首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
Levosulpiride (LSP) is the l‐enantiomer of sulpiride, and LSP recently replacing sulpiride in several EU countries. Several studies about LSP in humans are present in the literature, but neither pharmacodynamic nor pharmacokinetic data of LSP is present for veterinary species. The aim of this study was to assess the pharmacokinetic profile of LSP after intravenous (IV), intramuscular (IM), and oral (PO) administration in goats. Animals (n = 6) were treated with 50 mg LSP by IV, IM, and PO routes according to a randomized cross‐over design (3 × 3 Latin‐square). Blood samples were collected prior and up to 24 hr after LSP administration and quantified using a validated HPLC method with fluorescence detection. IV and IM administration gave similar concentration versus time curve profiles. The IM mean bioavailability was 66.97%. After PO administration, the drug plasma concentrations were detectable only in the time range 1.5–4 hr, and the bioavailability (4.73%) was low. When the AUC was related to the administered dose in mg/kg, there was a good correlation in the IV and IM groups, but very low correlation for the PO route. In conclusion, the IM and IV administrations result in very similar plasma concentrations. Oral dosing of LSP in goats is probably not viable as its oral bioavailability was very low.  相似文献   

2.
The aim of the present study was to determine the pharmacokinetics (PKs) and bioavailability of danofloxacin in chukar partridge (Alectoris chukar) following intravenous (IV), intramuscular (IM), subcutaneous (SC), and oral (PO) administrations at a dose of 10 mg/kg. A total of eight clinically healthy chukar partridges weighing 480 ± 45 g were used for the investigation. The study was performed in a crossover design (2 × 2 × 2 × 2) with a 15‐day washout period between two administrations in four periods. The plasma concentrations of danofloxacin were determined using reversed‐phase high‐performance liquid chromatography. Noncompartmental PK parameters were also estimated. No local or systemic adverse drug effects were observed in any of the chukar partridges. The mean elimination half‐life ranged between 8.18 and 12.08 hr and differed statistically among administration routes. The mean peak plasma concentrations of danofloxacin following IM, SC, and PO administrations were 8.05, 9.58, and 3.39 μg/ml at 0.5, 1, and 4 hr, respectively. Following IM, SC, and PO administrations, the mean bioavailability was 86.33%, 134.40%, and 47.62%, respectively. The mean total clearance and volume of distribution at steady‐state following IV administration were 0.13 L hr?1 kg?1 and 0.96 L/kg, respectively. These data, including favorable PKs and the absence of adverse drug effects, suggest that danofloxacin is a useful antibiotic in chukar partridges.  相似文献   

3.
Use of drug in lactating animal should be carefully considered due to its possibility of changes in pharmacokinetics as well as drug penetration in milk. The aim of this study was to assess the effect of lactation on pharmacokinetics of meloxicam after IV and IM administrations in goats. A crossover design (2 × 2) was used for each lactating and nonlactating group of goats with a 3-week washout period. Meloxicam (0.5 mg/kg) was administered into the jugular vein and upper gluteal muscle by IV and IM routes, respectively. The plasma and milk drug concentrations were determined by high-performance liquid chromatography with diode array detector, and the pharmacokinetic analysis was carried out by noncompartmental analysis. The pharmacokinetic parameters of meloxicam in lactating and nonlactating goats were not significantly different. The IM bioavailability of meloxicam was relatively lower in lactating (75.3 ± 18.6%) than nonlactating goats (103.8 ± 34.7%); however, the difference was not statistically significant. Moreover, AUC ratio between milk and plasma, which represent drug milk penetration, for both IV and IM administrations was less than 1 (about 0.3). In conclusion, pharmacokinetic parameters of meloxicam are not significantly altered by lactation for either the IV or IM routes of administration and this drug does not require a different dosage regimen for lactating animals.  相似文献   

