首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soil and water conservation (SWC) extension programme, promoting erosion control measures and soil fertility measures, has been going on in southern Mali since 1986. Five factors that influence farmer adoption of SWC measures were analysed: land pressure, cotton‐growing area, possession of ploughing equipment, possession of a donkey cart and farmer training in SWC. Interviews were carried out with 298 farmers and two to three fields per farmer were visited, in 30 representative villages and 30 villages with high SWC adoption. Correlation, regression and factor analysis led to the following conclusions:
  • (1) Farmers in the high land‐pressure area adopt more soil fertility measures.
  • (2) Farmers in the cotton‐growing area adopt less SWC measures.
  • (3) Farmers with more ploughing equipment adopt more SWC measures.
  • (4) Farmers with a donkey cart adopt more soil fertility measures.
  • (5) Trained farmers adopt more erosion control measures.
There is a strong correlation between the adoption of erosion control measures and soil fertility measures that could not be explained by these five factors only. This suggests that there are additional factors that trigger the adoption of SWC measures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

Soil erosion by water is currently one of the most notable types of land degradation in Samanalawewa Watershed in Sri Lanka, creating copious environmental and socioeconomic impacts. Thus, with the aim of detecting and mapping the rates of human-induced soil erosion in the watershed, remote sensing and geographic information system based modelling and field experiments were carried out. The results of the assessment disclosed that the present rate of human-induced soil erosion varies from 0 to 289 t ha?1 yr?1 with the majority of the area exceeding the natural rate of soil erosion by 14 to 33 times at present. However, the average rate of human-induced soil erosion has declined dramatically from 19.8 to 4.3 t ha?1 yr?1 from 1986 to 2008. In order to analyse the significant determinants of farm-level adoption of soil and water conservation measures, binary logistic regression procedure was applied using the data collected through a household survey (n = 201). The most significant (p<0.01) variables of the study were the farmers’ perceptions of soil erosion problems, gender of the household head, training on soil and water conservation, and ascertained advice from agricultural extension officers while the variables regarding past awareness about soil conservation technologies and off-farm income were significant at p<0.05. Furthermore, the study revealed that the majority (60.2%) of the farmers in the study area had been adopting different types of soil and water conservation measures for a prolonged period of time. Therefore, owing to the current decreasing rate of soil erosion, the soil and water conservation costs and the ratios of human-induced soil erosion vs natural soil erosion had declined significantly while the productivity of their lands had gone up.  相似文献   

3.
With low adoption rates of soil conservation measures (SCM) widespread, we examine determinants of current and potential future adoption in the ‘Secano Costero’ region of Central Chile. Randomly selected farmers (N = 140) spent an equivalent of 48 000 CLP/year (∼79 US$) on SCM. Contingent valuation of a hypothesized soil conservation programme revealed a willingness‐to‐pay of 30 610 CLP/year (∼50·4 US$) for future adoption. Social‐psychology variables from Protection Motivation Theory (PMT; response efficacy, perceived barriers) were used to predict current and potential future adoption. Current spending on SCM is influenced by perceptions of (1) erosion problem severity, (2) response efficacy of SCM, (3) farming problems and (4) barriers (lack of labour and draught animals). In addition, farm size and education were significant predictors. Willingness‐to‐pay for future adoption of SCM is influenced by farmer perception of (1) response efficacy of SCM, and (2) community support to the programme as well as farm size, age and gender. Our results suggest that formal psychometric scale development for social‐psychology predictors for the adoption of SCM, e.g. based on PMT, is a promising avenue for the analysis of soil conservation decisions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Nearly all of Europe is affected by soil erosion. A major policy response is required to reverse the impacts of erosion in degraded areas, particularly in light of the current climate change and water crisis. Soil loss occurs not because of any lack of knowledge on how to protect soils, but a lack in policy governance. The average rate of soil loss by sheet and rill erosion in Europe is 2·46 Mg ha−1 yr−1. To mitigate the impacts of soil erosion, the European Union's Common Agricultural Policy has introduced conservation measures which reduce soil loss by water erosion by 20% in arable lands. Further economic and political action should rebrand the value of soil as part of ecosystem services, increase the income of rural land owners, involve young farmers and organize regional services for licensing land use changes. In a changing World of 9 billion people with the challenge of climate change, water scarcity and depletion of soil fertility, the agriculture economy should evolve taking into account environmental and ecological aspects. © 2016 The Authors Journal of Land Degradation & Development Published by John Wiley & Sons Ltd.  相似文献   

