首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experiment was conducted to test the hypothesis that for cows with high levels of milk yield, rotational grazing produces higher milk yields than continuous grazing. The comparison of grazing systems was made at two levels of milk yield (initially 20·3 and 32·5 kg d?1), and interactions with sward height and concentrate level were also examined. The study used 48 multiparous Holstein Friesian cows over a period of 62 d. Mean milk yield, its persistency and composition, live weight, body condition score and liveweight gain were not significantly affected by grazing system at either level of milk yield. There were no significant interactions between grazing system and sward height or concentrate level for any milk production measurement. Mean estimated herbage and total dry matter (DM) intake (P < 0·01), grazing time (P < 0·05) and ruminating time (P < 0·01) were significantly greater on the continuous grazing system. The cows in the higher milk yield group and those grazed at the higher sward height had a significantly (P < 0·05) higher estimated daily herbage DM intake and rate of herbage intake on the continuous grazing system than those on the rotational grazing system. There was no evidence to support the hypothesis that rotational grazing systems support higher levels of milk production than continuous grazing for cows of high milk yield. The shorter grazing time on the rotational grazing system indicated that cows may anticipate the timing of the daily movement of the electric fence, and this reduces their time spent grazing residual herbage.  相似文献   

2.
Two factorial design experiments were carried out in the spring of 1994 and 1995, each of 6 weeks, to quantify the effects of sward height (SH), concentrate level (CL) and initial milk yield (IMY) on milk production and grazing behaviour of continuously stocked dairy cows. In Experiment 1, forty‐five Holstein Friesian cows were in five groups with initial milk yields of 16·9, 21·1, 28·0, 31·5 and 35·5 kg d–1, grazed sward heights were 3–5, 5–7 and 7–9 cm (LSH, MSH and HSH respectively), and concentrates were fed at rates of 0, 3 and 6 kg d–1. In Experiment 2, 48 cows were in two groups with IMY of 21·3 and 35·5 kg d–1, grazed sward heights were 3–5 and 7–9 cm (LSH and HSH), and concentrates were fed at 0 and 6 kg d–1 and ad libitum. Multiple regression models were used to quantify the effects of the three variables on milk yield persistency (MYP), estimated herbage dry‐matter (DM) intake (HDMI), grazing time (GT) and rate of DM intake (RI). The partial regression coefficients showed that increased SH led to increased MYP (Experiment 1 P < 0·001, Experiment 2 P < 0·05), increased HDMI (P < 0·01, P < 0·01), increased GT (P < 0·001, P < 0·05) and increased RI (P < 0·001, P < 0·05). Increasing CL led to increased MYP (NS, P < 0·001), decreased HDMI (P < 0·001, P < 0·001), decreased GT (NS, P < 0·001) and decreased RI (P < 0·001, P < 0·001). Higher IMY level of cows decreased MYP (P < 0·001, P < 0·001), increased HDMI (P < 0·001, P < 0·001), increased GT (P < 0·001, P < 0·05) and increased RI (P < 0·05, P < 0·01). The models were highly significant (P < 0·001), and accounted for 0·48–0·87 of the total variance. The partial regression coefficients quantified the extent to which GT and RI by cows respond positively to higher IMY, and negatively to increased CL, but respond differently (GT declines in response to a higher RI) with increasing SH.  相似文献   

3.
The objective of this experiment was to use diurnal and temporal changes in herbage composition to create two pasture diets with contrasting ratios of water‐soluble carbohydrate (WSC) and crude protein (CP) and compare milk production and nitrogen‐use efficiency (NUE) of dairy cows. A grazing experiment using thirty‐six mid‐lactation Friesian x Jersey cows was conducted in late spring in Canterbury, New Zealand. Cows were offered mixed perennial ryegrass and white clover pastures either in the morning after a short 19‐day regrowth interval (SR AM) or in the afternoon after a long 35‐day regrowth interval (LR PM). Pasture treatments resulted in lower pasture mass and greater herbage CP concentration (187 vs. 171 g kg?1 DM) in the SR AM compared with the LR PM but did not affect WSC (169 g kg?1 DM) or the ratio of WSC/CP (1·0 g g?1). Cows had similar apparent DM (17·5 kg DM cow?1 d?1) and N (501 g N cow?1 d?1) intake for both treatments. Compared with SR AM cows, LR PM cows had lower milk (18·5 vs. 21·2 kg cow?1 d?1), milk protein (0·69 vs. 0·81 kg cow?1 d?1) and milk solids (1·72 and 1·89 kg cow?1 d?1) yield. Urinary N concentration was increased in SR AM, but estimated N excretion and NUE for milk were similar for both treatments. Further studies are required to determine the effect of feeding times on diurnal variation in urine volume and N concentration under grazing to predict urination events with highest leaching risk.  相似文献   

