首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elemental iron powders are widely used to fortify flour and other cereal products. Our objective was to test the hypothesis that baking enhances the bioavailability of elemental iron powders by oxidizing Fe(0) to Fe(2+) or Fe(3+). An in vitro digestion/Caco-2 cell culture model and a piglet model were used to measure bioavailability. Bread flour, either unfortified or fortified with hydrogen-reduced (HR) iron powder or FeSO(4) (300 mg Fe/kg flour), was baked into bread. For the in vitro studies, bread samples were treated with pepsin at pH 2, 3, 4, 5, 6, or 7 and subsequently incubated with pancreatic enzymes at pH 7 in a chamber positioned above monolayers of cultured Caco-2 cells. Ferritin formation in the cells was used as an index of iron bioavailability. Ferritin formation in cells fed HR Fe bread was similar to cells fed FeSO(4) bread when the peptic digestion was conducted at a pH 2 but lower when the peptic phase was conducted at pH 3, 4, 5, 6, or 7 (P < 0.05). Pig diets containing 35% dried bread were prepared and fed to cross-bred (Hampshire x Landrace x Yorkshire) anemic pigs in two studies. The rate of increase in hemoglobin Fe over the feeding period was used to calculate relative biological value (RBV), an index of iron bioavailability. In the first pig study, RBV of HR Fe added to flour prior to baking was 47.9% when compared to FeSO(4) fortified flour (P < 0.05). In the second pig study, a third treatment consisting of unfortified bread with HR iron added during diet mixing (after bread baking) was included. RBVs of the HR Fe diet (Fe added after baking) and HR Fe diet (Fe added before baking) were 40.1% and 53.5%, respectively, compared to the FeSO(4) diet. Differences in RBV between the HR Fe (before and after baking) and FeSO(4) (before baking) treatment groups were significant, but the difference between the before and after HR treatment groups was not significant. We conclude that bread baking does not enhance the bioavailability of elemental iron powders.  相似文献   

2.
Sodium iron ethylenediaminetetraacetate (NaFeEDTA) has superior iron bioavailability especially in foods containing iron absorption inhibitors. However, mechanisms involved in the absorption and subsequent partitioning of iron complexed with EDTA are poorly understood. Our objectives were to compare retention and tissue distribution of iron administered to rats either as FeSO4 or NaFeEDTA, either orally (OR) or subcutaneously (SC). Weanling rats were fed semipurified diets supplemented with either FeSO4 or NaFeEDTA for 7 days. They were then given a meal containing 59Fe-labeled FeSO4 or NaFeEDTA, or they were injected SC with these two forms of radiolabeled Fe. 59Fe retention was measured by whole body counting. Urine was collected and counted at 24 h intervals throughout the counting period. Tissue samples were analyzed for nonheme iron and 59Fe activity. Absorption of iron from FeSO4 or NaFeEDTA was similar (57.7 and 53.4%, respectively). Seventy-seven percent of the injected Na59FeEDTA was excreted in the urine within 24 h, whereas only 0.5, 0.8, and 1.4% of the injected 59FeSO4, oral 59FeSO4, and oral Na59FeEDTA, respectively, was excreted in the urine. The nonheme iron content was lower in the liver and spleen, by 56.8 and 28.4%, respectively, among rats consuming the NaFeEDTA diet as compared to rats fed FeSO4. We conclude that iron is dissociated from EDTA prior to or during intestinal absorption and that some fraction of the dissociated EDTA is absorbed separately from the iron.  相似文献   