4.
Furosemide is the most common diuretic drug used in horses. Furosemide is routinely administered as IV or IM bolus doses 3-4 times a day. Administration PO is often suggested as an alternative, even though documentation of absorption and efficacy in horses is lacking. This study was carried out in a randomized, crossover design and compared 8-hour urine volume among control horses that received placebo, horses that received furosemide at 1 mg/kg PO, and horses that received furosemide at 1 mg/kg IV. Blood samples for analysis of plasma furosemide concentrations, PCV, and total solids were obtained at specific time points from treated horses. Furosemide concentrations were determined by reversed-phase high-performance liquid chromatography with fluorescent detection. Systemic availability of furosemide PO was poor, erratic, and variable among horses. Median systemic bioavailability was 5.4% (25th percentile, 75th percentile: 3.5, 9.6). Horses that received furosemide IV produced 7.4 L (7.1, 7.7) of urine over the 8-hour period. The maximum plasma concentration of 0.03 microg/mL after administration PO was not sufficient to increase urine volume compared with control horses (1.2 L [1.0, 1.4] PO versus 1.2 L [1.0, 1.4] control). There was a mild decrease in urine specific gravity within 1-2 hours after administration of furosemide PO, and urine specific gravity was significantly lower in horses treated with furosemide PO compared with control horses at the 2-hour time point. Systemic availability of furosemide PO was poor and variable. Furosemide at 1 mg/kg PO did not induce diuresis in horses.  相似文献   

5.
Cyadox (CYX) is a synthetic antibacterial agent of quinoxaline with much lower toxic effects. A safety criterion of CYX for clinical use was established by studying the pharmacokinetics and metabolism of CYX after oral (PO), intramuscular (IM), and intravenous (IV) administration. CYX was administered in six domesticated cats (three males and three females) by PO (40 mg/kg.b.w.), IM (10 mg/kg.b.w.), and IV (10 mg/kg.b.w.) routes in a crossover pattern. Highly sensitive liquid chromatography with ultraviolet detection (HPLC-UV) method was developed for detection of CYX and its metabolites present in plasma, urine, and feces. The bioavailability of CYX after PO and IM routes was 4.37% and 84.4%. The area under curves (AUC), mean resident time (MRT), and clearance (CL) of CYX and its metabolites revealed that CYX quickly metabolized into its metabolites. The total recovery of CYX and its main metabolites was >60% after each route. PO delivery suggesting first pass effect in cats that might make this route suitable for intestinal infection and IM injection could be better choice for systemic infections. Less ability of glucuronidation did not show any impact on CYX metabolism. The findings of present study provide detailed information for evaluation of CYX.  相似文献   

6.
The plasma concentrations and pharmacokinetics of rifampin disposition were determined after a single IV, IM, or oral dose of 10 mg/kg of body weight and an oral dose of 25 mg/kg. The overall elimination rate constants per minute were similar for the 10 mg/kg dose (0.0021 +/- 0.0004, IV; 0.0017 +/- 0.0002, IM; and 0.0023 +/- 0.0006, orally). The apparent bioavailability was moderate to low for IM and oral administrations (59.8% +/- 3.2% and 39.5% +/- 5.0%, respectively). The rate of absorption was most rapid for oral administration with an absorption half-life of 249.7 +/- 71.6 minutes as compared with 403.5 +/- 89.7 minutes for IM administration. However, the IM route produced longer detectable plasma concentrations (50 hours in 2 of the 4 horses). Based on bacterial sensitivity information derived for human and canine isolates, the daily oral administration of 10 mg of rifampin/kg administered in the feed represents a reasonable dose for susceptible gram-positive bacterial pathogens. Higher doses (greater than or equal to 25 mg/kg) or IV administration would be required for most gram-negative bacteria. Adverse effects of sufficient severity to limit use of the drug, especially by the oral route of administration, were not encountered under the single-dose experimental conditions used.  相似文献   

7.
The objectives of this study were to examine the pharmacokinetics of tobramycin in the horse following intravenous (IV), intramuscular (IM), and intra‐articular (IA) administration. Six mares received 4 mg/kg tobramycin IV, IM, and IV with concurrent IA administration (IV+IA) in a randomized 3‐way crossover design. A washout period of at least 7 days was allotted between experiments. After IV administration, the volume of distribution, clearance, and half‐life were 0.18 ± 0.04 L/kg, 1.18 ± 0.32 mL·kg/min, and 4.61 ± 1.10 h, respectively. Concurrent IA administration could not be demonstrated to influence IV pharmacokinetics. The mean maximum plasma concentration (Cmax) after IM administration was 18.24 ± 9.23 μg/mL at 1.0 h (range 1.0–2.0 h), with a mean bioavailability of 81.22 ± 44.05%. Intramuscular administration was well tolerated, despite the high volume of drug administered (50 mL per 500 kg horse). Trough concentrations at 24 h were below 2 μg/mL in all horses after all routes of administration. Specifically, trough concentrations at 24 h were 0.04 ± 0.01 μg/mL for the IV route, 0.04 ± 0.02 μg/mL for the IV/IA route, and 0.02 ± 0.02 for the IM route. An additional six mares received IA administration of 240 mg tobramycin. Synovial fluid concentrations were 3056.47 ± 1310.89 μg/mL at 30 min after administration, and they persisted for up to 48 h with concentrations of 14.80 ± 7.47 μg/mL. Tobramycin IA resulted in a mild chemical synovitis as evidenced by an increase in synovial fluid cell count and total protein, but appeared to be safe for administration. Monte Carlo simulations suggest that tobramycin would be effective against bacteria with a minimum inhibitory concentration (MIC) of 2 μg/mL for IV administration and 1 μg/mL for IM administration based on Cmax:MIC of 10.  相似文献   