4.
GrazeIn is a model for predicting herbage intake and milk production of grazing dairy cows. The objectives of this paper are to test its robustness according to a planned arrangement of grazing and feeding scenarios using a simulation procedure, and to investigate the precision of the predictions from an external validation procedure with independent data. Simulations show that the predicted effects of herbage allowance, herbage mass, herbage digestibility, concentrate supplementation, forage supplementation and daily time at pasture are consistent with current knowledge. The external validation of GrazeIn is investigated from a large dataset of twenty experiments representing 206 grazing herds, from five research centres within Western Europe. On average, mean actual and predicted values are 14·4 and 14·2 kg DM d?1 for herbage intake and 22·7 and 24·7 kg d?1 for milk production, respectively. The overall precision of the predictions, estimated by the mean prediction error, are 16% (i.e. 2·3 kg DM d?1) and 14% (i.e. 3·1 kg d?1) for herbage intake and milk production, respectively. It is concluded that the GrazeIn model is able to predict variations in herbage intake and milk production of grazing dairy cows in a realistic manner over a wide range of grazing management practices, rendering it suitable as a basis for decision support systems.  相似文献   

5.
The objective of this study was to examine the effect of herbage mass and daily herbage allowance (DHA) on sward characteristics and animal performance, dry‐matter intake, rumen pH and volatile fatty acid production of unsupplemented spring‐calving dairy cows throughout the main grazing season. Sixty‐eight Holstein‐Friesian dairy cows were randomly assigned across four treatments (n = 17) in a 2 × 2 factorial design. Two swards were created with different levels of pre‐grazing herbage mass [allocated above 4 cm (>4 cm); 1700 kg DM ha?1 (medium; M) or 2200 kg DM ha?1 (high; H)] and two levels of DHA (>4 cm; 16 or 20 kg DM per cow d?1). An additional eight lactating ruminally cannulated Holstein–Friesian dairy cows were randomly assigned to each treatment in a replicated 4 × 4 Latin square design. Sward and animal measurements were collected across four periods each of 1 week duration in April and May (PI) and July and August (PII). Maintaining the medium‐mass sward across the season improved the nutritive value of the sward in the latter part of the grazing season compared with high‐mass swards, thus resulting in increased animal intakes and milk production throughout PII. The higher organic matter digestibility of the medium‐compared with high‐masses during PII indicates that grazing severity and herbage mass in the spring to mid‐summer period will determine sward quality parameters in the late summer period.  相似文献   

