首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In Puglia, Italy, deep tillage and rock fragmentation are common agricultural practices to prepare land for vineyards or orchards. Unfortunately, little is known about how these practices influence soil structure and quality. There is a lack of information on the consequences of these practices on the soil fractions coarser than 2 mm, which are known as rock fragments or skeletal material, the focus of this study. Soil samples were obtained from depths of 0‐20 and 20–40 cm and analysed for pH, electrical conductivity, total organic carbon, total nitrogen, available phosphorus, and total and active calcium carbonate. For each soil depth, we determined the amount of fine earth and skeletal material by volume. The results indicate that rock fragmentation and/or deep ploughing cause a major change in soils, leading to the progressive reduction in total organic carbon and nitrogen, and to an increase in total and active calcium carbonate. In addition, there was a marked increase in skeletal material compared to undisturbed soil. The results confirm that rock fragmentation causes significant changes in soil physical properties and increases greatly the amount of skeletal material.  相似文献   

3.
西北旱作农田不同耕作模式对土壤性状及小麦产量的影响   总被引:3,自引:2,他引:3  
【目的】在雨养农业区,旱作区因连年翻耕而引起严重的土壤质量退化,使作物生产力下降,需定期改变其耕作方式。免耕深松隔年轮耕可以降低土壤容重,增加耕层土壤团聚体和有机碳氮的含量,增强土壤蓄水保墒能力,对改善土壤性状和提高作物产量具有重要意义。【方法】本研究于2007~2010年在宁夏南部半旱区进行了两年免耕一年深松 (NT/ST/NT)、两年深松一年免耕 (ST/NT/ST)、连年翻耕 (CT) 3种耕作模式试验,研究了其对耕层土壤容重、团聚体、土壤有机碳氮含量、土壤水分及作物产量的影响。【结果】3年耕作处理后,与连年翻耕相比,NT/ST/NT、ST/NT/ST处理0—20 cm层土壤容重分别降低了4.4%和7.3%,20—40 cm土层分别降低2.1%和5.7%,40—60 cm土层分别降低4.1%和5.5%;土壤孔隙度0—20 cm土层分别提高了4.1%和6.8%,20—40 cm土层提高了2.1%和4.3%,40—60 cm土层提高了5.5%和5.7%。0—20 cm土层,NT/ST/NT处理0.25~2 mm机械稳定性团聚体含量平均较CT处理提高了12.4%,ST/NT/ST处理 > 2 mm机械稳定性团聚体含量较CT处理平均提高了42.0%;20—40 cm土层,NT/ST/NT、ST/NT/ST处理 > 2 mm团聚体含量较CT处理平均分别提高了44.3%和50.4%。两种轮耕模式使0—40 cm土层土壤团聚体平均重量直径分别显著高于CT处理21.8%和22.5%,几何平均直径分别高于CT处理9.6%和9.5%。三个处理耕层土壤有机碳氮含量均比试验前有不同程度的增加,轮耕处理0—30 cm土层0.25~2 mm粒级有机碳含量和 < 0.25 mm粒级全氮含量显著高于CT,以ST/NT/ST处理效果最佳。NT/ST/NT和ST/NT/ST处理0—10 cm土层0.25~2 mm团聚体有机碳含量较CT处理分别显著提高7.9%和10.2%,10—20 cm土层分别提高19.0%和15.7%,20—30 cm土层分别提高10.6%和13.3%;0—10 cm土层 < 0.25 mm粒级全氮含量显著提高9.4%和10.9%,10—20 cm土层分别提高6.8%和10.2%,20—30 cm土层分别提高7.4%和9.3%。研究期间,NT/ST/NT和ST/NT/ST处理较CT处理可显著提高0—200 cm土壤贮水量,其中以ST/NT/ST处理保蓄土壤水分效果最佳。在小麦生长前期,轮耕处理土壤贮水量均高于连年翻耕,生长后期ST/NT/ST处理土壤水分含量最高,NT/ST/NT处理次之。轮耕处理的小麦生物量和籽粒产量显著高于连年翻耕,其中小麦籽粒产量分别增加9.6%和10.7%。【结论】免耕/深松轮耕可显著改善土壤的物理性状和水分环境,显著增加耕层土壤有机碳氮含量,提高作物的生产力,在宁南旱区有重要的应用前景。  相似文献   

