首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A surface energy balance model (SEB) was extended by Lagos et al. Irrig Sci 28:51–64 (2009) to estimate evapotranspiration (ET) from variable canopy cover and evaporation from residue-covered or bare soil systems. The model estimates latent, sensible, and soil heat fluxes and provides a method to partition evapotranspiration into soil/residue evaporation and plant transpiration. The objective of this work was to perform a sensitivity analysis of model parameters and evaluate the performance of the proposed model to estimate ET during the growing and non-growing season of maize (Zea Mays L.) and soybeans (Glycine max) in eastern Nebraska. Results were compared with measured data from three eddy covariance systems under irrigated and rain-fed conditions. Sensitivity analysis of model parameters showed that simulated ET was most sensitive to changes in surface canopy resistance, soil surface resistance, and residue surface resistance. Comparison between hourly estimated ET and measurements made in soybean and maize fields provided support for the validity of the surface energy balance model. For growing season’s estimates, Nash–Sutcliffe coefficients ranged from 0.81 to 0.92 and the root mean square error (RMSE) varied from 33.0 to 48.3 W m?2. After canopy closure (i.e., after leaf area index (LAI = 4) until harvest), Nash–Sutcliffe coefficients ranged from 0.86 to 0.95 and RMSE varied from 22.6 to 40.5 W m?2. Performance prior to canopy closure was less accurate. Overall, the evaluation of the SEB model during this study was satisfactory.  相似文献   

2.
The aim of this study was to present a methodology to analyse the main factors that influence annual water application costs in centre pivot irrigation systems and to determine the most cost-effective centre pivot design, given the variables of machine length, lateral pipe diameter, sprinkler type (LEPA and fixed and rotating spray plate sprinklers (FSPS and RSPS)), system capacity, application efficiency, and water and energy costs for the irrigation of crops such as maize under conditions in Spain. Annual water application costs were calculated as the sum of the investment (Ca), energy (Ce), water (Cw), and equipment maintenance costs (Cm). Parameters used to assess the influences on pivot design were system capacity S c = 1.25 L s?1 ha?1; application efficiency Ea = 80% for FSPS, Ea = 85% for RSPS, and Ea = 90% for LEPA; water price P w = 0.06 € m?3 (0.081 US dollars); energy price Ene = 0.10 € kWh?1 (0.135 US dollars); net annual crop irrigation water requirement N n = 7,000 m3 ha?1 year?1; and net daily peak crop water requirement N nmax = 7.63 mm d?1 for maize. Results indicate that for plots smaller than 30 ha, the recommended pipeline diameter is 127.0 mm (5 in); for 30–40 ha, 168.3 mm (6 5/8 in); for 40–75 ha, 219.1 mm (8 5/8 in); and for 75–100 ha, 254.0 mm (10 in). A multidiameter pipe solution only slightly reduced water application costs in most cases studied. It was also determined that water costs and irrigation efficiency have a major influence on the total annual cost of water application; however, system capacity and energy price did not strongly affect total cost. For this reason, water application uniformity is very important and can be accomplished using a proper nozzle package and regular maintenance. The paper helps farmers determine the most cost-effective centre pivot design and management.  相似文献   

3.
A study was carried out in Malawi to compare agronomic and socio-economic aspects of different water management practices for two advanced bean lines. Four irrigation technologies and one control were studied in Chingale Area Development Program in Zomba District in southern Malawi. The technologies encompassed motorized pumps (MP), treadle pumps (TP), water cans, gravity-fed surface irrigation (GR) and a non-irrigated practice that used residual moisture. The study found that technologies that used <2 labour hours m?3 were appropriate for such small-scale irrigation systems. The aggregated bean production labour cost and labourday thresholds were $893 ha?1 and 2,978 LD ha?1, respectively. An irrigation supply in the range of 7,000–10,000 m3 ha?1 for the TP, MP and GR would be adequate. Assuming 20 irrigations season?1, 400–600 m3 irrigation?1 would be adequate, supplying 40–60 mm every 5–7 days. The study found that poor small-scale farmers in Malawi, particularly those using MPs, need fuel subsidies in order to offset operational costs. Basing on the findings in the study, we recommend further research on several bean lines in different agro-ecologies of Malawi using technologies that showed high yields, low labour efficiency and high water use productivity.  相似文献   

