首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Revegetation, or other erosion control treatments of disturbed soil slopes in forested areas and along highways of the Lake Tahoe basin are directed at reduction of sediment loading to waterways reaching the lake. However, following treatment, little vegetation monitoring, or hydrologic evaluation has been conducted either to determine if the various treatments are successful or to assess the duration of erosion control anticipated in the field. Here, we build upon results from use of the portable rainfall simulator (RS) described in the first two papers of this series to evaluate cover and revegetation treatment effects on runoff rates and sediment concentrations and yields from disturbed granitic and volcanic soils in the basin. The effects of slope on rainfall runoff, infiltration and erosion rates were determined at several revegetated road cut and ski run sites. Rainfall simulation (∼60 mm h−1, approximating a 100‐year, 15‐minute storm) had a mean drop size of ∼2·1 mm and approximately 70 per cent of ‘natural’ rainfall kinetic energy. Measurements of: time to runoff; infiltration; runoff amount; sediment yield; and average sediment concentration were obtained. Runoff sediment concentrations and yields from sparsely covered volcanic and bare granitic soils can be correlated to slope. Sediment concentrations and yields from nearly bare volcanic soils exceeded those from granitic soils by an order of magnitude across slopes ranging from 30–70 per cent. Revegetation, or application of pine‐needle mulch covers to both soil types dramatically decreased sediment concentrations and yields. Incorporation of woodchips or soil rehabilitation that includes tillage, use of amendments (biosol, compost) and mulch covers together with plant seeding resulted in little or no runoff or sediment yield from both soils. Repeated measurements of sediment concentrations and yields in the subsequent two years following woodchip or soil rehabilitation treatments continued to result in little or no runoff. Revegetation treatments involving only use of grasses to cover the soils were largely ineffective due to sparse sustainable coverage (< 35 per cent) and inadequate infiltration rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Runoff sediment from disturbed soils in the Lake Tahoe Basin has resulted in light scattering, accumulation of nutrients, and subsequent loss in lake clarity. Little quantified information about erosion rates and runoff particle‐size distributions (PSDs) exists for determining stream and lake loading associated with land management. Building on previous studies using rainfall simulation (RS) techniques for quantifying infiltration, runoff, and erosion rates, we determine the dependence and significance of runoff sediment PSDs and sediment yield (SY, or erodibility) on slope and compare these relationships between erosion control treatments (e.g., mulch covers, compost, or woodchip incorporation, plantings) with bare and undisturbed, or ‘native’ forest soils. We used simulated rainfall rates of 60–100 mm h−1 applied over replicated 0·64 m2 plots. Measured parameters included time to runoff (s), infiltration and runoff rates (mm h−1), SY (g mm−1 runoff), and average sediment concentration (SC, g L−1) as well as PSDs in runoff samples. In terms of significant relationships, granitic soils had larger particle sizes than volcanic soils in bulk soil and runoff samples. Consequently, runoff rates, SCs, and SYs were greater from bare volcanic as compared to that from bare granitic soils at similar slopes. Generally, runoff rates increased with increasing slope on bare soils, while infiltration rates decreased. Similarly, SY increased with slope for both soil types, though SYs from volcanic soils are three to four times larger than that from granitic soils. As SY increased, smaller particle sizes are observed in runoff for all soil conditions and particle sizes decreased with increasing slope. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Slopes that have been disturbed through roadway, ski slope or other construction often produce more sediment than less disturbed sites. Reduction or elimination of sediment loading from such disturbed slopes to adjacent streams is critical in the Lake Tahoe basin. Here, use of a portable rainfall simulator (RS), described in the first paper of this series, is used to evaluate slope effects on erosion from bare volcanic and granitic soils (road cut and ski run sites) common in the basin in order to establish a basis upon which revegetation treatment comparisons can be made. Rainfall simulations (60 mm h−1, approximating a 100‐year, 15‐minute storm) at each site included multiple replications of bare soil plots as well as some adjacent ‘native’, or relatively undisturbed soils below trees where available. Field measurements of time to runoff, infiltration, runoff, sediment discharge rates, and average sediment concentration were obtained. Laboratory measurements of particle‐size distributions using sieve and laser counting methods indicated that the granitic soils had larger grain sizes than the volcanic soils and that road cut soils of either type also had larger grain sizes than