6.
Low rates of herbage dry matter (DM) intake impose limits on total daily DM intake in grazing dairy cows. The objective of this study was to increase total daily DM intake and milk production by restricting daily time available for grazing (TAG) and replacing it with time available for eating a maize silage/soyabean meal (TAMS) diet indoors. The treatments (TAG + TAMS) were 20 + 0, 19 + 1, 10 + 10 and 5 + 15 h. Measurements were made of milk production, intake and feeding behaviour. The interactions of TAG + TAMS treatments with sward height (SH) and concentrate level (CL) were also examined. Two experiments, each lasting 42 days, were carried out in spring ( Experiment 1 ) and autumn ( Experiment 2 ) using forty‐eight and twenty‐four Holstein‐Friesian cows respectively. Treatments were arranged in a factorial design with TAG + TAMS treatments, SH ( Experiment 1 only) and CL as the independent variables and a TAG + TAMS of 20 h. Reducing TAG and increasing TAMS significantly reduced estimated herbage DM intake and significantly increased maize silage/soyabean meal intake in both experiments, but there were no significant main effects of TAG + TAMS treatments on milk yield (mean, 27·4 and 25·5 kg d?1 for Experiments 1 and 2 respectively), and yield of milk constituents. Increasing SH ( Experiment 1 ) and CL ( Experiments 1 and 2 ) significantly increased milk yield. In Experiment 1 , there was a significant interaction between TAG + TAMS treatments and SH with the taller sward height of 8–10 cm and the 20 + 0 treatment having the highest milk yield (29·7 kg d?1) and the 5 + 15 treatment the lowest (27·2 kg d?1), whereas at the lower sward height of 4–6 cm, milk yield was lowest on the 20 + 0 treatment (25·5 kg d?1) with the other three treatments being higher (mean, 26·9 kg d?1). Replacing TAG with TAMS significantly increased liveweight gain in Experiment 1 but not in Experiment 2 . Estimated rates of intake of herbage were lower in the autumn experiment ( Experiment 2 , 9·6 g DM min ?1) than in the spring experiment ( Experiment 1 , 29·4 g DM min ?1) but rates of intake of maize silage were higher in the autumn (112·4 g DM min?1) than in the spring (72·5 g DM min?1). In conclusion, in spring the response to replacing TAG with TAMS was dependent on sward conditions with the highest milk fat plus protein yield being on the 20 + 0 treatment at the high sward height and on the 19 + 1 treatment at the low sward height. The high liveweight gain of the 5 + 15 treatment could be an important means of restoring body condition in grazing lactating cows. In autumn, intakes of herbage were low in spite of its high estimated nutritive value with all treatments having a similar level of performance.  相似文献   

7.
The effects of a limited grazing period on the performance, behaviour and milk composition of high-yielding dairy cows were examined. A total of 56 Holstein cows yielding 44.7 ± 0.42 kg/day were allocated to one of four treatments in one of two, 4-week periods. Treatments were as follows: control (C)—cows housed and offered TMR ad libitum; early grazing (EG)—cows grazed for 6 hr after morning milking then housed; delayed grazing (DG)—cows returned to housing for 1 hr after morning milking followed by grazing for 6 hr, then housed; restricted TMR (RT)—cows grazed for 6 hr after morning milking, then housed and fed TMR at 75% of ad libitum. Intake of TMR was highest in cows receiving C, intermediate in EG and DG, and lowest in RT at 26.9, 23.6, 24.7 and 20.3 kg DM/day respectively. Pasture intake was similar in cows receiving EG or DG, but was higher in RT at 2.4, 2.0 and 3.5 kg DM/day respectively. Milk yield was similar between cows receiving C, EG or DG, but lowest in RT at 45.7, 44.2, 44.9 and 41.7 kg/cow, respectively, while milk fat content of C18:3 n-3 was increased by grazing. Cows in C spent more than 55 min/day longer lying and had three additional lying bouts/day, while lying bouts were shorter than for cows receiving EG, RT or DG. It is concluded that high-yielding cows can be grazed for 6 hr/day with little impact on performance, provided TMR is available ad libitum when housed.  相似文献   

8.
The present study highlights the effects of sheep grazing and precipitation on herbage and animal performance in a grazed steppe of Inner Mongolia. Experimental data were collected during grazing periods of four consecutive years (2005–2008), and effects were analysed across a gradient of seven grazing intensities. Variation in annual precipitation, reflected by the effect of ‘year’, was the major factor affecting herbage; i.e., the production and nutritive value of herbage increased with increasing precipitation. Herbage parameters were also affected by grazing intensity, as herbage production (HP) and herbage nutritive yields decreased, while herbage nutritive values increased with increasing grazing intensity. The grazing‐induced decrease in herbage nutritive yields suggests that decreases in HP offset the positive effect of grazing on the nutritive value. Liveweight gain (LWG) was predominantly affected by grazing intensity, as LWG per sheep and per ha decreased and increased, respectively, with increasing grazing intensity. However, responses varied among years: LWG per sheep was maximized by light grazing in the drought year and by moderate grazing the wet year. Our results showed that herbage shortage at high grazing intensities reduces LWG per sheep and thus diminishes responses in LWG per ha. Nevertheless, the highest grazing intensity provides highest animal production per ha in the short term; however, this is not sustainable in the mid‐ and long term because decreasing HP induces degradation processes. Based on our results, a reduction in grazing intensity that still provides 78% of the maximum LWG per ha meets the requirements of a sustainable grazing management.  相似文献   