8.
The pharmacokinetic parameters of levamisole were determined in the Caspian salmon after intramuscular (IM), oral by gavage, and oral by feed administrations. Eighty-one healthy fish in three different groups received levamisole at the dose of 25 mg/fish by each route. Blood samples were collected at time points of 0, 0.5, 1, 2, 4, 6, 12, 14, and 24 hr after administrations. Plasma levamisole concentrations were measured by a validated high-performance liquid chromatography (HPLC) assay and were analyzed using a noncompartmental approach. The mean terminal half-life was 4.56, 3.95, and 2.91 hr for IM, gavage and feed routes, respectively. The peak plasma concentration for IM, gavage, and feed routes of levamisole were 35.53, 4.63, and 8.36 µg/ml, respectively, at the time of 0.25 for IM, and 1 hr for gavage and feed. The relative bioavailability for gavage and feed routes was 54.80 and 69.30. The similar bioavailability for gavage and feed might be indicative of similar efficacy for these routes of administrations. Further studies are warranted to evaluate the absolute oral bioavailability and the effective dose in Caspian salmon.  相似文献   

9.
The plasma penicillin concentrations were determined in 5 horses given an IV injection of sodium penicillin G; plasma penicillin concentrations were also determined in a crossover experiment, where animals were given procaine penicillin G subcutaneously at 1 site and IM at 4 sites. The mean penicillin plasma peak concentration and bioavailability were highest after the drug was injected in the neck and biceps musculature. Injections in the gluteal muscle and in the subcutaneous sites resulted in similar, but lower, more persistent penicillin plasma concentrations and a lower bioavailability than were obtained with injection in the neck and biceps musculature. The pharmacokinetic data obtained after penicillin was administered via the pectoral muscle route exhibited an intermediate position. Therapeutic implications of the routes of administration with respect to hemolytic streptococcal infections are discussed.  相似文献   

10.
The pharmacokinetics of chloramphenicol were studied in sheep after 3 single intravenous (IV), intramuscular (IM) and subcutaneous (SC) administrations (30 mg/kg). The two extravascular routes were studied during a crossover trial for a bioequivalence test. After IV and SC administrations, the plasma-concentration time graphs were characteristic of a two-compartment model, and after IM administration it was characteristic of a monocompartment model. The two routes of absorption were not bioequivalent. Using the kinetic values, multidose regimens to maintain the therapeutic chloramphenicol blood level (5 micrograms/ml) were proposed: 60 mg/kg every 12 hours for 72 hours for the IM administration and 45 mg/kg administered subcutaneously according to the same regimen. A study of the chloramphenicol residues in tissues was carried out. Chloramphenicol residues remained at the injection site, and 400 hours would be necessary to obtain the level of 10 micrograms/kg. Determination of the creatinine phosphokinase serum values showed that the subcutaneous route induced less damage to muscle than the intramuscular route.  相似文献   