4.
The effect of irrigation water quality was investigated in a commercial mandarin orchard during four growing seasons using fresh water (EC ≈ 1 dS m?1), irrigators’ association water (EC = 1–3 dS m?1) and reclaimed water (RW) (EC ≈ 3 dS m?1). RW had higher concentration of macro- and micronutrients, especially potassium, and the phytotoxic elements, boron, sodium and chlorides. The microbiological load in the different irrigation water sources showed a high seasonal variability, and all water sources occasionally exceeded health standards to irrigate fruit trees. In the RW treatment, an increase in soil salinity and leaf boron concentration was observed. The nutritional contribution of RW was high, providing 24 and 15 % of the annual nitrogen and phosphorus (N and P2O5) fertilizer requirement for mandarin oranges, respectively, and RW treatment satisfied the entire potassium requirement (K2O). An important fluctuation in the crop production was observed during the 4 years in the different water quality treatments. In general, quality parameters of mandarins were not affected. The results provide additional evidence that long-term effects must be studied to test sustainability when using RW irrigation on fruit trees.  相似文献   

5.
A field experiment was conducted for 3 years to evaluate the effect of deficit irrigation under different soil management practices on biomass production, grain yield, yield components and water productivity of spring wheat (Triticum estivum L.). Soil management practices consisted of tillage (conventional and deep tillage) and Farmyard manure (0 and 10 t ha?1 FYM). Line source sprinkler laterals were used to generate one full- (ETm) and four deficit irrigation treatments that were 88, 75, 62 and 46 % of ETm, and designated as ETd1, ETd2, ETd3, and ETd4. Deep tillage significantly enhanced grain yield (14–18 %) and water productivity (1.27–1.34 kg m?3) over conventional tillage. Similarly, application of FYM at 10 t ha?1 significantly improved grain yield (10–13 %) and water productivity (1.25–1.31 kg m?3) in comparison with no FYM. Grain yield response to irrigation varied significantly (5,281–2,704 kg ha?1) due to differences in soil water contents. Water productivity varied from 1.05 to 1.34 kg m?3, among the treatments in 3 years. The interactive effect of irrigation × tillage practices and irrigation × FYM on grain yield was significant. Yield performance proved that deficit irrigation (ETd2) subjected to 75 % soil water deficit had the smallest yield decline with significant water saving would be the most appropriate irrigation level for wheat production in arid regions.  相似文献   

6.
Lysimetric experiments were conducted to determine the contribution made by groundwater to the overall water requirements of safflower (Carthamus tinctorius L.). The plants were grown in 24 columns, each having a diameter of 0.40 m and packed with silty clay soil. The four replicate randomized complete block factorial experiments were carried out using different treatment combinations. Six treatments were applied during each experiment by maintaining groundwater, with an EC of 1 dS m?1, at three different water table levels (0.6, 0.8 and 1.10 m) with and without supplementary irrigation. The uptake of groundwater as a part of crop evapotranspiration was measured by taking daily readings of the water levels found in Mariotte tubes. The supplementary irrigation requirement for each treatment was applied by adding water (EC of 1 dS m?1). The average percentage contribution from groundwater for the treatments (with and without supplementary irrigation under water table levels of 0.6, 0.8 and 1.10 m) were found to be 65, 59, 38% and 72, 70, 47% of the average annual safflower water requirement (6,466 m3 ha?1). The increase in groundwater depths under supplementary irrigation treatments from 0.6 to 0.80 and 1.10 m caused seed and oil yield reductions of (7, 23.10%) and (48.23, 65.40%), respectively.  相似文献   