4.
保护性耕作对旱作农田耕层土壤肥力及酶活性的影响   总被引:18,自引:3,他引:18  
通过田间定位试验,研究了不同耕作方式对黄土高原西部旱农区耕层土壤肥力和酶活性的影响。结果表明,秸秆还田可以显著提高 0—5和5—10 cm土层有机质、全氮、全磷、全钾、铵态氮、速效磷、速效钾和3种水解酶活性; 10—30 cm 土层仅提高了有机质、全钾和速效钾含量,对其余各养分含量和水解酶活性并无明显影响。免耕降低了0—5、5—10和10—30 cm土层硝态氮含量,但对过氧化氢酶活性有明显促进作用。相关分析表明,土壤有机质、养分和碱性磷酸酶、蔗糖酶活性之间呈极显著相关关系。进一步应用主成分分析表明,土壤有机质、养分和水解酶活性共同反映着黄土高原雨养农区土壤肥力水平的高低。  相似文献   

5.
Tillage experiments were carried out in order to study the effect of water content on the aggregate size distribution produced by tillage, and to investigate the relationship between the soil structures produced by tillage and Dexter's index of soil physical quality, S. Tillage with a mouldboard plough was done on four different soils over a range of naturally occurring water contents. The aggregate size distribution and the specific surface area produced by tillage were obtained by sieving. We define the optimum water content for tillage, θOPT, as the water content at which the specific surface area of the aggregates produced is maximum. This is consistent with the water content at which the amount of small aggregates produced is greatest and the proportion of clods produced is smallest. For the four investigated soils, θOPT was found to be close to the water content at the inflection point of the water retention curve, and in the vicinity of 0.8θPL (where θPL is the lower plastic limit). At water contents either lower or higher than θOPT, the specific surface area produced was smaller. The specific surface area produced at θOPT was found to be strongly correlated with the index of soil physical quality, S. The specific surface area produced is larger the greater S, i.e. the better the soil physical quality. Consistently, the proportion of small aggregates produced at θOPT is larger and the proportion of clods produced at θOPT smaller, the greater S. No clods (>50 mm) are produced on soils with good physical quality.  相似文献   

6.
7.
The objective of this study was to determine 13‐year management effects on soil properties between a corn–soybean (Zea mays–Glycine max) cropping system (CSRS) and vegetable production systems (VPS) on a soil in central Ohio. Three treatments included in the VPS were: (1) addition of wood chips, (2) permanent raised beds (PRB) with black polyethylene film (20 μm thick), and (3) bare soil surface (BSS). Additionally, (4) animal manure was applied in all CSRS and VPS treatments except for the wood chips (WCP) added plot in the VPS. Research data from the study show that relatively more soil organic carbon (SOC) stock in the 0–20 cm soil depth of the BSS treatment (100.6 Mg ha?1) was primarily due to differences in the type of soil amendments applied. For example, composted poultry manure was applied in the BSS and PRB plots, compared with input of fresh dairy manure mixed with straw being applied in the CSRS. Furthermore, soil management practices that aided in avoiding or reducing soil compaction (i.e., PRB or application of WCP in the surface) resulted in the overall improvement in soil structure and water retention, compared with that under chisel and disc ploughing done in the CSRS. The highest plant available water capacity (1.79 cm) was observed in the CSRS compared with 0.97 cm under BSS and PRB plots. These trends suggest that the type and amount of animal manure is critical to increasing SOC stocks in intensively cultivated VPS and CSRS in central Ohio, while also improving soil structure and water retention.  相似文献   