5.
Soil erosion is a major environmental problem in China. Planning for soil erosion control requires accurate soil erosion rate and spatial distribution information. The aim of this article is to present the methods and results of the national soil erosion survey of China completed in 2011. A multi-stage, unequal probability, systematic area sampling method was employed. A total of 32,948 sample units, which were either 0.2–3 km2 small catchments or 1 km2 grids, were investigated on site. Soil erosion rates were calculated with the Chinese Soil Loss Equation in 10 m by 10 m grids for each sample unit, along with the area of soil loss exceeding the soil loss tolerance and the proportion of area in excess of soil loss tolerance relative to the total land area of the sample units. Maps were created by using a spatial interpolation method at national, river basin, and provincial scales. Results showed that the calculated average soil erosion rate was 5 t ha−1 yr−1 in China, and was 18.2 t ha−1 yr−1 for sloped, cultivated cropland. Intensive soil erosion occurred on cropland, overgrazing grassland, and sparsely forested land. The proportions of soil loss tolerance exceedance areas of sample units were interpolated through the country in 250 m grids. The national average ratio was 13.5%, which represents the area of land in China that requires the implementation of soil conservation practices. These survey results and the maps provide the basic information for national conservation planning and policymaking.  相似文献   

6.
Land shortages are forcing more smallholder farmers to cultivate tropical steeplands. Resulting accelerated soil erosion is being countered by the promotion of soil conservation (SC) technologies, such as cross‐slope barriers, which aim to reduce soil loss and preserve land productivity. However, farmer adoption rates tend to be low. This is often attributed to the farmers' conservatism or lack of education. Research in Honduras's steeplands demonstrates that farmers value SC, provided that it promotes agricultural production. Field research from 1995–98, involving farmed test plots on slopes greater than 35 per cent (19 degrees), demonstrates that at least one typical SC technology—live barriers of Vetiveria zizanioides (vetiver grass)—has little or no impact on maize yield. This means that farmers see little benefit from their investment in the SC method. They find that erratic rainfall, pests and diseases and a lack of economic resources are far greater threats to their livelihoods than soil erosion. Consequently, SC has a low priority. Keeping soil in place avoids major off‐farm disbenefits. However, the SC technique tested here made no discernible difference to slope foot sediment yields during the life of this study. In sum, a new approach is needed. Promoting ‘Better Land Husbandry’ strategies, which seek to combine farmers' concerns about productivity with conservationists' concerns about reducing soil erosion—often via cover‐management—seem to be the best way forward. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Despite several approaches that aimed at mobilising East African farmers to embrace soil and water conservation (SWC) activities, farmers hardly responded since they were seldom involved in the planning of SWC activities. Two tools that employ farmers' participation were developed and applied at Gikuuri catchment in Kenya. The first tool involved farmers to map soil erosion using their own indicators and determine the soil erosion status at catchment scale. This formed the basis upon which they undertook to plan for SWC measures at catchment scale. Farmers also predicted crop yield losses based on the soil erosion status. Farmers widely approved the soil erosion status map since their own indicators and perceptions were used. The second tool provided cash flow trends for a variety of SWC activities and farmer situations. Farmers can use land with a high, moderate or low erosion status and often have rather different socio‐economic settings. The net benefits over 5 yr for bench terraces, fanya juu terraces and grass strips were illustrated to assist farmers in making informed decisions on SWC adoption. The two tools increased awareness on the need for collective actions among farmers and showed fields that cause run‐on on downslope fields. The improved awareness of erosion problems and the related financial consequences increased farmers' willingness to share the investment costs for cut‐off drains. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
This study set out to determine the effects of cattle manure and inorganic N‐fertilizer application on the hydraulic properties and maize yield of a clay and sandy soil in a smallholder farming area of Zimbabwe. Four fields classified as homefields (HF: more fertile and closer to homesteads) and outfields (OF: less fertile and further from the homesteads) were selected on clay and sandy soil. They were subjected to four treatments, control (no fertility amendment), 5, 15 and 25 t/ha cattle manure + 100 kg/ha N (as ammonium nitrate) for 7 years. A two‐way randomized complete block design was used with fertility and field type as the two factors. Clay soil hydraulic properties, which included density of macropores with a diameter >300 μm, unsaturated hydraulic conductivity, steady‐state infiltration rate, moisture retention under low suction and maize grain yield, were significantly improved (P < 0.05) by fertility management compared with the control and were generally comparable between the HF and OF. Fertility management significantly improved maize grain yield on sandy soils but did not enhance hydraulic parameters, thereby indicating poor responsiveness in structural build‐up. On the other hand, significantly different hydraulic parameters between the sandy soil HF and OF suggested effects of other factors not related to soil fertility and field type treatments. We therefore concluded that application of a high rate (25 t/ha) of cattle manure and inorganic N‐fertilizer is beneficial for fertility restoration to the degraded OFs with associated comparable hydraulic properties on HFs and OFs on clay soil, unlike on sandy soil.  相似文献   