9.
Grazing plays an important role in milk production in most regions of the world. In this review, some challenges to the grazing cow are discussed together with opportunities for future improvement. We focus on daily feed intake, efficiency of pasture utilization, output of milk per head, environmental impact of grazing and the nutritional quality to humans of milk produced from dairy cows in contrasting production systems. Challenges are discussed in the context of a trend towards increased size of individual herds and include limited and variable levels of daily herbage consumption, lower levels of milk output per cow, excessive excretion of nitrogenous compounds and requirements for minimal periods of grazing regardless of production system. A major challenge is to engage more farmers in making appropriate adjustments to their grazing management. In relation to product quality, the main challenge is to demonstrate enhanced nutritional/processing benefits of milk from grazed cows. Opportunities include more accurate diet formulations, supplementation of grazed pasture to match macro- and micronutrient supply with animal requirement and plant breeding. The application of robotics and artificial intelligence to pasture management will assist in matching daily supply to animal requirement. Wider consumer recognition of the perceived enhanced nutritional value of milk from grazed cows, together with greater appreciation of the animal health, welfare and behavioural benefits of grazing should contribute to the future sustainability of demand for milk from dairy cows on pasture.  相似文献   

10.
The prediction of both food intake and milk production constitutes a major issue in ruminants. This article presents a model predicting voluntary dry matter intake and milk production by lactating cows fed indoors. This model, with an extension to predict herbage intake at grazing presented in a second article, is used in the Grazemore decision support system. The model is largely based on the INRA fill unit system, consisting of predicting separately the intake capacity of the cows and the fill value (ingestibility) of each feed. The intake capacity model considers potential milk production as a key component of voluntary feed intake. This potential milk production represents the energy requirement of the mammary gland, adjusted by protein supply when the protein availability is limiting. Actual milk production is predicted from the potential milk production and from the nutritional status of the cow. The law of response of milk production is a function of the difference between energy demand and actual energy intake, modulated by protein intake level. The simulation of experimental data from different feeding trials illustrates the performance of the model. This new model enables dynamic simulations of intake and milk production sensitive to feeding management during the whole lactation period.  相似文献   

11.
The aims of this study were to examine the effect of three grazing treatments (year‐round stocking rates of 0·8 ewes ha?1, 0·5 ewes ha?1 and 0·5 ewes ha?1 plus grazing cattle in summer), imposed for 4 years, on the herbage mass and surface height of a Nardus stricta‐dominated grassland in western Scotland and to obtain estimates of annual productivity of this grassland. Nardus stricta‐dominated grassland comprised proportionately 0·20 of the grazing area. Stocking rate of sheep had no significant effect on the herbage mass of the grassland in the first 2 years of the experiment, although mean summer pasture heights were significantly higher under the lower stocking rate of sheep. The pasture on the treatment with cattle grazing in summer had a significantly lower herbage mass and lower surface height than the two sheep‐only grazing treatments. Year‐to‐year variation in the herbage mass and surface height of herbage in summer was greater than the effect of treatments. Despite changes in surface height, the structural diversity of the grasslands was not increased by the treatments. The annual production of vascular plant material ranged from 417 g DM m?2 in 1994 to 628 g DM m?2 in 1996.  相似文献   