their ski run counterparts. Particle‐size‐distribution‐based estimates of saturated hydraulic conductivity were 5–10 times greater than RS‐determined steady infiltration rates. RS‐measured infiltration rates were similar, ranging from 33–50 mm h−1 for disturbed volcanic soils and 33–60 mm h−1 for disturbed granitic soils. RS‐measured runoff rates and sediment yields from the bare soils were significantly correlated with plot slope with the exception of volcanic road cuts due to the narrow range of road cut slopes encountered. Sediment yields from bare granitic soils at slopes of 28 to 78 per cent ranged from ∼1 to 12 g m−2 mm−1, respectively, while from bare volcanic soils at slopes of 22 to 61 per cent they ranged from ∼3 to 31 g m−2 mm−1, respectively. Surface roughness did not correlate with runoff or erosion parameters, perhaps also as a result of a relatively narrow range of roughness values. The volcanic ski run soils and both types of road cut soils exhibited nearly an order of magnitude greater sediment yield than that from the corresponding native, relatively undisturbed, sites. Similarly, the granitic ski run soils produced nearly four‐times greater sediment concentration than the undisturbed areas. A possible goal of restoration/erosion control efforts could be recreation of ‘native’‐like soil conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The effects of two different soil rehabilitation treatments on runoff, infiltration, erosion and species diversity were evaluated in a shrubland area in Galicia (NW Spain) after an experimental fire by means of rainfall simulations. The treatments compared were: seeding, seeding + mulching and control (untreated). Rainfall simulations were conducted 9 months after fire and the application of soil rehabilitation treatments. A rainfall rate of 67 mm h−1 was applied for 30 min to each runoff plot. Seeding significantly increased plant species richness in the treated plots relative to the control plots, although it had no effect on diversity or evenness. Rehabilitation treatments did not significantly increase soil cover or affect runoff and infiltration. Soil losses were low in all cases, varying from 75·6 kg ha−1 in the seeded + mulched plots to 212·1 kg ha−1 in the untreated plots. However, there were no significant differences in sediment yields between treatments. The percentage of bare soil appeared to be a critical variable in controlling runoff and erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The western interior portions of Puerto Rico offer optimal climatic conditions for coffee cultivation. However, land and water degradation result when abrupt topographic relief and high annual rainfall combine with forest conversion for coffee farming. Small‐scale rainfall simulation experiments were conducted to quantify runoff and erosion from four land surface types (i.e., mulched, weed‐covered, and bare soils under active cultivation, and unpaved roads) representative of coffee farms in Puerto Rico. Results show that mulch‐covered soils had runoff coefficients similar to those from undisturbed forested conditions (~4%), and that they eroded at rates about a quarter of those for bare cultivated soils. Weed‐covered soils had surprisingly high runoff coefficients (~70%), yet their erosion rates were only three‐fourths of those for bare soils. Annualized erosion rates from unpaved roads were 65 Mg ha−1 y−1, or ten times greater than bare soils and about a hundred times higher than weed‐ or mulch‐covered surfaces. Farm‐scale sediment production estimates amount to ~11 Mg ha−1 y−1, about two‐orders of magnitude higher than under forested conditions. At the farm‐scale, only 2 – 8% of the total sediment is potentially attributable to cultivated hillslopes. In contrast, unpaved roads may account for over 90% of the sediment budget, even though they comprise only 15% of the farm surface area. Therefore, while providing mulch or a vegetative cover to bare cultivated soils should be part of effective soil management, mitigating the effects of coffee cultivation on downstream water resources must focus on the unpaved road network as the primary sediment source. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This study analyses the spatial variability of runoff and erosion rates in vineyards due to mechanisation works. Runoff samples were collected at three positions in two plots after 33 erosive events in three years (2001, 2003, 2004) with different rainfall patterns. Three replications were considered at each position. Soil properties were evaluated in order to analyse its relationship with runoff and erosion rates. Runoff and erosion rates were, on average, higher in the levelled plot (HD), ranging between 8·4 and 34·3 per cent, than in the non‐levelled plot (LD) ranging between 8·2 and 24·1 per cent. Mean sediment concentration in runoff ranged between 6 and 8 g L−1 in the HD plot and about 4·6 g L−1 in the LD plot, but with high differences within the plot. In the HD plot, runoff‐rainfall rates were significantly higher (at 95 per cent level) in the upper part of the slope and decreased along the slope, while in the LD plot, differences in runoff rates were not significant and similar to those observed in the less disturbed areas of the HD plot. The higher susceptibility to soil sealing in areas where the original topsoil was removed conditioned runoff rates. In the lower part of the HD plot runoff rates were, on average, 20 per cent lower than in the upper part of the slope. In those positions runoff rates up to 79 per cent were recorded. Organic matter content and water retention capacity at different potentials are the soil characteristics related to the differences on runoff and erosion rates in the resulting soils. