of soil organic carbon (SOC) turnover could improve understanding. We analyzed the effects of the uneven distribution of crop residues after harvest of silage maize on C and N losses (CO2‐C, dissolved organic carbon (DOC) and nitrogen (DON), and NO3–) from a Haplic Phaeozem and on the occurrence of priming effects induced by the decomposition of accumulated maize residues. Soil columns were taken from a continuous maize (since 1961) field after harvest i) between maize stalk rows (Mbare), ii) within the maize rows including a standing maize stalk (Mstalk), and iii) from a continuous rye (since 1878) field after tillage (rye stalk and roots were mixed into the Ap horizon). The soil columns were incubated for 230 days at 8 °C with an irrigation rate of 2 mm 10–2 M CaCl2 per day. Natural 13C abundance was used to distinguish between maize‐derived C (in SOC and maize residues) and older C originating from former C3 vegetation. The uneven distribution of maize residues resulted in a considerably increased heterotrophic activity within the maize rows as compared with soil between seed rows. Cumulative CO2 production was 53.1 g CO2‐C m–2 for Mstalk and 23.3 g CO2‐C m–2 for Mbare. The contribution of maize‐derived C to the total CO2 emission was 83 % (Mstalk) and 67 % (Mbare). Calculated as difference between CO2‐C release from Mstalk and Mbare, 19 % of the maize residues (roots and stalk) in Mstalk were mineralized during the incubation period. There was no or only a marginal effect of the accumulation of maize residues in Mstalk on leaching of DOC, DON, and NO3–. Total DOC and DON leaching amounted to 2.5 g C m–2 and 0.16 g N m–2 for Mstalk and to 2.1 g C m–2 and 0.12 g N m–2 for Mbare. The contribution of maize‐derived C to DOC leaching was about 25 % for Mstalk and Mbare. Nitrate leaching amounted to 3.9 g NO3–‐N m–2 for Mstalk and to 3.5 g NO3–‐N m–2 for Mbare. There was no priming effect induced by the decomposition of fresh maize residues with respect to CO2 or DOC production from indigenous soil organic carbon derived from C3 vegetation. 相似文献
4.
A natural‐13C‐labeling approach—formerly observed under controlled conditions—was tested in the field to partition total soil CO2 efflux into root respiration, rhizomicrobial respiration, and soil organic matter (SOM) decomposition. Different results were expected in the field due to different climate, site, and microbial properties in contrast to the laboratory. Within this isotopic method, maize was planted on soil with C3‐vegetation history and the total CO2 efflux from soil was subdivided by isotopic mass balance. The C4‐derived C in soil microbial biomass was also determined. Additionally, in a root‐exclusion approach, root‐ and SOM‐derived CO2 were determined by the total CO2 effluxes from maize (Zea mays L.) and bare‐fallow plots. In both approaches, maize‐derived CO2 contributed 22% to 35% to the total CO2 efflux during the growth period, which was comparable to other field studies. In our laboratory study, this CO2 fraction was tripled due to different climate, soil, and sampling conditions. In the natural‐13C‐labeling approach, rhizomicrobial respiration was low compared to other studies, which was related to a low amount of C4‐derived microbial biomass. At the end of the growth period, however, 64% root respiration and 36% rhizomicrobial respiration in relation to total root‐derived CO2 were calculated when considering high isotopic fractionations between SOM, microbial biomass, and CO2. This relationship was closer to the 50% : 50% partitioning described in the literature than without fractionation (23% root respiration, 77% rhizomicrobial respiration). Fractionation processes of 13C must be taken into account when calculating CO2 partitioning in soil. Both methods—natural 13C labeling and root exclusion—showed the same partitioning results when 13C isotopic fractionation during microbial respiration was considered and may therefore be used to separate plant‐ and SOM‐derived CO2 sources. 相似文献
5.