12.
The effect of feeding either traditional concentrates containing starch or high quality fibrous concentrates on the performance of grazing dairy cows was examined in a trial in which cows were given concentrates with either 350 g starch and sugars (kg dry matter (DM))-1 (high-starch) or 100 g starch and sugars (kg DM)-1 (high-fibre). The swards used consisted predominantly of perennial ryegrass and were usually aftermaths following cutting. Each area was grazed for 3 or 4 d at each grazing and a two-machine sward-cutting technique was used for estimating herbage intake.
The effect of concentrate composition on the herbage intake of grazing cows at a high daily herbage allowance of 28 kg OM above 4 cm cutting height was investigated in 1983 and 1984. With 54 kg OM d-1 of high-starch concentrates the mean herbage intake was 11·5 kg OM d-1 per cow while cows fed 5.3 kg d-1 of high-fibre concentrates consumed on average 12–6 kg OM d-1. The mean substitution rate of herbage by concentrates was reduced from 0·45 kg herbage OM (kg concentrate OM)-1 with the high-starch concentrate to 0·21 with the high-fibre concentrates.
The effect of the treatments on milk production was studied in 1984. The cows consumed 5·5 kg OM d-1 as concentrates and grazed at a lower herbage allowance of 19 kg OM above 4 cm cutting height. With high-fibre concentrates milk production and 4% fat-corrected milk production were 13 and 1·8 kg d-1, respectively, higher than with the high-starch treatment. The daily live weight gain with the high-starch concentrates was 0·17 kg per cow more than with the high-fibre concentrates.  相似文献   

13.
The study evaluated the impact of High, Moderate and Low grazing intensities throughout the grazing season, within a rotational stocking system, on the performance of high‐yielding dairy cows receiving a high level of concentrates. Sixty‐three Holstein‐Friesian dairy cows, 21 at each grazing intensity, were rotationally grazed. Average paddock size, post‐grazing sward heights and seasonal grazing stocking rates within the High, Moderate and Low grazing intensities were 0.143, 0.167 and 0.200 hectares, 5.2, 6.1 and 6.8 cm and 7.8, 6.7 and 5.6 cows ha?1 respectively. Grazing intensity had no effect on milk fat and protein content, end‐of‐study body condition score or end‐of‐study live weight although the latter tended towards significance (p = .057). Average daily milk yield per cow was higher within the Low grazing intensity (33.2 kg day?1) than High grazing intensity (30.5 kg day?1), and average daily fat‐plus‐protein yield was higher for Low and Moderate than High. Milk output per hectare was higher for the High grazing intensity than Low grazing intensity (33,544 and 26,215 kg ha?1 respectively). Grazing intensity had no effect on grazing bite number, blood metabolites or concentrations of milk fatty acids or on sward morphological components, although dead matter increased with time across all grazing intensities. Herbage utilization efficiency (above 1,600 kg DM ha?1) was 52%, 74% and 87% for Low, Moderate and High respectively. It is concluded that high‐producing dairy cows can graze at high levels of utilization when they are receiving high rates of concentrates. Although cow performance will be reduced, milk yield per ha will increase.  相似文献   

14.
Four perennial ryegrass (Lolium perenne L.) cultivars were compared for differences in herbage production, nutritive value and herbage intake of dry matter (DM) during the summers of 2002 and 2003. Two paddocks were sown with pure stands of four cultivars in a randomized block design with three replicates. Each plot was subdivided into fourteen subplots (22 m × 6 m) which were grazed by one cow during 24 h. Twelve lactating dairy cows were assigned to one cultivar for a period of 2 weeks in a 4 × 4 Latin square experimental design; the experiment lasted 8 weeks in each year. Sward structure (sward surface height, DM yield, green leaf mass, bulk density and tiller density) and morphological characteristics were measured. The ash, neutral‐detergent fibre, acid‐detergent lignin, crude protein and water‐soluble carbohydrate concentrations, and in vitro digestibility of the herbage were measured. The sward was also examined for infestation by crown rust (Puccinia coronata f. sp. lolii). Herbage intake of dairy cows was estimated using the n‐alkane technique. Cultivar differences for all sward structural characteristics were found except for bulk density and tiller density in 2003. Cultivars differed for proportions of pseudostem, stem (in 2003 only) and dead material. The chemical composition of the herbage was different among cultivars, with the water‐soluble carbohydrate concentration showing large variation (>0·35). Cultivars differed in susceptibility to crown rust. Herbage intake differed among cultivars in 2002 (>2 kg DM) but not in 2003. Herbage intake was positively associated with sward height, DM yield and green leaf mass. Canopy morphology did not affect herbage intake. Crown rust affected herbage intake negatively. It was concluded that options for breeders to select for higher intake were limited. High‐yielding cultivars and cultivars highly resistant to crown rust were positively related with a high herbage intake.  相似文献   