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Degraded gypsic soils in the centre of Spain can be rehabilitated with organic amendment and shrub revegetation. Erosion has been measured on plots of 2×0·5 m2 under simulated rainfall of 70 mm h−1 and a kinetic energy of 18 J mm−1 m−2. Samples of water runoff and sediments were studied in the summer of the years 2002 and 2003. The presence of shrub Atriplex halimus (Chenonodiaceae) significantly reduces runoff from 16·9 to 6·7 ml m−2 min−1 and sediments from 0·16 to 0·02 g m−2 min−1. When sewage sludge is applied the differences among plots with and without bushes disappear. Although both treatments independently applied are efficient as erosion control measures, the combined use of revegetation and organic amendment allows a reduced dose of sewage sludge with the same effect on erosion. A low dose of sludge is desirable in view of the accumulation of toxic chemicals. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Soil-surface seals and crusts resulting from aggregate breakdown reduce the soil infiltration rate and may induce erosion by increasing runoff. The cultivated loess areas of northwestern Europe are particularly prone to these processes.Surface samples of ten tilled silty loamy loess soils, ranging in clay content from 120 to 350 g kg−1 and in organic carbon from 10 to 20 g kg−1, were packed into 0.5 m2 plots with 5% slopes and subjected to simulated rainfall applied at 30 mm h−1. The 120 minutes rainfall events were applied to initially field-moist soil, air-dried soil and rewetted soil to investigate the effect of soil moisture content prior to rainfall. Runoff and eroded sediments were collected at 5 minutes intervals. Aggregate stability of the soils was assessed by measuring particle-size distribution after different treatments.All soils formed seals. Runoff rates were between 70 and 90% by the end of the rainfall event for field-moist plots. There were large differences between soil runoff rates for the air-dried and rewetted plots. Interrill erosion was associated with runoff, and sediment concentration in runoff readily reached a steady-state value. Measurements of aggregate stability for various treatments were in good agreement with sealing, runoff and erosion responses to rainfall. Runoff and erosion were lower for air-dried plots than for field-moist plots, and were either intermediate or lowest for rewetted plots, depending on soil characteristics. Soils with a high clay content had the lowest erosion rate when they were rewetted, whereas the soil with a high organic-carbon content had the lowest erosion rate in air-dry conditions. The results indicate the complexity of the effect of initial moisture content, and the interactions between soil properties and climate.  相似文献   

9.
Erosion control at low–medium radioactive waste disposal sites is an important concern. A study was carried out in El Cabril (Córdoba, Spain) on two 40 per cent anthropic steep slopes in order to test the effectiveness of hydro‐seeding techniques for controlling soil erosion. Two groups of 10 m × 3 m plots were established. The treatments tested were: hydro‐seeding with the application of vegetal mulch (VM); hydro‐seeding with added humic acids (HA); hydro‐seeding with vegetal mulch and humic acids added (VM + HA); and a control without hydro‐seeding or soil amendment (C). Fifteen run‐off producing rainfall events were recorded during the study period, with intensities ranging between 2 mm h−1 and 33·6 mm h−1. All treatments significantly reduced runoff and soil loss (p < 0·05). The VM+HA treatment was the most effective, reducing 98·5 per cent of total soil loss. The HA treatment (97·1 per cent reduction) was also more effective than the VM treatment (94·8 per cent reduction). A great reduction in runoff and sediment yield was observed in the treated plots during the first stages after hydro‐seeding. This result may be attributed to the combined effect of: (a) the protection against raindrop impact due to the application of straw and mulch to the soil surface, and (b) a general improvement in the soil's structure brought by the organic amendments. Seven months after hydro‐seeding, an increase in the density of the plant cover could be added to the beneficial effects mentioned above. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
不同下垫面径流小区次降雨侵蚀特征相关分析   总被引:4,自引:3,他引:1       下载免费PDF全文
在延安市燕沟流域试验区布设了裸地、荒草地和灌木地3个坡面径流小区,对次降雨雨量、历时、径流深、产沙量、入渗率等数据进行了定位观测,并运用SAS软件对不同下垫面径流小区次降雨的侵蚀特征等相关问题进行了分析研究。结果表明,无论降雨强度如何变化,3个小区的径流量、产沙量均呈依次降低趋势:灌木地<荒草地<裸地;而入渗率呈依次增大趋势:灌木地>荒草地>裸地。其径流量与降雨量之间存在着很好的相关关系;产沙量随降雨量的增大而增大,其中裸地产沙量增大最为显著;入渗率随着降雨量的增大有增加趋向,但雨强增大时,入渗率表现为降低趋势;产沙量与径流量存在较好的相关关系,相关系数最高达到0.928 4,荒草地小区产沙量与径流量的关系可用二次函数很好地描述。  相似文献   

11.