In tropical, low‐fertility soils, crop yields are dependent on soil carbon, and cropping systems under no‐till can increase soil C stocks. Plant residues supplied by cover crops in no‐till systems may improve aggregate stability and soil carbon, which may be further increased with the introduction of a legume in the cropping system. This research studied the effects of cover crops in rotation with soybean under no‐till on soil carbon and nitrogen, in Botucatu, Brazil, for 3 yr. The cover crops were millet (Penninsetum americanum Leek), cober crop (Sorghum bicolor × Sorghum sudanense) and sunn hemp (Crotalaria juncea L.), grown in the spring. Fallow without cover crops was used as a control. Grain sorghum (Sorghum bicolor L. Moench) and soybean (Glycine max (L.) Merril) were grown in fall–winter and summer, respectively. Generally, cover crops increased soil carbon contents, but soil N was only increased by sunn hemp in the particulate organic C fraction. An increase in the labile carbon fraction in the topsoil layers was closely related to cover crop root development. Fallow in spring should not be recommended in degraded soils with lowcarbon stock. Labile‐fractioned soil organic carbon and total carbon levels are more efficiently increased by grasses than by legumes in the short term, and grasses cropped in spring increase soil C/N ratio. Conversely, the introduction of a legume (sunn hemp) maintained a more stable C/N ratio, that is around 10, which would be more effective in increasing soil C in the long term. 相似文献
6.
7.
Bruno Glaser Roland Bol Neil Preedy Kevin B. McTiernan Matt Clark Wulf Amelung 《植物养料与土壤学杂志》2001,164(5):467-474
Land application of animal wastes from intensive grassland farming has caused growing environmental problems during the last decade. This study aimed to elucidate the short‐term sequestration of slurry‐derived C and N in a temperate grassland soil (Southwest England) using natural abundance 13C and 15N stable isotope techniques. Slurry was collected from cows fed either on perennial ryegrass (C3) or maize (C4) silages. 50 m3 ha—1 of each of the obtained C3 or C4 slurries (δ13C = —30.7 and —21.3‰, δ15N = +12.2 and + 13.8 ‰, respectively) were applied to a C3 soil with δ13C and δ15N values of —30.0 ± 0.2‰ and + 4.9 ± 0.3‰, respectively. Triplicate soil samples were taken from 0—2, 2—7.5, and 7.5—15 cm soil depth 90 and 10 days before, at 2 and 12 h, as well as at 1, 2, 4, 7, and 14 days after slurry application and analyzed for total C, N, δ13C, and δ15N. No significant differences in soil C and N content were observed following slurry application using conventional C and N analysis techniques. However, natural abundance 13C and 15N isotope analysis allowed for a sensitive temporal quantification of the slurry‐derived C and N sequestration in the grassland soil. Our results showed that within 12 hours more than one‐third of the applied slurry C was found in the uppermost soil layer (0—2 cm), decreasing to 18% after 2 days, but subsequently increasing to 36% after 2 weeks. The tentative estimate of slurry‐derived N in the soil suggested a decrease from 50% 2 hours after slurry application to only 26% after 2 weeks, assuming that the increase in δ15N of the slurry plots compared to the control is proportional to the amount of slurry‐incorporated N. We conclude that the natural abundance tracer technique can provide a rapid new clue to the fate of slurry in agricultural C and N budgets, which is important for environmental impacts, farm waste management, and climate change studies. 相似文献
8.
9.
For a quantitative analysis of SOC dynamics it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. We used the 13C isotope to determine the incorporation of maize residues into the soil organic carbon (SOC), to trace the origin of the dissolved organic carbon (DOC), and to quantify the fraction of the maize C in the soil respiration. The maize‐derived SOC was quantified in soil samples collected to a depth of 65 cm from two plots, one ’︁continuous maize’ and the other ’︁continuous rye’ (reference site) from the long‐term field experiment ’︁Ewiger Roggen’ in Halle. This field trial was established in 1878 and was partly changed to a continuous maize cropping system in 1961. Production rates and δ13C of DOC and CO2 were determined for the Ap horizon in incubation experiments with undisturbed soil columns. After 37 years of continuous maize cropping, 15% of the total SOC in the topsoil originated from maize C. The fraction of the maize‐derived C below the ploughed horizon was only 5 to 3%. The total amount of maize C stored in the profile was 9080 kg ha−1 which was equal to about 31% of the estimated total C input via maize residues (roots and stubble). Total leaching of DOC during the incubation period of 16 weeks was 1.1 g m−2 and one third of the DOC derived from maize C. The specific DOC production rate from the maize‐derived SOC was 2.5 times higher than that from the older humus formed by C3 plants. The total CO2‐C emission for 16 weeks was 18 g m−2. Fifty‐eight percent of the soil respiration originated from maize C. The specific CO2 formation from maize‐derived SOC was 8 times higher than that from the older SOC formed by C3 plants. The ratio of DOC production to CO2‐C production was three times smaller for the young, maize‐derived SOC than for the older humus formed by C3 plants. 相似文献
10.