9.
In areas susceptible to erosion, there is the need for a comprehensive soil conservation programme so as to be able to prevent catastrophic soil erosion problems. The absence of such a programme in central eastern Nigeria, that has a total land area of 20 000 km2, necessitated the drawing up of a soil conservation strategy for the area. The aim was to provide information for better land-use planning and proper environmental and soil management. To achieve this, topographic, soil and landform maps of the area at the scale of 1:50 000 were used to delineate into slope land units, viz: 0–4 per cent, <4 per cent, drainage basins and headwaters. These slope units and estimated soil erosion hazard units using the revised universal soil loss equation (RUSLE) were employed to form a general purpose land classification based on the USDA land capability classification and FAO framework on land evaluation.The soil loss tolerance of the area falls between 1·16 and 1·30 Mg ha−1 yr−1, while the erosion hazard units are considered generally suitable for the various land utilization types, with a number of limitations the main ones being erosion and waterlogging. The soil conservation measures proposed involved the application of bioenvironmental processes in the area and appropriate watershed management. The techniques proposed are those based on low input technology, affordable by rural farmers. It is concluded that these soil conservation measures will be adequate for sustainable agricultural production in the area. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates farmers' perceptions of soil erosion and how it affects crop yields, land values, and private conservation investments in India's semiarid tropics. It is based on three types of data: (1) a survey of farmers in three study villages; (2) a plot survey by a professional soil surveyor in the same villages; and (3) experimental and simulated data from nearby research stations with similar conditions. Farmers' perceptions of erosion are compared to the surveyor's using kappa, a statistical measure of interrater agreement. Perceived erosion–yield relationships are estimated econometrically and compared to experimental and simulated data. Effects on land values and conservation investments are estimated econometrically. Findings suggest that farmers are keenly aware of rill erosion but less aware of sheet erosion; kappa values ranging from 0 to 0·28 suggest low agreement with the soil surveyor. They anticipate annual yield losses of 5·8–11 per cent due to rill erosion; these figures are reasonably consistent with those from nearby research stations. They anticipate yield increases of 3·8–14·5 per cent due to installation of soil conservation bunds, largely because they can harvest soil from up the slope and capture organic matter. Perceived erosion has some effect on land values and soil conservation investments, but other factors such as irrigation and soil type have a much greater effect. These findings suggest that promoting soil conservation requires capitalizing on farmers' interest in short‐term gains, such as from water and nutrient management. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Soil erosion and subsequent degradation has been a contributor to societal collapse in the past and is one of the major expressions of desertification in arid regions. The revised universal soil loss equation (RUSLE) models soil lost to water erosion as a function of climate erosivity (the degree to which rainfall can result in erosion), topography, soil erodibility, and land use/management. The soil erodibility factor (K) is primarily based upon inherent soil properties (those which change slowly or not at all) such as soil texture and organic matter content, while the cover/management factor (C) is based on several parameters including biological soil crust (BSC) cover. We examined the effect of two more precise indicators of BSC development, chlorophyll a and exopolysaccharides (EPS), upon soil stability, which is closely inversely related to soil loss in an erosion event. To examine the relative influence of these elements of the C factor to the K factor, we conducted our investigation across eight strongly differing soils in the 0.8 million ha Grand Staircase-Escalante National Monument. We found that within every soil group, chlorophyll a was a moderate to excellent predictor of soil stability (R2 = 0.21–0.75), and consistently better than EPS. Using a simple structural equation model, we explained over half of the variance in soil stability and determined that the direct effect of chlorophyll a was 3× more important than soil group in determining soil stability. Our results suggest that, holding the intensity of erosive forces constant, the acceleration or reduction of soil erosion in arid landscapes will primarily be an outcome of management practices. This is because the factor which is most influential to soil erosion, BSC development, is also among the most manageable, implying that water erosion in drylands has a solution.  相似文献   