Rill is a major type of erosion on upland slopes. Continuous rainfall is commonly used in laboratory studies on rill erosion despite the fact the rainfall was often discontinuous in the field; this is particularly true in the Chinese Loess Plateau. This study compares rill erosion under continuous and intermittent rainfalls by using laboratory experiments. The experiments include two rainfall‐intensity treatments (90 and 120 mm h−1) and two rainfall‐pattern treatments (continuous and intermittent). The results indicate that rill formation had a significant effect on runoff and sediment concentration. For continuous and intermittent rainfall at the rainfall intensity of 90 mm h−1, the mean sediment concentrations were 1·91 and 1·73 times after rill initiation than those before rill initiation, respectively, and the rill erosion accounted for 75·5% and 77·7% of runoff duration, respectively. For continuous and intermittent rainfall at the rainfall intensity of 120 mm h−1, the mean sediment concentrations after rill initiation were 1·38 and 1·32 times that those before rill initiation, respectively, and the rill erosion represented 88·7% and 78·8% of the total runoff duration, respectively. We observed sediment sorting under all treatments; however, the low rainfall intensity boosted but the high rainfall intensity lowered the clay fraction; in contrast, the sorting remained roughly the same between the rainfall‐pattern treatments. The runoff velocity also affected the sediment sorting. Our empirical results indicated the important significance of the rainfall intermittence in predicting rill erosion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
In order to promote the transformation of a burnt Mediterranean forest area into a dehesa system, 10 t ha−1 of dry matter of the same sewage sludge in three different forms: fresh, composted and thermally‐dried, were added superficially to field plots of loam and sandy soils located on a 16 per cent slope. This application is equivalent to 13ċ8 t ha−1 of composted sludge, 50 t ha−1 of fresh sludge and 11ċ3 t ha−1 of thermally‐dried sludge. The surface addition of a single application of thermally‐dried sludge resulted in a decrease in runoff and erosion in both kinds of soil. Runoff in thermally‐dried sludge plots was lower than in the control treatment (32 per cent for the loam soil and 26 per cent for the sandy soil). The addition of any type of sludge to both soil types also reduces sediment production. Significant differences between the control and sludge treatments indicate that the rapid development of plant cover and the direct protective effect of sludge on the soil are the main agents that influence soil erosion rates. Results suggest that the surface application of thermally‐dried sludge is the most efficient way to enhance soil infiltration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
14.
坡度与种植方式对紫色土侵蚀与养分流失的影响研究   总被引:5,自引:0,他引:5  
在涪陵区水土保持监测分站内建立6个径流小区,对紫色土坡耕地水土流失进行试验监测,结果表明:各小区径流量、产沙量总体随降雨量的增大而增大.自然生态修复措施防治水土流失效果显著,3.66 m3的径流量仅有0.41 kg·m3的产沙量,可有效防治紫色土坡耕地的水土流失.采用顺坡耕作措施的小区径流量与降雨量达显著正相关,而产沙量与降雨量未显著相关.径流量和产沙量大小顺序均为25°坡耕地>20°坡耕地>10°坡耕地>15°坡耕地,在15°耕地上径流量与产沙量均为最小,但15°是否是涪陵区最适宜的耕地坡度,仍有待今后收集更多的降雨资料加以分析说明.对一次强降雨进行养分流失观测,养分流失量与径流量及产沙量大小顺序基本一致.开发建设项目弃土弃渣监测点径流量与产沙量均大大高于其他小区,说明开发建设水土保持项目中防治水土流失的重要性.  相似文献   

15.