The impacts of tillage and cropping sequences on soil organic matter and nutrients have been frequently reported to affect the uppermost soil layers, but there is little published information concerning effects at greater depth. This article reports results on the distribution of soil organic carbon (SOC), active carbon (AC), N, Olsen‐P and extractable K within 100 cm in short (4 yr) and long (16 yr) term experiments under different tillage systems. Short (TT4) and long (TT16) traditional tillage are compared with conservation tillage, reduced (RT16) and non‐tillage (NT4). The results show more accumulation of SOC in the near‐surface under RT16 and NT4 in both experiments compared with traditional tillage. Moreover, greater C content occurs to 40 cm depth in the long‐term experiment. The results demonstrate the importance of time on C accumulation, not only in near‐surface layers but also at greater depths. Active C is an indicator of the increase in soil quality in the long‐term experiment. This trend is only apparent for the first 10 cm in the short‐term experiment. Patterns in N, Olsen‐P and extractable K are similar to that of SOC. However, only extractable K is significantly greater in soil under conservation tillage (RT16 and NT4) after short and long periods. Potassium availability is a good indicator of the changes caused by tillage. Our results indicate that studies of soils at depth could be very useful in long‐term experiments to demonstrate the effect of conservation tillage on C and nutrient distribution. 相似文献
11.
Chunli Li Xiying Hao Benjamin H. Ellert Walter D. Willms Mengli Zhao Guodong Han 《植物养料与土壤学杂志》2012,175(3):339-344
We investigated soil response to long‐term cattle grazing at stocking rates 0 (CK), 2.4 (MG), and 4.8 (HG) animal unit months ha–1 on a Rough Fescue (Festuca campestris Rydb.) grassland. Soil organic C and N stocks and available nutrients were not affected by grazing while soil bulk densities (0–30 cm) were higher and P stocks (15–30 cm) were lower under grazing than CK. The slow rate change of soil C and N suggest the rich black grassland soils appear to tolerate intensive grazing. 相似文献
12.
Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis 总被引:1,自引:0,他引:1
Heiner Flessa Wulf Amelung Mirjam Helfrich Guido L. B. Wiesenberg Gerd Gleixner Sonja Brodowski Janet Rethemeyer Christiane Kramer Pieter M. Grootes 《植物养料与土壤学杂志》2008,171(1):36-51
Quantitative information about the amount and stability of organic carbon (OC) in different soil organic‐matter (OM) fractions and in specific organic compounds and compound‐classes is needed to improve our understanding of organic‐matter sequestration in soils. In the present paper, we summarize and integrate results performed on two different arable soils with continuous maize cropping (a) Stagnic Luvisol with maize cropping for 24 y, b) Luvic Phaeozem with maize cropping for 39 y) to identify (1) the storage of OC in different soil organic‐matter fractions, (2) the function of these fractions with respect to soil‐OC stabilization, (3) the importance and partitioning of fossil‐C deposits, and (4) the rates of soil‐OC stabilization as assessed by compound‐specific isotope analyses. The fractionation procedures included particle‐size fractionation, density fractionation, aggregate fractionation, acid hydrolysis, different oxidation procedures, isolation of extractable lipids and phospholipid fatty acids, pyrolysis, and the determination of black C. Stability of OC was determined by 13C and 14C analyses. The main inputs of OC were plant litter (both sites) and deposition of fossil C likely from coal combustion and lignite dust (only Phaeozem). 相似文献
13.