8.
冷凉地区不同耕作措施对土壤环境和作物生长发育的影响   总被引:8,自引:0,他引:8  
通过不同耕作措施的实施,比较其对玉米种植地土壤水分、土壤温度、玉米生长发育及产量的影响,从而探讨不同的耕作方式在旱作农业试验区的适宜性。结果表明:不同的保护性耕作措施均可提高土壤水分含量,其中留茬旋耕处理的土壤贮水量最高,达(4.542±0.894)×105L/hm2;在玉米播种前期及苗期,免耕覆盖处理降低土壤温度1~2℃,而整个生育期留茬旋耕处理与传统耕作处理的土壤温度相近;苗期,留茬旋耕处理的玉米株高、根长、鲜重和干重均优于其它处理,促进了玉米的生长发育;不同的保护性耕作措施均可提高玉米的产量,与传统耕作相比可增产4.01%~22.1%。整秆还田和留茬旋耕处理玉米产量较高,两者之间差异不显著。综合考虑不同耕作措施的效应,留茬旋耕处理比整秆还田处理更适宜于冷凉地区的推广、应用。  相似文献   

9.
Abstract. The effects of nitrogen fertilizer and tillage systems on soil organic carbon (SOC) storage have been tested in many field experiments worldwide. The published results of this research are here compiled for evaluation of the impact of management practices on carbon sequestration. Paired data from 137 sites with varying nitrogen rates and 161 sites with contrasting tillage systems were included. Nitrogen fertilizer increased SOC but only when crop residues were returned to the soil; a multiple regression model accounted for just over half the variance (R2=0.56, P=0.001). The model included as independent variables: cumulative nitrogen fertilizer rate; rainfall; temperature; soil texture; and a cropping intensity index, calculated as a combination of the number of crops per year and percentage of corn in the rotation. Carbon sequestration increased as more nitrogen was applied to the system, and as rainfall or cropping intensity increased. At sites with higher mean temperatures and also in fine textured soils, carbon sequestration decreased. When the carbon costs of production, transportation and application of fertilizer are subtracted from the carbon sequestration predicted by the model, it appears that nitrogen fertilizer‐use in tropical regions results in no additional carbon sequestration, whereas in temperate climates, it appears to promote net carbon sequestration. No differences in SOC were found between reduced till (chisel, disc, and sweep till) and no‐till, whereas conventional tillage (mouldboard plough, disc plough) was associated with less SOC. The accumulation of SOC under conservation tillage (reduced and no till) was an S ‐shape time dependent process, which reached a steady state after 25–30 years, but this relationship only accounted for 26% of the variance. Averaging out SOC differences in all the experiments under conservation tillage, there was an increase of 2.1 t C ha?1 over ploughing. However, when only those cases that had apparently reached equilibrium were included (all no till vs. conventional tillage comparisons from temperate regions), mean SOC increased by approximately 12 t C ha?1. This estimate is larger than others previously reported. Carbon sequestration under conservation tillage was not significantly related to climate, soil texture or rotation.  相似文献   

10.
土壤水分特征曲线的分形模拟   总被引:17,自引:0,他引:17  
Many empirical models have been developed to describe the soil water retention curve (SWRC). In this study, a fractal model for SWRC was derived with a specially constructed Menger sponge to describe the fractal scaling behavior of soil; relationships were established among the fractal dimension of SWRC, the fractal dimension of soil mass, and soil texture; and the model was used to estimate SWRC with the estimated results being compared to experimental data for verification. The derived fractal model was in a power-law form, similar to the Brooks-Corey and Campbell empirical functions. Experimental data of particle size distribution (PSD), texture, and soil water retention for 10 soils collected at different places in China were used to estimate the fractal dimension of SWRC and the mass fractal dimension. The fractal dimension of SWRC and the mass fractal dimension were linearly related. Also, both of the fractal dimensions were dependent on soil texture, i.e., clay and sand contents. Expressions were proposed to quantify the relationships. Based on the relationships, four methods were used to determine the fractal dimension of SWRC and the model was applied to estimate soil water content at a wide range of tension values. The estimated results compared well with the measured data having relative errors less than 10% for over 60% of the measurements. Thus, this model, estimating the fractal dimension using soil textural data, offered an alternative for predicting SWRC.  相似文献   