3.
Sodium iron ethylenediaminetetraacetate (NaFeEDTA) has considerable promise as an iron fortificant in food. However, effects of administering high levels of NaFeEDTA on tissue iron distribution and mineral excretion are not well understood. The objectives of this study were to assess nonheme iron distribution in the body and urinary excretion of Ca, Mg, Cu, Fe, and Zn after daily administration of high levels of iron to rats over 21 days. Iron was either given orally with food or injected subcutaneously, as either FeSO 4 or NaFeEDTA. Selected tissues were collected for nonheme iron analysis. Estimated total body nonheme iron levels were similar in rats fed NaFeEDTA or FeSO 4, but the tissue distribution was different: it was 53% lower in the liver and 86% higher in the kidneys among rats fed NaFeEDTA than among those fed FeSO 4. In contrast, body nonheme iron was 3.2-fold higher in rats injected with FeSO 4 than in rats injected with NaFeEDTA. Administering NaFeEDTA orally elevated urinary Cu, Fe, and Zn excretion compared with FeSO 4 (1.41-, 11.9-, and 13.9-fold higher, respectively). We conclude that iron is dissociated from the EDTA complex prior to or during intestinal absorption. A portion of intact FeEDTA may be absorbed via a paracellular route at high levels of intake but is mostly excreted in the urine. Metal-free EDTA may be absorbed and cause elevated urinary excretion of Fe, Cu, and Zn.  相似文献   

4.
The reduced iron powder has considerable potential for use as an iron fortificant because it does not change organoleptically during storage or food preparation for cereal flour, and its bioavailability is scarcely influenced by iron absorption inhibitors in foods. The objective of this article is to study the effects of ascorbic acid, phytic acid, and pH on iron uptake from reduced iron powder (43 microm) and FeSO 4, and to compare iron bioavailability of reduced iron powders among four selected granularity levels. The cell ferritin formation is used as a marker of iron uptake. Obviously, iron uptake of reduced iron powder is increased with decreasing of powder granularity and is much lower than FeSO 4 when the size is above 43 microm, but significantly higher at 40-60 nm. In the presence of ascorbic acid or phytic acid, Caco-2 cell iron absorption from reduced iron powder (43 microm) is significantly higher than that from FeSO 4. And iron uptake of Caco-2 cells is decreased with increasing of pH from 5.5 to 7.5. Moreover, the decrease trend is more obvious for reduced iron powder than for FeSO 4. Our results indicated that iron bioavailability of reduced iron powder by intestinal enterocytes is similar to that of iron salts, and reduced iron powder is more excellent than FeSO 4 as food fortificant, especially at ultramicroscopic granularity.  相似文献   

5.
Perfluorodecanoic acid (PFDA), a representative of the perfluoroalkyl acids, poses a great threat to humans and animals via food and other potential sources. In this work, we determined the effects of PFDA binding to two hemoproteins, bovine hemoglobin (BHb) and myoglobin (Mb). Using fluorescence spectroscopy, we found that PFDA greatly enhanced the fluorescence intensity of both hemoproteins, while perfluorooctanoic acid (PFOA) and perfluoropentanoic acid (PFPA) have minimal effects on the fluorescence. UV-vis absorption (UV) spectroscopy showed that PFDA induced the unfolding of the hemoproteins accompanied by exposure of the heme pocket and facilitating the formation of hemichrome. Additionally, as shown by the circular dichroism (CD) data, PFDA altered the secondary structure of both BHb and Mb. This work elucidates the interaction mechanism of PFDA with two hemoproteins.  相似文献   

6.
The bioavailability of iron from ferrous sulfate (FeII-S), heme iron prepared from hemoglobin (HIP), and bonito dark muscle (BDM) was assessed in anemic rats using a hemoglobin regeneration efficiency (HRE) method. Freeze-dried BDM (FD), boiled and freeze-dried BDM (B/FD), and boiled and smoke-dried BDM (B/SD) were used as BDM source. Rats were made anemic by feeding on an iron-deficient diet for 28 days. To replete their iron levels, anemic rats were then fed on a diet containing iron at a level of 17 ppm for 14 days. Rats receiving FeII-S gained significantly more weight and had greater food intake and higher HRE compared to the other four groups. The bioavailability of iron from HIP was poor compared with that from FeII-S and BDM. When the HRE of rats fed FeII-S was 100, that of rats fed BDF was approximately 80. These results suggest that BMD is an effective dietary source of iron.  相似文献   