On the uplands of the Darling Downs, runoff and erosion during summer fallows are a major problem. Interflow has been reported in tilled catchments in this area and might be controlled to reduce surface runoff and soil erosion. In view of the lack of data on interflow in tilled soils, this paper reports rates of interflow in a tilled soil for a range of stubble mulch rates, and describes the mechanisms of flow observed.Plots 22.5 × 4 m carrying surface mulches of 3,2,1 and 0.1 t ha−1 wheat stubble were prepared on a shallow black, cracking clay on 6% slope. The plots were pre-wet, and then simulated rain at 95 mm h−1 was applied (using a rainulator) for a 50-min test period. Perched water tables developed in the tilled layer and interflow was clearly visible flowing out beneath the collection gutter at the downslope end of the plot. Interflow rates were calculated from
  • 1.(a) measurements of surface runoff on the rainulator plots at the end of the 50-min test periods;
  • 2.(b) measurements of steady, deep infiltration rate for the site made using a rotating disc rainfall simulator.
The interflow rates calculated for the rainulator plots were significantly related to stubble rates. Stubble appeared to increase interflow by reducing sediment loads in runoff water, thereby reducing the clogging of large voids in the tilled layer by sediment. Large, interconnected voids in the tilled layer must have been the major pathway for interflow.  相似文献   

16.
植大豆对坡耕地径流侵蚀产沙的影响   总被引:5,自引:3,他引:2  
作物是坡耕地最重要的地被物,为了解作物覆盖下坡面土壤侵蚀的发生发展,以大豆(Glycine max)作物为对象,采用人工模拟降雨方法,对大豆不同生育期坡面的产流产沙进行研究。结果表明,与裸地相比,大豆在其全生育期内平均可减少径流量31.43%,减少土壤流失量54.84%。大豆覆盖下坡面产流产沙量随大豆生长逐渐降低,其产流产沙过程的波动性逐渐降低并趋于稳定。大豆植株的存在可使坡面稳定入渗速率较裸地平均提高了约109%,有效增强了坡面土壤的入渗能力。通过对坡面土壤流失比率的计算,表明种植大豆条件下的土壤流失比率由幼苗期的0.79降低至始粒期的0.24,其与大豆叶面积指数呈指数函数关系。大豆对坡面土壤侵蚀具有较强的抑制作用,且对泥沙的拦截作用强于对径流的拦蓄作用。  相似文献   

17.
Runoff is the key factor to understand the land degradation causing high risk of soil erosion and can reduce the water available for human societies and ecosystems. The dynamics of runoff and suspended sediment transport are not completely understood. In this study, we examined the trends, breaking point and regime changes for the runoff and sediment load at different temporal scales using 50 years of continuous observational data from a highly erodible sub‐catchment with an area of 7,325 km2 in the Beiluo River basin on the Loess Plateau, China. At the annual scale, the runoff and sediment load declined significantly (p < 0·05) with decreasing rates of −0·23 mm y−1 and −164·9 Mg km−2 y−1, respectively. Abrupt changes in the runoff and sediment load series were detected between 1979 and 1999; thus, the data were divided into intervals of 1960–1979, 1980–1999 and 2000–2009. The flow duration curve analysis indicated increasing low‐flow values and decreasing daily runoff and sediment discharge peaks, which suggested that soil and water conservation measures reduced the volume of runoff and the sediment load. This led to a more uniform runoff regime. At the flood event scale, we investigated the relationship between runoff and the suspended sediment load based on 123 flood events, which showed clearly that the magnitude and frequency of hyper‐concentrated sediment flows decreased in 2000–2009 compared with 1960–1999. The annual erosive rainfall exhibited non‐significant changes throughout the entire study period. We conclude that soil and water conservation measures (e.g. afforestation, grassing, terraces and check dams) have played major roles in the changes in runoff and the sediment load in the Beiluo River catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Overland flow resulting from an excess of rain over infiltration is an essential component of many models of runoff and erosion from fields or catchments. The spatially variable infiltration (SVI) model and a set of associated equations relating depth of runoff and maximum rate of ‘effective’ runoff (as used in the GUEST erosion model) to storm depth, depth‐averaged intensity of rainfall, average maximum infiltration capacity and an additional amount of initial infiltration were validated and tested on back‐sloping bench terraces in volcanic upland West Java, Indonesia. Data used were runoff rate and depth from 31 small (1.0–8.2 m2) bounded plots representing sections of terrace beds or risers and from six larger (53–231 m2) terrace units with hydrologically defined boundaries. Modelled runoff rates using rainfall intensity data corresponded well with observed patterns and the storm‐based equations were used successfully to model runoff depths and maximum effective runoff rates for individual events. Resulting values for maximum average infiltration rate (Im) varied between 18 and 443 mm hour?1 and reflected effects of vegetation or mulch cover and soil compaction. We conclude that the SVI model and the derived equations provide a robust and accurate method for predicting runoff at the investigated scale.  相似文献   

19.