15.
The objective of this study was to examine the performance of grazing Holstein–Friesian dairy cows when equal quantities of concentrates were offered using either a flat‐rate or a feed‐to‐yield allocation strategy. The study involved fifty‐six cows (twenty primiparous and thirty‐six multiparous) and continued for 122 d, with concentrate feed levels adjusted on five occasions during the study (every four weeks approximately). Total concentrate intake over the duration of the study was 463 and 525 kg cow?1 (3·8 and 4·3 kg cow?1 d?1) for multiparous and primiparous animals respectively. Concentrate allocation strategy had no effect on average daily milk yield, milk fat or protein content, milk‐fat‐plus‐protein yield or end‐of‐study live weight and body condition score (P > 0·05). In conclusion, concentrate allocation strategy had minimal impact on the overall performance of these mid/late lactation cows when concentrate feed levels were modest and grass availability was high.  相似文献   

16.
The impact of manipulating ruminal fill (RF) on intake rate of herbage and grazing dynamics was measured with three rumen‐cannulated beef heifers grazing Bermudagrass pastures individually. The treatments compared were removal of proportions of rumen contents of 0 (treatment RF0), 0·33 (treatment RF33), 0·66 (treatment RF66) and 1·00 (treatment RF100). Treatments were randomly applied in a 3 × 4 Youden‐square design. The rumens were emptied before and after planned grazing sessions (30 min) to set up the treatments, and to estimate intake rate and bite mass, respectively. Measurements were made of bite rate, bites per feeding station, feeding stations per minute, intake per feeding station, time per feeding station, eating and searching step rates and times. Apparent bite area and area grazed per feeding station were calculated. Ruminal fill affected short‐term intake rate and changed grazing dynamics. As RF increased, step rates, searching times, bite mass, apparent bite area, bites per feeding station, area grazed per feeding station, time per feeding station and intake per feeding station decreased (P < 0·01) while step times, eating step rates and bite depth increased (P < 0·01). The results of the present study indicate that RF is an important factor governing the intake characteristics and behaviour of grazing beef heifers.  相似文献   

17.
The effect of offering a total mixed ration of silage and concentrate (proportionately 0·44 silage) system [indoor feeding system (IF)] was compared with grazing at a high daily herbage allowance with a low level of concentrate supplementation [early grazing system (EG)] in early spring on the performance of spring‐calving dairy cows in Ireland. Sixty‐four spring‐calving Holstein–Friesian dairy cows (mean calving date, 2 February) were allocated to one of two systems between 16 February and 4 April 2004. An equal number of primiparous and multiparous cows were assigned to each system. The dairy cows on the IF system were housed for a 7‐week period and offered a diet of 10·9 kg DM cow?1 d?1 (s.d. 2·3) of concentrate, the remainder of the diet was 8·6 kg DM cow?1 d?1 (s.d. 1·9) of grass silage. The dairy cows on the EG system were offered a mean daily herbage allowance of 15·1 kg DM cow?1 d?1 (s.d. 3·7) and were supplemented with 3·0 kg DM cow?1 d?1 (s.d. 1·0) of concentrate. There was no difference in milk yield between the two systems but the cows in the EG system had a higher milk protein concentration (2·9 g kg?1) and a higher milk protein yield than in the IF system. Milk fat concentration was higher for cows in the IF than EG system (3·0 g kg?1). There was no difference in total daily dry‐matter intake between the systems, measured in week 6 of the study. Mean live weight of the cows in the IF system was greater than in the EG system. The results of the study suggest that a slightly greater performance can be achieved by a system offering a high daily herbage allowance to spring‐calving dairy cows in early lactation compared with a system offering a total mixed ration containing a high proportion of concentrate with grass silage.  相似文献   