7.
Fermentation and lactic acid addition enhance iron bioavailability of maize   总被引:1,自引:0,他引:1  
Maize is one of the most important cereal crops for human consumption, yet it is of concern due to its low iron bioavailability. The objective of this study was to determine the effects of processing on iron bioavailability in common maize products and elucidate better processing techniques for enhancing iron bioavailability. Maize products were processed to represent different processing techniques: heating (porridge), fermentation (ogi), nixtamalization (tortillas), and decortication (arepas). Iron and phytate contents were evaluated. Iron bioavailability was assessed using the Caco-2 cell model. Phytate content of maize products was significantly reduced by decortication (25.6%, p = 0.003) and nixtamalization (15%, p = 0.03), and iron content was reduced by decortication (29.1%, p = 0.002). The relative bioavailability (RBA, compared to 100% bioavailability of porridge with FeSO4) of ogi was significantly higher than that of other products when fortified with FeSO4 (p < 0.001) or reduced iron (p < 0.001). Addition of lactic acid (6 mg/g of maize) significantly increased iron solubility and increased bioavailability by about 2-fold (p < 0.01), especially in tortillas. The consumer panel results showed that lactic acid addition does not significantly affect the organoleptic characteristics of tortillas and arepas (p = 0.166 and 0.831, respectively). The results suggest that fermentation, or the addition of small amounts of lactic acid to unfermented maize products, may significantly improve iron bioavailability. Lactic acid addition may be more feasible than the addition of highly bioavailable but expensive fortificants. This approach may be a novel means to increase the iron bioavailability of maize products to reduce the incidence of iron deficiency anemia.  相似文献   

8.
OBJECTIVE: Combating iron deficiency in toddlers with iron-fortified food has proved difficult in countries with phytate-rich diets. For this purpose, a new haem iron preparation was developed. The study compared changes in iron status after administration of refried beans with beans fortified with a haem iron preparation or ferrous sulphate (FeSO4). DESIGN: In a masked, stratified-randomised intervention trial, children received five 156-g cans of refried black beans per week for 10 consecutive weeks. The beans-only (control), FeSO4 and haem iron groups were offered a cumulative dose of 155 mg, 1625 mg and 1700 mg of iron from the bean intervention, respectively. Haemoglobin (Hb) and ferritin concentrations were determined at baseline and after 5 and 10 weeks. Compliance was examined weekly. SETTING: A low-income community in Guatemala City. SUBJECTS: One hundred and ten children aged 12-36 months with initial Hb values between 100 and 115 g l(-1). RESULTS: The cumulative intake of beans was approximately 80% of that offered, signifying an additional approximately 1300 mg of either haem or inorganic iron in the corresponding treatment groups over 10 weeks. Hb concentrations increased by the order of 7.3-11.4 g l(-1) during the intervention, but without significant differences across treatments. Average ferritin concentrations were unaffected by treatment assignment. However, post hoc analysis by subgroups of initial high ferritin and initial low ferritin found the Hb increments after 10 weeks in the haem iron group (13.1+/-7.7 g l(-1)) to be significantly greater than the respective increases (6.8+/-11.2 and 6.4+/-8.5 g l(-1)) in the inorganic iron and beans-only groups. CONCLUSIONS: Canned refried beans are a candidate vehicle for fortificant iron. Given the improved colour and organoleptic properties imparted by haem iron added to refried beans, its additional potential for benefiting the iron status of consumers with iron deficiency may recommend it over FeSO4.  相似文献   

9.
Although it has been shown that iron absorption from NaFeEDTA, a promising iron fortificant, is effectively down-regulated in iron-loaded rats, effects of prolonged exposure to high dietary levels of NaFeEDTA are not well understood. The objectives of this study were to determine whether rats can adapt to a high dietary level of NaFeEDTA by down-regulating iron absorption, and to determine effects on tissue iron distribution, with or without an iron absorption inhibitor. Male Sprague-Dawley rats were exposed to diets supplemented with FeSO4 or NaFeEDTA at 1200 mg of Fe/kg of diet, with or without tea, for 27 days. Iron absorption measured by whole-body counting before and after exposure showed that rats adapted to the high dietary level of FeSO4 or NaFeEDTA by down-regulating iron absorption to a similar extent. However, nonheme iron concentrations in liver and spleen were about 35-50% lower, whereas the concentration in kidney was about 300% higher in rats fed NaFeEDTA, compared to rats fed FeSO4. Tea had no major impact on iron absorption or iron status, regardless of iron source. Our results showed that although iron absorption was down-regulated similarly, body iron distribution was markedly different between rats exposed to FeSO4 and those exposed to NaFeEDTA. Further studies are warranted to determine the effects of prolonged exposure to dietary NaFeEDTA on kidney iron accumulation and kidney function.  相似文献   