7.
A 2-year experiment was carried out to investigate the effects of different drip irrigation regimes on distribution and dynamics of soil water and salt in north Xinjiang, China. Five treatments—F7 (0.24 dS m?1 + Once every 7 days), B7 (4.68 dS m?1 + Once every 7 days), S7 (7.42 dS m?1 + Once every 7 days), F10 (0.24 dS m?1 + Once every 10 days) and F3 (0.24 dS m?1 + Once every 3 days)—were designed. For all treatments, additional 150-mm fresh water was applied on 10th November in 2009 (winter irrigation) to leach the accumulated salt. The results revealed that irrigation frequency and water quality had significant effects on the spatial distribution and change of soil water content, soil salt and the crop water consumption rate, but had a limited impact on the seasonal accumulative water consumption, and the cotton yield decreased with the decrease in irrigation frequency and water quality on the whole. During the cotton growing season, results showed that the salt mainly accumulated in the 0- to 60-cm soil layer, while the soil salt in 60- to 100-cm layer changed slightly, indicating that the drip irrigation could not leach the soil salt out of the root zone under the irrigation regimes. Therefore, salt leaching was necessary to maintain the soil water–salt balance and to prevent excessive salt accumulation in the root zone. After the 150-mm winter irrigation and subsequent thawing, soil salts were leached into the deeper layers (below 60 cm), and the soil salt content (SSC) (EC1:5) in root zone in the next year was about 0.2 dS m?1. Moreover, compared to 2009 season, the SSC within the root zone did not increase even the EC of the irrigation water was up to 7.42 dS m?1. Additionally, it is important to note that the results were concluded based on the data of the 2-year experiment; further studies are need to optimize winter irrigation amount and assess the sustainability of saline water irrigation since long-term utilization of saline water may lead to soil degradation.  相似文献   

8.
We studied the suitability of empirical crop water stress index (CWSI) averaged over daylight hours (CWSId) for continuous monitoring of water status in apple trees. The relationships between a midday CWSI (CWSIm) and the CWSId and stem water potential (ψ stem), and soil water deficit (SWD) were investigated. The treatments were: (1) non-stressed where the soil water was close to field capacity and (2) mildly stressed where SWD fluctuated between 0 and a maximum allowable depletion (MAD of 50 %). The linear relationship between canopy and air temperature difference (ΔT) and air vapor pressure deficit (VPD) averaged over daylight hours resulted in a non-water-stressed baseline (NWSBL) with higher correlation (?T = ?0.97 VPD – 0.46, R 2 = 0.78, p < 0.001) compared with the conventional midday approach (?T = ?0.59 VPD – 0.67, R 2 = 0.51, p < 0.001). Wind speed and solar radiation showed no significant effect on the daylight NWSBL. There was no statistically meaningful relationship between midday ψ stem and CWSIm. The CWSId agreed well with SWD (R 2 = 0.70, p < 0.001), while the correlation between SWD and CWSIm was substantially weaker (R 2 = 0.38, p = 0.033). The CWSId exhibited high sensitivity to mild variations in the soil water content, suggesting it as a promising indicator of water availability in the root zone. The CWSId is stable under transitional weather conditions as it reflects the daily activity of an apple crop.  相似文献   

9.
The goal of this study was to assess the water status variability of a commercial rain-fed Tempranillo vineyard (Vitis vinifera L.) by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). The relationships between aerial temperatures or indices derived from the imagery and leaf stomatal conductance (g s) and stem water potential (Ψstem) were determined. Aerial temperature was significantly correlated with g s (R 2?=?0.68, p?<?0.01) and Ψstem (R 2?=?0.50, p?<?0.05). Furthermore, the thermal indices derived from aerial imagery were also strongly correlated with Ψstem and g s. Moreover, different spectral indices were related to vineyard water status, although NDVI (normalized difference vegetation index) and TCARI/OSAVI (ratio between transformed chlorophyll absorption in reflectance and optimized soil-adjusted vegetation index) showed the highest coefficient of determination with Ψstem (R 2?=?0.68, p?<?0.05) and g s (R 2?=?0.84, p?<?0.05), respectively. While the relationship with thermal imagery and water status parameters could be considered as a short-term response, NDVI and TCARI/OSAVI indices were probably reflecting the result of cumulative water deficits, hence a long-term response. In conclusion, thermal and multispectral imagery using an UAV allowed assessing and mapping spatial variability of water status within the vineyard.  相似文献   