12.
Throughout Rwanda, terracing was reintroduced in 1973 as the major conservation practice to minimize soil loss on its steep agricultural lands.1 Terracing has been partially successful in reducing soil losses resulting from nonchannelized runoff, the goal of this practice. However, because of the widespread fragile environmental conditions in the highlands, soil fertility has decreased and soil acidity increased in numerous fields as a direct result of the terracing. To maintain sufficient agricultural yields, within the constraints of a low resource agricultural system, farmers have responded to the acidity and soil fertility problems by systematically removing a portion of the terrace berm during field preparation. This practice, in response to the changing environmental situation due to terracing, results in significant amounts of soil displaced downslope year after year. This human-induced soil erosion process seriously counters many of the intended benefits of terrace construction and is contributing to the land degradation problem. The results of this study emphasize the need for both conservation strategies and the measurement of soil loss to be sensitive to human-induced as well as natural erosional processes. By not considering the human response to terrace construction, the benefits of this conservation practice have been seriously offset.  相似文献   

13.
There is increased awareness of the environmental impacts of soil carbon (C) and nitrogen (N) losses through wind erosion, especially in areas heavily affected by dust storm erosion. This paper reviews the recent literature concerning dust storm-related soil erosion and its impact on soil C and N losses in northern China. The purpose of our study is to provide an overview of the area of erosion-affected soils and to estimate the magnitude of soil C and N losses from farmland affected by dust storm erosion.According to the second national soil erosion remote-sensing survey in 2000, the area affected by wind erosion was 1.91 million km2, accounting for 20% of the total land area in China. This area is expanding quickly as the incidence of heavy dust storms has greatly increased over the last five decades, mainly as a result of the intensification of soil cultivation. The economic and ecological damage caused by wind erosion is considerable. Heavily affected areas show a loss of nutrients and organic carbon in soils and the heavily degraded soils are much less productive. Compared with the non-degraded soil, the C and N contents in degraded soils have declined by 66% and 73%, respectively. The estimated annual losses per cm toplayer of soil C and N by dust storm erosion in northern China range from 53 to 1044 kg ha− 1 and 5 to 90 kg ha− 1, respectively. Field studies suggest that soil losses by wind erosion can be reduced by up to 79% when farmers shift from conventional soil tillage methods to no-till. Thus shifting to no-till or reduced tillage systems is an effective practice for protecting soil and soil nutrients. Our study indicates that soil conservation measures along with improved soil fertility management measures should be promoted in dry-land farming areas of northern China. As erosion is a major mechanism of nutrient withdrawal in these areas, we plead for the development of accurate methods for its assessment and for the incorporation of erosion, as a nutrient output term, in nutrient budget studies.  相似文献   

14.
During raindrop impact soil, aggregates breakdown and produce finer, more transportable particles and micro-aggregates. These particles and micro-aggregates appreciably affect the processes of infiltration, seal and crust development, runoff, and soil erosion. Aggregate stability is, therefore, an important property that may explain, quantify, and predict these processes. This study was designed to develop improved formulae for assessing interrill erosion rate by incorporating the aggregate stability index (As) in the prediction evaluations for soil erodibilites of Ultisols in subtropical China. Field experiments of simulated rainfall involving rainstorm simulations with medium and high rainfall intensity were conducted on six cultivated soils for which the soil aggregate stability was determined by the LB-method. This study yielded two prediction equations Di = 0.23AsI2(1.05 − 0.85 exp−4sin θ) and Di = 0.34AsqI(1.05 − 0.85 exp−4sin θ) that allowed a comparison of their efficiency in assessing the interrill erosion rate. As is an aggregate stability index, which reflected the main mechanisms of aggregate breakdown in interrill erosion process, θ is the slope angle, I is the rainfall intensity, and q is the runoff rate. Relatively good agreement was obtained between predicted and measured values of erosion rates for each of the prediction models (R2 = 0.86**, and R2 = 0.90**). It was concluded that these formulae based on the stability index, As, have the potential to improve methodology for assessing interrill erosion rates for the subtropical Chinese Ultisols. Considering the time-consuming and costly experimentation of runoff rate measurements, the equation without runoff rate (q) was the more convenient and effective one to predict interrill erosion rates on Ultisols of subtropical China.  相似文献   