10.
Caseinophosphopeptides (CPP) issued from enzyme digestion of caseins bind cations and keep them soluble in the digestive tract. They could be used as ligands to improve iron (Fe) bioavailability. Fe-deficient young rats were repleted with Fe (40 or 200 mg/kg of diet) bound either to the beta-CN (1-25) of beta-casein or to whole beta-casein or as FeSO(4). A control pair-fed group was given 200 mg of Fe (FeSO(4))/kg of diet for 6 weeks. After repletion, hemoglobin concentration of the control group was reached only by the ) animals fed 200 mg of Fe/kg; beta-CN (1-25) bound Fe (40 and 200 mg) produced higher Fe liver and spleen stores than FeSO(4). Binding Fe to the whole, nonhydrolyzed beta-casein gave results intermediate between the other experimental groups. Binding Fe to phosphoserine residues of low molecular weight CPP improved its ability to cure anemia and to restore iron tissue stores, as compared to Fe bound to the whole casein and to inorganic salts.  相似文献   

11.
The gastric tract may be the first site where food is exposed to postprandial oxidative stress and antioxidant activity by plant micronutrients. After food intake, dietary iron, dioxygen, and emulsified lipids come into close contact and lipid oxidation may take place. This study investigated lipid oxidation and its inhibition by dietary polyphenols in gastric-like conditions. Lipid oxidation induced by heme and nonheme iron was studied in acidic sunflower oil-in-water emulsions. The emulsifier type (bovine serum albumin, phospholipids), pH, and iron form were found to be factors governing the oxidation rates. Quercetin, rutin, and chlorogenic acid highly inhibited the metmyoglobin-initiated lipid oxidation in both emulsified systems at pH 5.8. Additionally, quercetin inhibited nonheme iron-initiated processes, while it was inefficient with hematin as an initiator. The presence of human gastric juice did not influence lipid oxidation, although it diminished the antioxidant activity of phenolics. Model emulsions may thus be valuable tools to study the gastric stability of polyunsaturated lipids.  相似文献   

12.
Acrylamide, a chemical formed during heating of human foods, reacts with N-terminal valine in hemoglobin (Hb) and forms stable reaction products (adducts). These adducts to N-terminal valine in Hb have been used to estimate daily intake of acrylamide. Daily intake of acrylamide estimated from Hb adduct levels was higher than daily intake estimated from dietary questionnaires, possibly indicating other sources of exposures. Therefore, in this study the possible endogenous formation of acrylamide was investigated by treating mice with FeSO 4, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-hydrochloric acid (MPTP), or methamphetamine (METH). Acrylamide Hb adducts were determined, and a significant increase ( p < 0.05) in acrylamide Hb adduct levels was observed 24 h following treatment with FeSO 4 and 72 h following treatment with MPTP or METH. The results of this study show that acrylamide Hb adduct levels are increased in mice treated with compounds known to induce free radicals, thus suggesting the endogenous production of acrylamide.  相似文献   

13.
The objective of this study was to determine if a combination of commercially available mucin and an 8 microm microporous membrane insert can be used to replace the 15 kDa molecular weight cutoff (MWCO) dialysis membrane used in an established in vitro digestion/Caco-2 cell culture system. Although the current model with the 15 kDa membrane correlates well with human studies, use of mucin may improve the system as the mucus layer is suspected to play a physiological role in Fe absorption. Use of mucin may also enable more complete assessment of iron bioavailability from large molecular weight forms of Fe such as heme and ferritin Fe. A range of foods or Fe (i.e., FeCl(3) +/- ascorbic acid, cooked beef, red bean, white bean, soybean, horse spleen ferritin and plant-type ferritin) were subjected to in vitro digestion. In the presence of mucin, significantly more Fe was taken up from the heme Fe (86%) and ferritin (91%) samples and significantly less Fe was taken up from the white bean samples ( approximately 70%) relative to the 15 kDa membrane. The results indicated that the forms of iron interact with mucin. The mucus layer has a significant effect on Fe uptake. Further refinement and characterization of the mucin method is needed before it can be deemed to be a suitable replacement for the dialysis membrane.  相似文献   