11.
OBJECTIVE: To assess bioequivalence after oral, IM, and IV administration of racemic ketoprofen in pigs and to investigate the bioavailability after oral and IM administration. ANIMALS: 8 crossbred pigs. PROCEDURES: Each pig received 4 treatments in a randomized crossover design, with a 6-day washout period. Ketoprofen was administered at 3 and 6 mg/kg, PO; 3 mg/kg, IM; and 3 mg/kg, IV. Plasma ketoprofen concentrations were measured by use of high-performance liquid chromatography for up to 48 hours. To assess bioequivalence, a 90% confidence interval was calculated for the area under the time-concentration curve (AUC) and maximum plasma concentration (C(max)). RESULTS: Equivalence was not detected in the AUCs among the various routes of administration nor in C(max) between oral and IM administration of 3 mg/kg. The bioavailability of ketoprofen was almost complete after each oral or IM administration. Mean +/- SD C(max) was 5.09 +/- 1.41 microg/mL and 7.62 +/- 1.22 microg/mL after oral and IM doses of 3 mg/kg, respectively. Mean elimination half-life varied from 3.52 +/- 0.90 hours after oral administration of 3 mg/kg to 2.66 +/- 0.50 hours after IV administration. Time to peak C(max) after administration of all treatments was approximately 1 hour. Increases in AUC and C(max) were proportional when the orally administered dose was increased from 3 to 6 mg/kg. Conclusions and Clinical Relevance: Orally administered ketoprofen was absorbed well in pigs, although bioequivalence with IM administration of ketoprofen was not detected. Orally administered ketoprofen may have potential for use in treating pigs.  相似文献   

12.

Background

Ketoprofen is a non-steroidal anti-inflammatory drug which has been widely used for domestic animals. Orally administered racemic ketoprofen has been reported to be absorbed well in pigs, and bioavailability was almost complete. The objectives of this study were to analyze R- and S-ketoprofen concentrations in plasma after oral (PO) and intra muscular (IM) routes of administration, and to assess the relative bioavailability of racemic ketoprofen for both enantiomers between those routes of administration in growing pigs.

Methods

Eleven pigs received racemic ketoprofen at dose rates of 4 mg/kg PO and 3 mg/kg IM in a randomized, crossover design with a 6-day washout period. Enantiomers were separated on a chiral column and their concentrations were determined by liquid chromatography-tandem mass spectrometry. Pharmacokinetic parameters were calculated and relative bioavailability (Frel) was determined for S and R –ketoprofen.

Results

S-ketoprofen was the predominant enantiomer in pig plasma after administration of the racemic mixture via both routes. The mean (± SD) maximum S-ketoprofen concentration in plasma (7.42 mg/L ± 2.35 in PO and 7.32 mg/L ± 0.75 in IM) was more than twice as high as that of R-ketoprofen (2.55 mg/L ± 0.99 in PO and 3.23 mg/L ± 0.70 in IM), and the terminal half-life was three times longer for S-ketoprofen (3.40 h ± 0.91 in PO and 2.89 h ± 0.85 in IM) than R-ketoprofen (1.1 h ± 0.90 in PO and 0.75 h ± 0.48 in IM). The mean (± SD) relative bioavailability (PO compared to IM) was 83 ± 20% and 63 ± 23% for S-ketoprofen and R-ketoprofen, respectively.

Conclusions

Although some minor differences were detected in the ketoprofen enantiomer concentrations in plasma after PO and IM administration, they are probably not relevant in clinical use. Thus, the pharmacological effects of racemic ketoprofen should be comparable after intramuscular and oral routes of administration in growing pigs.  相似文献   

13.
Soma, L. R., Uboh, C. E., Liu, Y., Li, X., Robinson, M .A., Boston, R. C., Colahan, P. T. Pharmacokinetics of dexamethasone following intra‐articular, intravenous, intramuscular, and oral administration in horses and its effects on endogenous hydrocortisone. J. vet. Pharmacol. Therap.  36 , 181–191. This study investigated and compared the pharmacokinetics of intra‐articular (IA) administration of dexamethasone sodium phosphate (DSP) into three equine joints, femoropatellar (IAS), radiocarpal (IAC), and metacarpophalangeal (IAF), and the intramuscular (IM), oral (PO) and intravenous (IV) administrations. No significant differences in the pharmacokinetic estimates between the three joints were observed with the exception of maximum concentration (Cmax) and time to maximum concentration (Tmax). Median (range) Cmax for the IAC, IAF, and IAS were 16.9 (14.6–35.4), 23.4 (13.5–73.0), and 46.9 (24.0–72.1) ng/mL, respectively. The Tmax for IAC, IAF, and IAS were 1.0 (0.75–4.0), 0.62 (0.5–1.0), and 0.25 (0.08–0.25) h, respectively. Median (range) elimination half‐lives for IA and IM administrations were 3.6 (3.0–4.6) h and 3.4 (2.9–3.7) h, respectively. A 3‐compartment model was fitted to the plasma dexamethasone concentration–time curve following the IV administration of DSP; alpha, beta, and gamma half‐lives were 0.03 (0.01–0.05), 1.8 (0.34–2.3), and 5.1 (3.3–5.6) h, respectively. Following the PO administration, the median absorption and elimination half‐lives were 0.34 (0.29–1.6) and 3.4 (3.1–4.7) h, respectively. Endogenous hydrocortisone plasma concentrations declined from a baseline of 103.8 ± 29.1–3.1 ± 1.3 ng/mL at 20.0 ± 2.7 h following the administration of DSP and recovered to baseline values between 96 and 120 h for IV, IA, and IM administrations and at 72 h for the PO.  相似文献   