15.
张白雪  何福红  朱巧红  彭新华 《土壤》2017,49(6):1237-1242
采用侵蚀小区田间监测方法,研究秸秆覆盖、生物质炭和猪粪等有机物料添加对红壤坡耕地产流产沙的影响。结果表明:2015年红壤坡耕地侵蚀量达到36 t/hm~2,78%~86%发生在花生季,达到中度侵蚀。与对照(CK)处理相比,单施化肥(NPK)处理没有降低产流产沙(P0.05)。与NPK处理相比,秸秆覆盖(NPK+Str)处理显著降低了产流产沙(P0.05);生物质炭(NPK+BC)处理显著降低了产流(P0.05),但是减沙效果不明显(P0.05);猪粪(NPK+SM)处理尽管提高了地表径流(P0.05),但是显著降低了产沙(P0.05)。秸秆资源在该区匮乏,秸秆覆盖难以推广。生物质炭的团聚能力弱,颗粒小,质量轻,易随水流失,在坡耕地上改良效果不明显。猪粪在该区资源丰富,不但提高土壤肥力,促进了团聚体形成,而且水土保持效果好,是该区农业生态环境可持续发展的重要措施之一。  相似文献   

16.
As one part of the ‘Three Norths’ forest protection system, dense farmland shelterbelt networks in northeastern China could greatly modify water and sediment flows. In this paper, catchment soil erosion rate and sediment yield (SY) that are impacted by farmland shelterbelts were estimated using WaTEM/SEDEM model. The shelterbelts reduced catchment soil erosion and SY to some extent. The mean soil erosion rate and specific sediment yield (SSY; defined as the ratio of SY to catchment area; t km?2 yr?1) of the 25 reservoir catchments decreased from 351.6 and 93.9 t km?2 yr?1 under the supposed scenario without shelterbelts to 331.1 t km?2 yr?1 and 86.3% t km?2 yr?1 under the current situation with shelterbelts. The sediment trap efficiencies (STEs) varied from 0.01% to 23.6% with an average value of 7.6%. The STEs were significantly correlated with shelterbelt density, catchment perimeter, topographic factors, RUSLEP‐factor and land use patterns including patch density (PD), patch cohesion index (COHESION), Shannon's diversity index (SHDI) and aggregation index (AI). The multiple regression equation involving factors of catchment's topography and morphology and land use pattern has a satisfactory performance, and mean slope gradient (MSG) and AI explained most of the variability of shelterbelts’ STE. This information can help land managers to better design shelterbelts and to reduce water‐derived soil loss at catchment scale.  相似文献   

17.
《Soil Use and Management》2018,34(1):147-153
As in many areas of the developing world, intensification of agriculture in Tonga, and other Pacific Islands, has put increased pressure on the soil resource. Two experiments were conducted to evaluate the effect of mulch on the growth and yield of two important food and fibre crops. The first was conducted on sloping land to evaluate the effect of guinea grass (Megathyrsus maximus ) mulch and hedgerows on taro [Colocasia esculenta (L.) Schott] yield, and in controlling soil erosion. The second compared the response of paper mulberry [Broussonetia papyrifera (L) Ventenot] to different management regimes of a grass fallow. Thick vegetative mulch increased taro corm yield by 81% and reduced soil loss by 50% compared to local farmer practice, and the soil loss from taro with mulch was comparable to the perennial cash hedgerow treatment. Mulch increased paper mulberry bark yield by 30% compared to the non‐mulch control. Comparative economic analysis showed that increased net profit in the mulched treatments compared to the non‐mulched control was T$2660/ha for taro and T$12 108/ha for paper mulberry. Considering that mulch is readily available to many farmers throughout the Pacific Islands and elsewhere in the tropics, it is recommended as a sustainable practice for crop production.  相似文献   