Soil organic carbon (SOC) plays an essential role in the sustainability of natural and agricultural systems. The identification of sensitive SOC fractions can be crucial for an understanding of SOC dynamics and stabilization. The objective of this study was to assess the effect of long‐term no‐tillage (NT) on SOC content and its distribution between particulate organic matter (POM) and mineral‐associated organic matter (Min) fractions in five different cereal production areas of Aragon (north‐east Spain). The study was conducted under on‐farm conditions where pairs of adjacent fields under NT and conventional tillage (CT) were compared. An undisturbed soil nearby under native vegetation (NAT) was included. The results indicate that SOC was significantly affected by tillage in the first 5 cm with the greatest concentrations found in NT (1.5–43% more than in CT). Below 40 cm, SOC under NT decreased (20–40%) to values similar or less than those under CT. However, the stratification ratio (SR) never reached the threshold value of 2. The POM‐C fraction, disproportionate to its small contribution to total SOC (10–30%), was greatly affected by soil management. The pronounced stratification in this fraction (SR>2 in NT) and its usefulness for differentiating the study sites in terms of response to NT make POM‐C a good indicator of changes in soil management under the study conditions. Results from this on‐farm study indicate that NT can be recommended as an alternative strategy to increase organic carbon at the soil surface in the cereal production areas of Aragon and in other analogous areas. 相似文献
14.
Research information from a systematic planned study on the effects of vehicular passages and axle load on soil carbon dioxide (CO2) fluxes and soil carbon (C) sequestration under long‐term NT farming is scanty. Therefore, the present study was conducted on an on‐going 20‐year experiment to assess the impacts of variable vehicular passages of a low axle load on soil CO2 emission and soil C sequestration from a no‐till (NT) managed corn (Zea mays L.)–soybean (Glycine max Linneo) rotation in comparison with that a soil under woodlots (soils under natural wooded plantation). The experimental treatment consisted of an empty wagon [0 Mg load for compaction (C‐0; control)] compared with 2 (C‐2) and 4 (C‐4) passages of 2.5 Mg water wagon axle load, applied to the entire plot every year during April/May for 20 consecutive years. Soil samples were obtained in November 2016 to determine the effects of various vehicular passages on C and nitrogen (N) contents and CO2 emissions. Soil CO2 fluxes were measured from November 16, 2016, to May 30, 2017, on the bi‐weekly (November to December and April to May) and monthly (January to March) basis by using high‐density polyvinyl chloride static gas chambers. The soil CO2 fluxes ranged from –1.05 to 9.03 g CO2 m?2 d?1. The lowest soil CO2 fluxes were observed in December coinciding with the minimum soil temperature. In general, daily soil CO2 fluxes were higher under C‐0 than those under other treatments. Vehicular traffic and axle load reduced the cumulative emission of CO2 by 22.6 and 29.8% under C‐2 and C‐4, respectively, compared with that under C‐0 (6.09 Mg ha?1). Soil and air temperatures had a significant positive correlation with the diurnal fluxes of soil CO2 in all the treatments except that under C‐4. Electrical conductivity, soil C and N contents and pools did not differ significantly among the treatments. Further, 2 to 4 passages of vehicles with 2.5 Mg of axle load decreased the soil CO2 emission on Crosby silt loam under NT as compared to that under the control. Therefore, continuous cultivation of row crops with moderate trafficking under NT and residue retention is recommended, and it also reduces the potential of soil CO2 emission while improving the soil organic C pools of well‐drained soils of Central Ohio. 相似文献
15.
The present study combined a physical fractionation procedure with the determination of the natural abundance of 15N to investigate the impact of organic manure and mineral fertilizer application, and fallow on changes of N associated with different soil particle size fractions. The long‐term field experiment was conducted since 1956 in Ultuna, Sweden, on an Eutric Cambisol. Nitrogen in bulk soil and in particle size fractions changed significantly since 1956. The Nt concentrations in bulk soil decreased in all treatments not receiving organic materials. Comparing the N contribution of particle‐size fractions to the total N amount revealed the following ranking: silt > clay > fine clay > fine sand > coarse sand. The relative contribution of N in silt sized particles significantly increased from low to high bulk soil N contents, whereas N in clay and fine clay fractions decreased. The C : N ratios of particle size fractions differed considerably more between treatments than C : N ratios in bulk soils. Generally, the C : N ratios decreased from coarse to fine fractions emphasizing the tendency of smaller fractions being more significant as N sink than as Corg sink. 15N abundances varied more between particle size fractions of single treatments than between bulk soil from differently treated plots. Within treatments we observed differences of up to 7.1 ‰ between particle size fractions. In most cases δ 15N values increased with decreasing particle sizes. This pattern on average was similar to changes in δ 13 C. Our results suggest that silt sized particles acted as medium‐term sink of introduced N and that 15N abundances in particle size fractions sensitively reflect changes in N status in response to soil management. 相似文献
16.