14.
Sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA) has considerable promise as an iron fortificant because of its high bioavailability in foods containing iron absorption inhibitors. In this study, uptakes of iron from NaFeEDTA, FeSO4, and FeCl3 by Caco-2 cells were compared in the absence or presence of ascorbic acid (AA), an iron absorption enhancer; at selected pH levels; and in the absence or presence of an iron absorption inhibitor, bathophenanthroline disulfonic acid (BPDS). Ferritin formation in the cells was used as the indicator of iron uptake. Uptake from all three Fe sources was similar in the absence of AA. Adding AA at a 5:1 molar excess as compared to Fe increased uptake by 5.4-, 5.1-, and 2.8-fold for FeSO4, FeCl3, and NaFeEDTA, respectively. The smaller effect of AA on uptake from NaFeEDTA may be related to the higher solubility of NaFeEDTA and/or the strong binding affinity of EDTA for Fe3+, which may prevent AA and duodenal cytochrome b from effectively reducing EDTA-bound Fe. Uptake was inversely related to the pH of the media over a range of 5.8-7.2. Because uptake by DMT-1 is proton-coupled, the inverse relationship between pH and Fe uptake in all three iron sources suggests that they all follow the DMT-1 pathway into the cell. Adding BPDS to the media inhibited uptake from all three iron compounds equally. Because BPDS binds Fe2+ but not Fe3+ and because only Fe2+ is transported by DMT-1, the finding that BPDS inhibited uptake from NaFeEDTA suggests that at least some iron dissociates from EDTA and is reduced just as simple inorganic iron at the brush border membrane of the enterocyte. Taken together, these results suggest that uptake of iron from NaFeEDTA by intestinal enterocytes is regulated similarly to uptake from iron salts.  相似文献   

15.
Eight laboratories conducted a test for the estimation of the bioavailability of iron from 4 sources, using depleted male albino rats. Ferrous sulfate was used as the reference standard. Ferric orthophosphate was found to have a relative biological value of 11 (range 6-22), an old sample of hydrogen-reduced iron 27 (range 15-41), and ferric citrate 96 (range 75-125). Good results were obtained with a simplified basal diet prepared without ingredients that had previously contributed variable quantities of iron. There was no apparent advantage in using the change in hemoglobin during the repletion period instead of the final homoglobin value as the criterion of response to iron supplements. Several statistical treatments of the data yielded similar conclusions regarding relative biological values of the iron sources.  相似文献   

16.
This study was designed to assess the interactions of heme with peptides produced by enzyme hydrolysis of hemoglobin, and their relationship with heme iron absorption. Bovine hemoglobin was hydrolyzed by pepsin or by subtilisin, which differ in their hydrolysis processes. The hydrolysis rate ranged from 0 (native hemoglobin) to 15%. Heme solubility and heme-peptides interactions were compared to iron absorption by the Ussing chamber model, at intestinal pH (7.5). Increasing hemoglobin hydrolysis enhanced iron absorption; the highest value was reached between 8 and 11% hydrolysis, whatever the enzyme used. Comparing the products of hydrolysis of the two enzymes showed that heme iron absorption depends not only on its solubility, but relies mainly on the balance between the strength of heme-peptides and the polymerization rate of heme.  相似文献   

17.
The bioavailability of iron from fortified fruit beverages was estimated by an in vitro system including enzymatic digestion, iron uptake by Caco-2 cells, and ferritin formation determined via an enzyme immunoassay (ELISA). Thus, the aim of the present study was to assess iron bioavailability as influenced by the presence of known dietary promoter and inhibitory factors in fortified fruit beverages containing iron and/or zinc and/or skimmed milk. No negative effect ( p > 0.05) derived from micronutrient interaction can be ascribed to zinc supplementation on iron availability. Besides, the presence of caseinophosphopeptides derived from casein hydrolysis during digestion may confer enhancing effects on iron absorption in samples with milk added with respect to nonadded samples ( p < 0.05). Therefore, from a nutritional point of view, individuals in need of optimal iron absorption may choose dairy samples to ensure optimal iron bioavailability.  相似文献   