10.
The effects of crop level and irrigation on water relations, yield, grape and wine composition were studied during two seasons in a Tempranillo vineyard in Spain. Irrigation was applied at two levels: R2 (with mild deficit irrigation applied during all the season) and R1 (with more severe water stress applied before veraison). Deficit irrigated vines were compared to a non-irrigated control. Crop levels imposed resulted in 11, 20, and 27 clusters per vine. Over all treatments, yield and ratio of leaf area to yield (LA: Y) were different between years: 4.4 and 16.3?t?ha?1 and 1.72 and 0.88?m2?kg?1 in 2005 and 2006, respectively. In 2005, large differences in grape and wine composition occurred among non-irrigated and the irrigated treatments, but not between R1 and R2 treatments. Wines from non-irrigated vines were more acid, had higher total anthocyanins, and higher color intensity. In 2006, irrigation had less effect on grape and wine variables. The effect of shoot and cluster thinning on wine composition was different between seasons due to the different crop load values between years. Grape composition was negatively affected by high crop level only for values of LA: Y lower than 1.5?m2?kg?1.  相似文献   

11.
The effect of using treated wastewater for irrigation of table grapes (Vitis vinifera cv. Superior Seedless) was studied for six seasons. The experimental vineyard was grown on clay loam soil in a semi-arid area. Treated wastewater (5.83 meq L?1 Na+) with (TWW + F) and without (TWW) fertilizer, and fresh water with fertilizer (FW + F, 2.97 meq L?1 Na+), were each applied at three irrigation levels (80, 60 and 40 % of crop evapotranspiration before harvest). Root zone (0–60 cm soil depth) soil saturated paste extract Na+ concentrations and sodium adsorption ratio (SAR) values fluctuated over the years, but generally decreased in the order TWW > TWW + F > FW + F for each irrigation level. Both Na+ concentrations and SAR values developed faster and to a greater extent at higher irrigation. Adding fertilizer to TWW decreased Na+ and SAR only at the high irrigation level. Na+ concentrations in the trunk wood, bark and xylem sap of the TWW and TWW + F irrigated vines were significantly higher than those in the FW + F-irrigated vines. Leaf petiole Na+ content increased with time and its maximum value in TWW and TWW + F irrigated vines exceeded 6,500 mg kg?1, threefold higher than in FW + F irrigated vines. We conclude that in clay soils under relatively high irrigation, Na+ may pose a greater potential risk to plants and soil rather than Cl? or salinity per se. However, significant effects on yield were not recorded during this six-year study probably due to the high salinity tolerance of the ‘Paulsen’ rootstock used in the experiment.  相似文献   

12.
The interactions between irrigation rates applied during the oil accumulation stage and crop load were studied in a six-year-old very-high-density Koroneiki (Olea europaea L.) orchard. Five irrigation rates, determined as thresholds of midday stem water potential, were applied from July 1st until harvest in 2008 and 2009 and from July 1st to the end of September in 2010. Oil yield increased with increasing crop load in all the irrigation treatments. Oil yield did not respond to increasing irrigation at very low crop load and the higher the crop load the higher the response to irrigation. There was no response to irrigation at the lowest crop loads, but the higher the irrigation rate the higher the oil yield at high crop loads. The predicted commercial oil yield at common fruit counts increased from 1.99 t/ha at the lowest irrigation rate to 3.06 t/ha at the highest irrigation rate. Stomatal conductance decreased with decreasing stem water potential but leveled off at 30–60 mmol m?2 s?1 at stem water potential values lower than ?4.0 MPa. High crop load increased stomatal conductance and decreased stem water potential relative to low crop load at low and medium irrigation rates. The effect of crop load on water relations became evident by the end of August and was well pronounced at the beginning of October. Physiological and irrigation water management implications related to the interactions between tree water status and crop load are discussed.  相似文献   

13.
In this work, a new model useful to analyze interactions between the on-farm irrigation system supplied by critical points and the water supply network management was developed. The model evaluates the impacts of changes in the pressure head and demand simultaneity (number of open hydrants at a given time) on the irrigation system and evaluates emitter discharge and uniformity. It also estimates the potential reductions in crop yield due to decreased emission uniformity. The methodology is applied in the Bembézar Irrigation District (Southern Spain). Results show that the additional cost required for providing maximum pressure to the critical field does not offset the increase in crop yield. Hence, an increment from 91.7 to 92.1 % in yield in the critical field would represent increases in energy consumption from 0.15 to 0.17 kWh m?3 of water. Also, the unit energy cost could be reduced by up to 0.11 kWh m?3 without implying significant reductions in crop yield. The importance of a good selection of emitters in the critical fields (fields that are supplied by the critical hydrants) was also evaluated.  相似文献   