After 37 years of different soil‐tillage treatments in a long‐term field experiment in Germany, a number of biological soil characteristics was measured. The field trial comprised six major treatments with different implements and various depths. In this paper, results from a comparison of long‐term use of a plow (to 25 cm depth), a chisel plow (to 15 cm depth), and no‐tillage are presented. The biological soil characteristics measured include the soil‐organic‐carbon (SOC) content, microbial biomass, enzyme activities, and the abundance and biomass of earthworms. Long‐term use of a chisel plow and no‐tillage increased the organic‐C content in the uppermost soil layer (0–10 cm) compared with the plow treatment. The microbial biomass and the enzyme activities arginine‐ammonification, β‐glucosidase, and catalase decreased with depth in all treatments. Arginine‐ammonification and catalase were higher in the plow treatment in soil layers 10 to 30 cm. Additionally, the chisel plow caused an increase in number and biomass of earthworms compared to both other tillage treatments. Differences in earthworm numbers and biomass between plowing and no‐tillage were not statistically significant. 相似文献
17.
Angelika Kölbl Margit von Lützow Cornelia Rumpel Jean Charles Munch Ingrid Kögel‐Knabner 《植物养料与土壤学杂志》2007,170(1):123-133
The application of 13C‐labeled litter enables to study decomposition processes as well as the allocation of litter‐derived carbon to different soil C pools. 13Carbon‐labeled mustard litter was used in order to compare decomposition processes in an agricultural cropland with high‐yield (HY) and low‐yield (LY) areas, the latter being characterized by a finer texture and a lower organic‐C (OC) content. After tracer application, 13C concentrations were monitored in topsoil samples in particulate organic matter (POM) and in fine mineral fractions (silt‐ and clay‐sized fractions). After 568 d, approximately 5% and 10% of the initial 13C amount were found in POM fractions of LY and HY areas, respectively. Higher amounts were found in POM occluded in aggregates than in free POM. Medium‐term (0.5–2 y) storage of the initial 13C in fine silt‐ and clay‐sized fractions amounts to 10% in HY and LY soils, with faster enrichment but also faster disappearance of the 13C signal from LY soils. Amounts of 80%–90% of the added 13C were mineralized or leached in the observed period. Decomposition of free POM was faster in HY than in LY areas during the first year, but the remaining 13C amounts in occluded‐POM fractions were higher in HY soils after 568 d. High‐yield and low‐yield areas showed different 13C dynamics in fine mineral fractions. In LY soils, 13C amounts and concentrations in mineral‐associated fractions increased within 160 d after application and decreased in the following time period. In HY areas, a significant increase in 13C amounts did not occur until after 568 d. The results indicate initially faster decomposition processes in HY than in LY areas due to different soil conditions, such as soil texture and water regime. The higher silt and clay contents of LY areas seem to promote a faster aggregate formation and turnover, leading to a closer contact between POM and mineral surfaces in this area. This favors the OC storage in fine mineral fractions in the medium term. Lower aggregate formation and turnover in the coarser textured HY soil leads to a delayed C stabilization in silt‐ and clay‐sized fractions. 相似文献
18.