11.
为明确整地时期对水田土壤的理化性质以及水稻产量的影响,在盐化草甸土型水稻土上开展了水田连续春、秋整地对土壤和水稻产量影响大区对比试验研究。结果表明:秋季整地可降低土壤含水量和容重,0~10 cm土层土壤含水量下降10.07%,容重下降0.02 g·cm~(-3);秋季整地可以提高土壤碱解氮、有效磷、速效钾含量,3次连续调查结果是土壤碱解氮、有效磷、速效钾含量秋整地比春整地分别提高29.30%、43.77%和24.06%,秋整地土壤淹水培养后铵态氮含量比春整地高7.94 mg·kg~(-1),秋整地土壤中交换性钠离子比春整地下降11.16%~129.72%,pH值下降0.10~0.36;秋整地可以提高水稻根系活力,促进籽粒养分吸收,与春整地相比,籽粒氮、磷、钾积累量分别提高4.51、2.49和1.03 kg·hm~(-2),水稻产量第1年增产1.03%,第2年增产22.61%,差异极显著,两年平均增产11.82%。综上所述,秋整地的盐化草甸土区稻田,无论是水稻产量还是土壤理化性质方面,均较春整地好。  相似文献   

12.
深旋松耕改善耕层结构促进马铃薯增产   总被引:3,自引:1,他引:3       下载免费PDF全文
为了探究深旋松耕提升马铃薯产量与质量的可行性。在山东省胶河地区以常规旋耕为对照,研究深旋松耕对土壤物理性质、马铃薯根系及产量形成的影响。结果表明:与常规旋耕相比,深旋松耕能打破犁底层,显著降低20~40 cm土层的容重和穿透阻力,提高0~50 cm土层的贮水量25.67%,促进作物生长,其中马铃薯根系生物量显著提高26.61%,中、下层叶片净光合速率分别增加20.82%、37.13%,进而提高花后光合产物积累量,促进花后干物质向块茎的转运,使得单块薯重量提高29.82%,马铃薯增产38.68%。  相似文献   

13.
Abstract

The study aimed at quantifying the rates of soil CO2 efflux under the influence of common tillage systems of moldboard plow (PT), chisel plow (CT), rotary tiller (RT), heavy disc harrow (DT), and no-tillage (NT) for 46 days in October and November in a field left fallow after wheat harvest located in southern Turkey. The NT and DT plots produced the lowest soil CO2 effluxes of 0.3 and 0.7 g m?2 h?1, respectively, relative to the other plots (P < 0.001). Following the highest rainfall amount of 87 mm on the tenth day after the tillage, soil CO2 efflux rates of all the plots peaked on the 12th day, with less influence on soil CO2 efflux in the NT plot than in the conventional tillage plots. Soil evaporation in NT (64 mmol m?2 s?1) was significantly lower than in the PT (85 mmol m?2 s?1) and RT (89 mmol m?2 s?1) tillage treatments (P < 0.01). The best multiple-regression model selected explained 46% of variation in soil respiration rates as a function of the tillage treatments, soil temperature, and soil evaporation (P < 0.001). The tillage systems of RT, PT, and CT led, on average, to 0.23, 0.22, and 0.18 g m?2 h?1 more soil CO2 efflux than the baseline of NT, respectively (P≤0.001).  相似文献   

14.
传统耕作和免耕的红壤生态系统土壤动物种群的分异   总被引:2,自引:0,他引:2  
In a field experiment ,the popultions of major soil fauna groups including earthworms,enchytraeids,arthropods and nematodes were examined in conventional tillage(CT) and no-tillage(NT) red soil ecosystems to evaluate their responses to tillage disturbance.Earthworms,macro- and micro-arthropods were stimulated under NT with earthworms showing the highest population increase by four times ,while enchytraeids and nematodes favored CT system predicting certain adaptability of these animals to plow-disturbed soil envi-ronment ,On the basis of relative response index it was found that soil fauna was more sensitive to tillage than soil resource base(C and N pools) and microflora.The population structure of soil fauna was also affected by tillage treatments.Analysis on nematode trophic groups showed that bacteria-feeding and plant parasitic nematodes were more abundant in CT soil whereas the proportions of fungivores and onmivore-predators increased in NT soil.Possible reasons for the differentiaion in both size and structure of the fauna populaion were discussed and the ecological significance involved in these changes was emphasized.  相似文献   