Soil and surface water runoff are the major causes of cropland degradation in the hilly red soil region of China. Appropriate tillage practices are urgently needed to reduce erosion and protect the soil surface. In this study, five tillage systems [manure fertiliser (PM), straw mulch cover (PC), peanut–orange intercropping (PO), peanut–radish rotation (PR) and traditional farrow peanut (PF)] were compared in terms of soil infiltration and the capacity to generate runoff. Based on field‐plot monitoring and simulated experiments, this study revealed that the organic content of the soil in the PO (19.43 g kg−1), PC (18·63 g kg−1) and PM (18·18 g kg−1) treatments increased compared with those of the PF (15·64 g kg−1) and PR (17.17 g kg−1) treatments. Moreover, the three tillage practices also enhanced the soil's aggregate stability and infiltration capacity. The average annual runoff generation rates of the treatments were as follows: PR (3,141 m3 ha−1 a−1) > PF (2,189 m3 ha−1 a−1) > PC (755 m3 ha−1 a−1) > PM (514 m3 ha−1 a−1) > PO (388 m3 ha−1 a−1). The PO treatment reduced the runoff generation rate by approximately 82·3% compared with that of the PF treatment. Among the treatments, the PO treatment had the highest threshold rainfall depth (22 mm) for runoff generation. Regression analysis revealed that the threshold rainfall depths linearly increased with the infiltration rates. The results of this study could benefit local soil management and cropland conservation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Soil erosion such as sheet erosion is frequently encountered in subalpine grassland in the Urseren Valley (Swiss Central Alps). Erosion damages have increased enormously in this region during the last 50 y, most likely due to changes in land‐use practices and due to the impact of climatic changes. In order to estimate the effect of vegetation characteristics on surface runoff and sediment loss, we irrigated 22 pasture plots of 1 m2 during 1 h at an intense rain rate of 50 mm h–1 in two field campaigns using a portable rain simulator. The rain‐simulation plots differed in plant composition (herb versus grass dominance) and land‐use intensity but not in plant cover (>90%) nor in soil conditions. Prior to the second rain‐simulation campaign, aboveground vegetation was clipped in order to simulate intense grazing. The generated surface runoffs, sediment loss, relative water retention in the aboveground vegetation, and changes in soil moisture were quantified. Runoff coefficient varied between 0.1% and 25%, and sediment loss ranged between 0 and 0.053 g m–2. Thus, high infiltration rates and full vegetation cover resulted in very low erosion rates even under such extreme rain events. Surface runoff did not differ significantly between herb‐ and grass‐dominated plots. However, clipping had a notable effect on surface runoff in the test plots under different land‐use intensity. In plots without or with intensive use, surface runoff decreased after clipping whereas in extensively used plots, surface runoff increased after the clipping. This opposite effect was mainly explained by higher necromass and litter presence at the extensively used plots after the clipping treatment. The results obtained here contribute to a better understanding of the importance of vegetation characteristics on surface‐runoff formation, thus, on soil‐erosion control. Overall, we delineate vegetation parameters to be crucial in soil‐erosion control which are directly modified by the land‐use management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号