Few studies have demonstrated soil redistribution under upslope tillage (UT) rather than downslope tillage (DT) and its impact on soil organic carbon (SOC) redistribution in long‐term agricultural practices in hillslope landscapes. We selected two neighbouring sites from the Sichuan Basin, China, one under DT and the other under UT, to determine the pattern of soil and SOC redistribution under a long‐term UT practice. DT caused soil loss at upper slope positions and soil accumulation at lower slope positions. However, UT resulted in soil accumulation at upper slope positions and soil loss at lower slope positions. The total erosion rate decreased by 60.5% after 29 years of UT compared with DT. Having the same direction of soil movement by tillage and water exaggerated total soil loss, whereas having the two movements in the contrasting direction of soil for the two reduced it. SOC stocks at positions from summit to downslope were much larger (33.8%) and at toe‐slope positions were only slightly greater (4.5%) in the UT soils than comparable values for the DT site. The accumulation rate of SOC at the UT site increased by 0.26 Mg/ha/year compared with that at the DT site. It is suggested that soil movement by water and tillage erosion occurred in the same direction accelerates the depletion of SOC pools, whereas the opposite direction of soil movement for the two can increase SOC accumulation. Our results suggest that UT has significant impacts on soil redistribution processes and SOC accumulation on steeply sloping land. 相似文献
19.
《Soil Science and Plant Nutrition》2013,59(2):139-144
Abstract Northeast China is the main production area of maize and soybean in China. In the present study, the rates of decomposition and replacement of soil organic carbon (SOC) were estimated using the soil inventory collected since 1991 from long-term maize and soybean cultivation plots in Heilongjiang Province, Northeast China, to evaluate the sustainability of the present cultivation system. The total carbon (C) content in soil was stable without any significant changes in the plots (approximately 28.5 g C kg?1). The δ13C value of soil organic matter under continuous maize cultivation increased linearly with an annual increment of 0.07 from ?23.9 in 1991, which indicated that approximately 13% of the initial SOC was decomposed during the 13-year period of maize cultivation, with a half-life of 65 years. Slow decomposition of SOC was considered to result from the low annual mean temperature (1.5°C) and long freezing period (170–180 days year?1) in the study area. In contrast, the amount of organic C derived from maize increased in the soil with a very slow annual increment of 0.17 g C kg?1, probably because of the removal of all the plant residues from the plots. Based on the soil organic matter dynamics observed in the study plots, intentional recycling/maintenance of plant residues was proposed as a way of increasing soil fertility in maize or soybean cultivation. 相似文献
20.
Changes in grain yields and soil organic carbon (SOC) from a 26 y dryland fertilization trial in Pingliang, Gansu, China, were recorded. Cumulative C inputs from straw and root and manure for fertilizer treatments were estimated. Mean wheat (Triticum aestivum L.) yields for the 18 y ranged from 1.72 t ha–1 for the unfertilized plots (CK) to 4.65 t ha–1 for the plots that received manure (M) annually with inorganic N and P fertilizers (MNP). Corn (Zea mays L.) yields for the 6 y averaged 2.43 and 5.35 t ha–1 in the same treatments. Yields declined with year except in the CK for wheat. Wheat yields for N only declined with time by 117.8 kg ha–1 y–1 that was the highest decrease among all treatments, and that for NP declined by 84.7 kg ha–1 y–1, similar to the declines of 77.4 kg ha–1 y–1 for the treatment receiving straw and N annually and P every second year (SNP). Likewise, the corn yields declined highly for all treatments, and the declined amounts ranged from 108 to 258 kg ha–1 y–1 which was much higher than in wheat. These declined yields were mostly linked to both gradual dry weather and nutrients depletion of the soil. The N only resulted in both P and K deficiency in the soil, and soil N and K negative balances in the NP and MNP were obvious. Soil organic carbon (SOC) in the 0–20 cm soil layer increased with time except in the CK and N treatments, in which SOC remained almost stable. In the MNP and M treatments, 24.7% and 24.0% of the amount of cumulative C input from organic sources remained in the soil as SOC, but 13.7% of the C input from straw and root in the SNP, suggesting manure is more effective in building soil C than straw. Across the 26 y cropping and fertilization, annual soil‐C sequestration rates ranged from 0.014 t C ha–1 y–1 for the CK to 0.372 t C ha–1 y–1 for the MNP. We found a strong linear relationship (R2 = 0.74, p = 0.025) between SOC sequestration and cumulative C input, with C conversion–to–SOC rate of 16.9%, suggesting these dryland soils have not reached an upper limit of C sequestration. 相似文献