18.
Reduction of grazing intensity and the use of traditional instead of commercial breeds has frequently been recommended to meet biodiversity and production goals in sustainable grazing systems in Europe. To test the impact of such practices across a range of contrasting grassland types, integrated measurements of foraging behaviour, agronomic production and botanical, structural and invertebrate biodiversity were made over three years on four sites in the UK, Germany, France and Italy. The sites in the UK and Germany were mesotrophic grassland with high productivity and low to moderate initial levels of plant diversity, and were grazed by cattle. The French site was a semi‐natural, species‐rich grassland grazed by cattle. The Italian site contained a wider range in plant diversity, from species‐rich to mesotrophic grassland, and was grazed by sheep. The treatments were: MC, moderate grazing intensity with a commercial breed – this was designed to utilize herbage growth for optimum livestock production; LC, lenient grazing intensity with a commercial breed – this was designed to increase biodiversity by not fully utilizing herbage growth; and LT, lenient grazing intensity with a traditional breed – this was also designed to increase biodiversity. Neither fertilizers nor pesticides were applied. The nutritive value of the herbage and the performance of the livestock were measured. Mean stocking rates were proportionately 0·30–0·40 lower and mean sward heights and herbage mass on offer were 0·30–0·50 higher on the LC and LT treatments compared with the MC treatment. The proportion of live and dead material, and leaves and stems in the herbage, its chemical composition and nutritive value were little affected by the treatments. Individual livestock performance, measured as liveweight gain, showed no consistent response to treatment. In Germany, performance on the MC treatment was slightly lower than on the LC and LT treatments but no such difference was found on the sites in the other countries. Livestock breed did not have a strong effect on livestock performance. In the UK and France the traditional breeds had a lower performance but this was not the case in Germany or Italy. Livestock performance per ha of the LC and LT treatments was up to 0·40 lower than of the MC treatment. It is concluded that biodiversity‐targeted extensive grazing systems have potential to be integrated into intensive livestock production systems because the individual livestock performance reaches a similar level compared to a moderate grazing intensity. Traditional breeds did not have a production advantage over commercial breeds on extensively managed pastures.  相似文献   

19.
A comparative study of grazing behaviour, herbage intake and milk production of three strains of Holstein‐Friesian dairy cow was conducted using three grass‐based feeding systems over two years. The three strains of Holstein‐Friesian cows were: high production North American (HP), high durability North American (HD) and New Zealand (NZ). The three grass‐based feeding systems were: high grass allowance (MP), high concentrate (HC) and high stocking rate (HS). In each year seventy‐two pluriparous cows, divided equally between strains of Holstein‐Friesian and feeding systems were used. Strain of Holstein‐Friesian cow and feeding system had significant effects on grazing behaviour, dry matter (DM) intake and milk production. The NZ strain had the longest grazing time while the HD strain had the shortest. The grazing time of cows in the HC system was shorter than those in both the HS and MP systems. There was a significant strain of Holstein‐Friesian cow by feeding system interaction for DM intake of grass herbage and milk production. The NZ strain had the highest substitution rate with the HP strain having the lowest. Hence, response in milk production to concentrate was much greater with the HP than the NZ strain. Reduction in milk yield as a consequence of a higher stocking rate (MP vs. HS system) was, however, greater for the HP and HD strains compared with the NZ strain. The results suggest that differences in grazing behaviour are important in influencing DM intake and milk production.  相似文献   

20.
An experiment was undertaken to examine the effect of supplement type on herbage intake, total dry matter (DM) intake, animal performance and nitrogen utilization with grazing dairy cows. Twenty‐four spring‐calving dairy cows were allocated to one of six treatments in a partially balanced changeover design with five periods of four weeks. The six treatments were no supplement (NONE), or supplementation with either grass silage (GS), whole‐crop wheat silage (WS), maize silage (MS), rapidly degradable concentrate (RC) or slowly degradable concentrate (SC). Cows were rotationally grazed with a mean herbage allowance of 20·5 kg DM per cow per day, measured above 4 cm. Forage supplements were offered for approximately 2 h immediately after each morning milking, with cows on NONE, RC and SC treatments returning to the grazing paddock immediately after milking. Cows on treatment MS had a significantly higher supplement DM intake than the other treatments but a significantly lower grass DM intake than the other treatments, resulting in no significant difference in total DM intake when compared with cows on treatments WS, RC and SC. Concentrate type had no significant effect on herbage intake, milk yield, milk composition or yield of milk components. The yield of milk fat and milk protein was significantly higher on treatments MS, RC and SC compared with treatments NONE, GS and WS. The results indicate that despite a relatively high substitution rate, maize silage can be a useful supplement for the grazing dairy cow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号