14.
Amikacin sulfate was administered to African gray parrots at 3 dosages (5, 10, and 20 mg/kg) via 2 routes (IV and IM). The elimination half-time was approximately 1 hour (range, 0.9 to 1.34 hour). The apparent bioavailability of IM administered drug was 61 to 106% and was not dose-related.  相似文献   

15.
The pharmacokinetics and bioavailability of levamisole were determined in red‐eared slider turtles after single intravenous (IV), intramuscular (IM), and subcutaneous (SC) administration. Nine turtles received levamisole (10 mg/kg) by each route in a three‐way crossover design with a washout period of 30 days. Blood samples were collected at time 0 (pretreatment), and at 0.25, 0.5, 1, 1.5, 3, 6, 9, 12, 18, 24, 36, and 48 hr after drug administration. Plasma levamisole concentrations were determined by a high‐performance liquid chromatography assay. Data were analyzed by noncompartmental methods. The mean elimination half‐life was 5.00, 7.88, and 9.43 hr for IV, IM, and SC routes, respectively. The total clearance and volume of distribution at steady state for the IV route were 0.14 L hr?1 kg?1 and 0.81 L/kg, respectively. For the IM and SC routes, the peak plasma concentration was 9.63 and 10.51 μg/ml, respectively, with 0.5 hr of Tmax. The bioavailability was 93.03 and 115.25% for the IM and SC routes, respectively. The IM and SC route of levamisole, which showed the high bioavailability and long t1/2?z, can be recommended as an effective way for treating nematodes in turtles.  相似文献   

16.
The pharmacokinetics and estimated bioavailability of amoxicillin were determined after IV, intragastric, and IM administration to healthy mares. After IV administration of sodium amoxicillin (10 mg/kg of body weight), the disposition of the drug was best described by a 2-compartment open model. A rapid distribution phase was followed by a rapid elimination phase, with a mean +/- SD half-life of 39.4 +/- 3.57 minutes. The mean volume of distribution was 325 +/- 68.2 ml/kg, and the mean body clearance was 5.68 +/- 0.80 ml/min.kg. It was concluded that frequent IV administration of sodium amoxicillin would be required to maintain therapeutic plasma concentrations of amoxicillin, and thus, the use of this dosage form should be limited to the initiation of treatment or to intensive care situations. After intragastric administration of amoxicillin trihydrate (20 mg/kg), 5% cherry-flavored suspension, the drug was rapidly, but incompletely, absorbed and rapidly eliminated (mean half-life of the decline phase of the plasma amoxicillin concentration-time curve, 51 minutes). The mean estimated bioavailability (fractional absorption) of the administered dose was 10.4%, and the mean peak plasma amoxicillin concentration was 2.73 micrograms/ml at 1.5 hours after dosing. In one horse with clinical signs of abdominal discomfort and diarrhea, the absorption of amoxicillin from the gastrointestinal tract was delayed and the fraction absorbed was increased. It was concluded that this oral dosage form could be recommended only for the treatment of infections caused by bacteria that are highly susceptible to amoxicillin, that frequent dosing would be necessary, and that absorption may be inconsistent in horses with gastrointestinal disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Pharmacokinetics and bioavailability of cefazolin in horses   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailability of cefazolin given (IV, IM) to horses at the dosage of 11 mg/kg were investigated. The disposition of cefazolin given by IV route was characterized by a rapid disposition phase with a half-life of 5 to 10 minutes and a subsequent slower elimination phase with a half-life of 35 to 46 minutes. The total plasma clearance of cefazolin averaged 5.51 ml/min/kg and was due mainly to renal clearance (5.39 ml/min/kg) of unchanged drug. The volume of distribution at steady-state averaged 188 ml/kg. Plasma protein binding of cefazolin at a concentration of 10 micrograms/ml averaged 8.1 +/- 1.9%. Given by the IM route, cefazolin was rapidly absorbed; the extent of bioavailability was 78.4 +/- 18.8%, and the terminal half-life ranged from 49 to 99 minutes. Thus, cefazolin was extensively absorbed, but was eliminated more slowly than after IV administration.  相似文献   