15.
北方旱区保护性耕作对农田土壤水分的影响   总被引:12,自引:10,他引:12  
土壤水分是中国北方旱区农业生产的主要限制因子,研究保护性耕作技术体系下土壤水分的动态变化,明确不同耕作模式下的水分平衡规律,对于选择适宜的保护性耕作技术,提高北方旱区土壤水分的利用效率具有重要的指导意义。该文在2a田间试验的基础上采用DSSAT模型对4个不同保护性耕作处理的土壤体积含水量、水分平衡以及水分利用效率进行了模拟和检验。结果表明干旱年份保护性耕作处理土壤体积含水量较传统耕作高,RMSE误差在0.025~0.063;干旱年份传统耕作土壤储水量减少最多,为144.6mm,降水较多年份减少也最多,为46.1mm;干旱年份水分利用效率1.52~1.78kg/m3,免耕覆盖水分利用效率最高,降水较多年份水分利用效率1.70~1.71kg/m3,各处理间差异并不显著。研究结果为保护性耕作技术对农田土壤水分的影响研究提供了理论依据。  相似文献   

16.
采用田间和小面积模拟降水试验的方法,对小麦机械收获后残茬覆盖与不覆盖两种条件下免耕、翻耕和间隔深松3种土壤耕作方式夏玉米田的土壤物理性状和水分利用效率进行了研究。结果表明,残茬覆盖与深松相结合,可平衡和改善耕层土壤温度状况,在土壤温度较低时具有保温作用,在土壤温度较高时具有降温作用;可以增加土壤的蓄水和保水能力,模拟降水后24 h测定1 m土层含水量比免耕不盖多26.1 mm,全生育期平均耕层土壤含水量比免耕不覆盖高9.37%;土壤通透性也得到改善;最终水分利用效率比免耕不盖提高25.26%。  相似文献   

17.
Soil core samples were taken from May 1996 to October 1996 at four week intervals to assess the longterm effects of compaction due to soil tillage on Collembola in arable land. Two different tillage systems were studied: conservation tillage (CS) with rotary harrowing to 120 mm depth and conventional tillage (CT) with a mould board plough to 300 mm depth. Soil compaction was achieved by wheeling with graded loads: 0t, 2 × 2.5t and 6 × 5.0t (wheeling frequency × wheel load) in early spring 1995. Litter decomposition rate was investigated by the minicontainer-method, using two different mesh-sizes: 20 μm (excluding mesofauna) and 500 μ (including mesofauna). The substrate used was winter wheat straw, corresponding to the crop cultivated on the field.We recorded 25 species of Collembola. The abundance of Collembola during the growing season was at a minimum in June in both tillage systems. Thereafter, numbers of individuals increased, probably due to better nutrition. Mesaphorura krausbaueri s.l. was eudominant in CS. In CT Folsomia fimetaria and M. krausbaueri s.l. reached high abundances at the end of August. Harvesting and tilling supported population growth in CS, while numbers in CT decreased. The collembolan species showed different preferences in regard to the tillage system and the grade of compaction. During the first 4 weeks of exposure the decomposition rate of straw was highest. The decomposition rate in the minicontainers with 20 μm mesh-size was higher due to better moisture conditions for the microorganisms. After harvest and tilling the decomposition rate increased, especially in the CS-plots, because of aeration and incorporation of residues. Population fluctuation in the minicontainers was caused by migration of Collembola in response to changing moisture conditions. The main species in the minicontainers were large and mobile. Compared to the surrounding soil, species diversity was reduced.  相似文献   