18.
The objective of this study was to document the effects of phytic acid, tannic acid, and zinc on iron uptake in an in vitro digestion/Caco-2 cell culture model. The effects of phytic acid and tannic acid on iron uptake were measured at increasing molar ratios of FeCl3 to phytic acid or tannic acid. Maximal inhibition of iron uptake by phytic acid occurred at a 1:10 ratio of Fe to phytic acid. Dialyzable Fe decreased with a low Fe to phytic acid ratio but increased with Fe:phytic acid ratios greater than 1:3 indicating that more iron was soluble at higher phytic acid levels but less available. As in human studies, heme iron was less inhibited by phytic acid than nonheme iron. Tannic acid was a more potent inhibitor of nonheme iron uptake, as maximal inhibition (97.5%) of iron uptake occurred at a ratio of 1:1 or less. The addition of ZnCl2 to the digest at ratios of 1:0.5 and 1:1 decreased iron uptake by 57 and 80%, respectively. Overall, the results agree qualitatively with studies in humans and demonstrate the relative effects of these compounds on iron uptake in this model system. This study provides key information for determining iron availability under more complex meal conditions.  相似文献   

19.
化学和黏土矿物钝化剂对牛粪秸秆堆肥磷形态转化的影响   总被引:3,自引:2,他引:1  
盲目施用粪肥导致农田土壤磷素(P)积累和产生的面源污染等环境风险已引起人们的重视。该文通过在牛粪秸秆堆肥过程中,添加质量分数2.5%的化学物质或黏土矿物2类磷素钝化剂,研究其对磷素形态转化的影响。结果显示,和对照相比,添加氧化钙、氧化镁、硫酸亚铁和明矾可明显降低堆肥产品中磷素的活性,水溶性磷(water extract phosphorus,WEP)占总磷(totalphosphorus,TP)百分比分别为:38.0%、60.2%、58.8%、28.9%;添加蛭石和沸石使堆肥产品中WEP占TP百分比分别下降11.7%、17.3%。第35天堆肥样品的Hedley磷分组结果显示,添加氧化钙和氧化镁主要促进了H_2O-Pi向更稳定态的NaHCO_3-Pi、HCl-P(Pi和Po)、残余态-P转化;添加硫酸亚铁和明矾主要促进了H_2O-Pi向更稳定态的NaOH-P(Pi和Po)、残余态-P转化。添加黏土矿物钝化剂均略微促进了不稳定态磷H_2O-Pi和NaHCO_3-Pi向稳定态磷HCl-Pi转化。堆肥结束时添加MgO明显提高了堆体的pH值,其他处理均对pH值影响较小。综合来看硫酸亚铁、明矾、沸石和蛭石依次为较好的磷素钝化材料。  相似文献   

20.
《Cereal Chemistry》2017,94(3):437-442
Solid‐state fermentation (SSF) represents a technological alternative feature for a great variety of legumes and cereals to improve their functional and nutritional properties. Iron and zinc deficiencies are major health concerns as a public health problem. Therefore, the present investigation was carried out to assess the consequences of SSF on functional properties and in vitro bioavailability of minerals through Caco‐2 cells. Fungal strain Aspergillus oryzae (generally recognized as safe) was used for SSF. The effect of SSF on the functional properties (bulk density, water‐ and oil‐binding capacities, emulsion activity and stability, and foaming capacity and stability) of a black‐eyed pea flour sample was evaluated. SSF significantly (P < 0.05) decreased the bulk density of black‐eyed pea flour; however, significant (P < 0.05) improvement was observed in other functional properties. An unfermented flour sample showed significantly (P < 0.05) decreased iron and zinc bioavailability and digestibility compared with that of the SSF flour sample. SSF significantly increased iron and zinc transport and retention through Caco‐2 cells. Significantly increased ferritin content was also observed in the fermented flour sample compared with that of unfermented flour samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号