18.
OBJECTIVE: To compare sedative effects of romifidine following IV, IM, or sublingual (SL) administration in horses. ANIMALS: 30 horses that required sedation for routine tooth rasping. PROCEDURE: Horses (n = 10/group) were given romifidine (120 microg/kg) IV, IM, or SL. Heart rate, respiratory rate, head height, distance between the ear tips, thickness of the upper lip, response to auditory stimulation, response to tactile stimulation, and degree of ataxia were recorded every 15 minutes for 180 minutes. Tooth rasping was performed 60 minutes after administration of romifidine, and overall adequacy of sedation was assessed. RESULTS: IV and IM administration of romifidine induced significant sedation, but SL administration did not induce significant sedative effects. Scores for overall adequacy of sedation after IV and IM sedation were not significantly different from each other but were significantly different from scores for horses given romifidine SL. Sedative and other effects varied among groups during the first 60 minutes after drug administration; thereafter, effects of IV and IM administration were similar. CONCLUSIONS AND CLINICAL RELEVANCE: Onset of action was fastest and degree of sedation was greater after IV, compared with IM, administration of romifidine, but duration of action was longer after IM administration. Sublingual administration did not result in clinically important sedative effects.  相似文献   

19.
OBJECTIVE: To study the pharmacokinetics of difloxacin (5 mg/kg) following IV, IM, and intragastric (IG) administration to healthy horses. ANIMALS: 6 healthy mature horses. PROCEDURES: A crossover study design with 3 phases was used (15-day washout periods between treatments). An injectable formulation of difloxacin (5%) was administered IV and IM in single doses (5 mg/kg); for IG administration, an oral solution was prepared and administered via nasogastric tube. Blood samples were collected before and at intervals after each administration. A high-performance liquid chromatography assay with fluorescence detection was used to determine plasma difloxacin concentrations. Pharmacokinetic parameters of difloxacin were analyzed. Plasma creatine kinase activity was monitored to assess tissue damage. RESULTS: Difloxacin plasma concentration versus time data after IV administration were best described by a 2-compartment open model. The disposition of difloxacin following IM or IG administration was best described by a 1-compartment model. Mean half-life for difloxacin administered IV, IM, and IG was 2.66, 5.72, and 10.75 hours, respectively. Clearance after IV administration was 0.28 L/kg.h. After IM administration, the absolute mean +/- SD bioavailability was 95.81 +/- 3.11% and maximum plasma concentration (Cmax) was 1.48 +/- 0.12 mg/L. After IG administration, the absolute bioavailability was 68.62 +/- 10.60% and Cmax was 0.732 +/- 0.05 mg/L. At 12 hours after IM administration, plasma creatine kinase activity had increased 7-fold, compared with the preinjection value. CONCLUSIONS AND CLINICAL RELEVANCE: Data suggest that difloxacin is likely to be effective for treating susceptible bacterial infections in horses.  相似文献   

20.
Pharmacokinetics and bioavailability of enrofloxacin were determined after single intravenous (IV) and intramuscular (IM) administrations of 5 mg/kg body weight (BW) to 5 healthy adult Angora goats. Plasma enrofloxacin concentrations were measured by high performance liquid chromatography. Pharmacokinetics were best described by a 2-compartment open model. The elimination half-life and volume of distribution after IV and IM administrations were similar (t1/2beta, 4.0 to 4.7 h and Vd(ss),1.2 to 1.5 L/kg, respectively). Enrofloxacin was rapidly (t1/2a, 0.25 h) and almost completely absorbed (F, 90%) after IM administration. Mean plasma concentrations of enrofloxacin at 24 h after IV and IM administration (0.07 and 0.09 microg/mL, respectively) were higher than the minimal inhibitory concentration (MIC) values for most pathogens. In conclusion, once-daily IV and IM administration of enrofloxacin (5 mg/kg BW) in Angora goats may be useful in treatment of infectious diseases caused by sensitive pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号