18.
转变耕作方式对长期旋免耕农田土壤有机碳库的影响   总被引:3,自引:6,他引:3  
土壤深松是解决长期旋免耕农田耕层浅薄化、亚表层(>15~30 cm)容重增加等问题的有效方法之一,而将长期旋免耕农田进行深松必然导致农业生态系统中土壤有机碳(soil organic carbon,SOC)及碳固定速率的变化。因此,为对比将长期旋免耕转变为深松前后农田土壤有机碳库变化,该研究利用连续12a 的旋耕和免耕长期定位试验以及在此基础上连续6 a旋耕-深松和免耕-深松定位试验,对比了转变耕作方式对农田土壤0~30 cm有机碳含量、周年累积速率及其固碳量的影响。研究结果表明,经过连续12 a的旋耕和免耕处理(2002-2014),2014年免耕处理土壤0~30 cm有机碳储量比试验初期(2002年)提高38%,旋耕处理降低了30%,而对照常规处理无显著差异。免耕处理土壤0~30 cm有机碳储量比旋耕处理高约2.6倍(2014年)。长期免耕显著提高了土壤0~30 cm的有机碳含量,2002~2014年其土壤0~30 cm固碳量为16.69 t/hm2,但长期旋耕导致土壤0~30 cm SOC含量显著降低,表现为土壤有机碳的净损耗,年损耗速率为?0.75 t/hm2。而长期旋耕后进行深松(旋耕-深松处理)6年其土壤0~30 cm的有机碳含量较原旋耕处理提高32%~67%,且显著提高了土壤固碳量及周年累积速率;免耕-深松土壤0~30 cm的有机碳周年累积速率较免耕处理下降了42%。长期旋耕造成有机碳水平下降的条件下,将旋耕处理转变为深松处理在短期内更有利于促进土壤有机碳的积累,而将长期免耕处理转变为深松措施,降低了土壤有机碳的累积速率和固碳量。  相似文献   

19.
轮耕对土壤物理性状及水稻产量影响的初步研究   总被引:11,自引:7,他引:11  
针对南方稻田连续免耕存在的主要问题,进行了土壤轮耕效应的初步研究。试验选择双季稻区连续7年免耕稻田,设置免耕、旋耕和翻耕3种耕作处理(即免耕-免耕,免耕-旋耕和免耕-翻耕),早稻和晚稻采取同-耕作措施。研究结果表明:连续免耕后进行土壤耕作(翻耕、旋耕)可以降低耕作层土壤容重,增加土壤水贮量,尤为翻耕显著,早、晚稻均表现为这-趋势;晚稻收获时,表层0~5cm的毛管孔隙度表现为免耕-翻耕、免耕-旋耕在5%水平上显著高于免耕-免耕,而下层差异不显著;早、晚稻晒田时,表层0~5cm原状土饱和导水率均表现为免耕~翻耕在5%水平上显著高于免耕-免耕和免耕-旋耕,而5~10cm无显著性差异;早、晚稻的实际产量均表现为免耕-旋耕〉免耕-翻耕〉免耕-免耕,起主要作用的构成因素是有效穗数。  相似文献   

20.
Abstract. Trafficked and non-trafficked (12 m gantry) crop production systems, which had been maintained on an Evesham series 60% clay soil since 1986, were used again in 1993 during the cultivation and sowing of winter wheat. After a one year set-aside break, mouldboard ploughing, tine cultivation and rotary digging were compared. Measurements were made of tillage energy, soil tilth, cone penetration resistance, biological activity and crop performance, and on specific plots, soil density, seedbed tilth and water release characteristics. Despite the one year's set-aside break, the effect of the previously applied traffic treatments remained and resulted in a smaller specific plough resistance and tillage energy on the non-trafficked soil. Tine cultivator draught however was greater on the non-trafficked compared with the trafficked plots. The specific energy required for rotary digging on non-trafficked soil was similar to that required during the ploughing of similar plots. A measure of indefinite biotic activity indicated that this was apparently greater on the non-traffficked soil, while soil density was decreased by up to 18% in these conditions compared with the trafficked land. Average cone resistance over the depth range 0 to 0.5 m was 1.51 MPa on the trafficked, compared with 1.24 MPa on the non-trafficked soil. Cone resistance also tended to be greater after tine cultivation compared with that after ploughing. Water release curves were interpreted as showing more macropores within the topsoil of the non-trafficked compared with the trafficked plots. Tine cultivation on trafficked soil had more smaller pores than mouldboard plough cultivation. Winter wheat yield was increased by 25% (from 8 to 10 t/ha) on non-trafficked compared with trafficked soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号