18.
Precision agriculture techniques were employed to study the impact of the spatiotemporal variations of soil compaction on the performance of potato crop during its various growth stages. The study has been conducted on a 30 ha centre pivot irrigated potato field, located in Wadi Al-Dawasir area in Saudi Arabia. In situ soil compaction measurements were collected, in conjunction with Sentinel-2A satellite data, and correlated spatiotemporally against potato crop growth and yield parameters. The univariate and bivariate Moran's function (Moran's I), the linear regression and the analysis of variance (ANOVA) techniques were used to analyse the data and examine the interrelationships. The spatial correlations between the measured variables revealed high clustering, producing Moran's I of 0.87, 0.79 and 0.57 for soil compaction, yield and normalized difference vegetation index (NDVI), respectively. Compaction-yield relationship revealed a relatively high significant negative spatial correlation (Moran's I = 0.68). While, the spatial correlation between the average values of compaction and NDVI has negatively produced a Moran's I value of 0.45 (at 0.001 significance level), when 999 permutations were tested for all relationships. A significant positive correlation was observed between high compaction and high proportion of small size tubers, with R2 and P > F values of 0.65 and .0001, respectively. In contrast, a significant negative correlation has been obtained between high compaction and high proportion of large size tubers, with R2 and P > F values of 0.57 and .0001, respectively. Understanding the causes of disparity in the productivity of agricultural fields will help decision-makers and farmers to take proactive actions towards better agricultural practices.  相似文献   

19.
Soil conservation measures including cutoff drains, tree planting, Crops diversifications and destocking were implemented in Kondoa eroded area (KEA) for decades. This study assessed soil erosion changes in KEA and examined drivers of changes using Universal Soil Loss Equation, Geographic Information Systems and socioeconomic survey. Soil erosion was predicted by using data on soil, digital elevation model, rainfall and land use/cover visually interpreted from multitemporal satellite imageries. The predicted average soil erosions were 14·7, 23 and 15.7 Mg ha−1y−1 during 1973, 1986 and 2008, respectively. The area under very high soil erosion severity that was 30% in 1973, 26% in 1986 and 25% in 2008, whereas the area with high erosion severity was 26% in 1973 changed into 49% in 1986 and 2008 indicating recent stabilization. The area with moderate erosion increased from 15%, 16% and 18% during the same period. Field survey confirms a decrease of soil erosion in KEA compared with the past showing better soil conservation. Age of farmers, long‐term adoption of conservation practices and on‐farm tree planting were found to be the major factors contributing toward reduced soil erosion. Major limitations in soil conservation were poor mainstreaming of conservation activities on local production systems and lack of institutions promoting conservation at the community level. The study concluded that long‐term conservation investment for restoration, protection and socioeconomic support contributes significantly in land rehabilitation in KEA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The effectiveness of a surface cover material (e.g. geotextiles, rock fragments, mulches, vegetation) in reducing runoff and soil erosion rates is often only assessed by the fraction of the soil surface covered. However, there are indications that soil structure has important effects on the runoff and erosion-reducing effectiveness of the cover materials. This study investigates the impact of soil pre-treatment (i.e. fine tilth versus sealed soil surface) on the effectiveness of biological geotextiles in increasing infiltration rates and in reducing runoff and interrill erosion rates on a medium and steep slope gradient. Rainfall was simulated during 60 min with an intensity of 67 mm h−1 on an interrill erosion plot having two slope gradients (i.e. 15 and 45%) and filled with an erodible sandy loam. Five biological and three simulated geotextiles with different cover percentage were tested on two simulated initial soil conditions (i.e. fine tilth and sealed soil surface). Final infiltration rates on a sealed soil surface (7.5–18.5 mm h−1) are observed after ca. 10 min of rainfall compared to ca. 50 min of rainfall on an initial seedbed (16.4–56.7 mm h−1). On the two tested slope gradients, significantly (α = 0.05) smaller runoff coefficients (RC) are observed on an initial seedbed (8.2% < RC < 59.8%) compared to a sealed soil surface (75.7% < RC < 87.0%). On an initial seedbed, decreasing RC are observed with an increasing simulated geotextile cover. However, on an initial sealed soil surface no significant effect of simulated geotextile cover on RC is observed. On a 15% slope gradient, calculated b-values from the mulch factor equation equalled 0.054 for an initial fine tilth and 0.022 for a sealed soil surface, indicating a higher effectiveness of geotextiles in reducing interrill erosion on a fine tilth compared to a sealed soil surface. Therefore, this study demonstrates the importance of applying geotextiles on the soil surface before the surface tilth is sealed due to rainfall. The effect of soil structure on the effectiveness of a surface cover in reducing runoff and interrill erosion rates, as indicated by the results of this study, needs to be incorporated in soil erosion prediction models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号