14.
New cultivars of sorghum for biomass energy production are currently available. This crop has a positive energy balance being irrigation water the largest energy consumer during the growing cycle. Thence, it is important to know the biomass sorghum water requirements, in order to minimize irrigation losses, thus saving water and energy. The objective of this study was to quantify the water use and crop coefficients of irrigated biomass sorghum without soil water limitations during two growing seasons. A weighing lysimeter located in Albacete (Central Spain) was used to measure the daily biomass sorghum evapotranspiration (ETc) throughout the growing season under sprinkler irrigation. Seasonal lysimeter ETc was 721 mm in 2007 and 691 mm in 2010. The 4 % higher ETc value in 2007 was due to an 8 % higher evaporative demand in that year. Maximum average K c values of 1.17 in 2007 and 1.21 in 2010 were reached during the mid-season stage. The average K c values for the 2 years of study were K c-ini: 0.64 and K c-mid: 1.19. The seasonal evaporation component was estimated to be about 18 % of ETc. The average basal K c (K cb) values for the two study years were K cb-ini: 0.11 and K cb-mid: 1.17. The good linear relationship found between K cb values and the fraction of ground cover (f c) and the excellent agreement found between Normalized Difference Vegetation Index and different biophysical parameters, such as K cb and f c, will allow monitoring and estimating the spatially distributed water requirements of biomass sorghum at field and regional scales.  相似文献   

15.
A study was carried out to calibrate and validate a remote sensing algorithm (RSA) for estimating instantaneous surface energy balance components and daily actual evapotranspiration (ETa) over a drip-irrigated Merlot vineyard located in the Maule Region of Chile (35° 25′ LS; 71° 32′ LW; 125?m.a.s.l.). ETa was estimated as a function of instantaneous evaporative fraction and average daily net radiation (Rnday) using meteorological variables in combination with reflectance data measured by a hand-held multi-spectral radiometer. The sub-models used to estimate the instantaneous net radiation (Rnins), soil heat flux (G ins), and Rnday were calibrated and validated using measurements of the surface energy balance components, incoming longwave radiation $(L \downarrow_{\text{ins}})$ , outgoing longwave radiation $(L \uparrow_{\text{ins}})$ , and surface albedo (α). The validations of instantaneous sensible heat flux (H ins), latent heat flux (LEins), and ETa were carried out using turbulent energy fluxes obtained from an eddy correlation (EC) system. For reducing the moderate EC imbalance (about 11?%), turbulent energy fluxes were recalculated using the Bowen ratio method. The validation analysis indicated that the calibrated sub-models of the RSA were able to estimate Rnins, G ins, H ins, and LEins with a root-mean-square error (RMSE), mean absolute error (MAE), and index of agreement (IA) ranging between 16–54, 13–44?W?m?2, and 0.72–94, respectively. Also, the RSA was able to estimate ETa with RMSE?=?0.38?mm?day?1, MAE?=?0.32?mm?day?1 and IA?=?0.96. These results demonstrate the potential use of reflectance and meteorological data to estimate ETa of a drip-irrigated Merlot vineyard.  相似文献   

16.
This study focuses on CO2 and water vapor flux measurements, water use efficiency estimates and evapotranspiration modeling during the course of growth of a young banana crop in a screenhouse in northern Israel. An eddy covariance system was deployed at the center of the screenhouse during two growth periods of the banana crop: small and large plants. Results show that daily whole canopy evapotranspiration increased during the measurement period from 2.2 mm day?1 for the smaller plants to 3.4 mm day?1 for the larger plants. The increase in net daily CO2 consumption doubled during the same period, from about 11 to 21.5 g m?2 day?1 per unit ground area. Water vapor and CO2 fluxes per unit leaf area were independent of plant size and averaged with 51 and 0.29 g m?2 day?1, respectively. Consequently, water use efficiency, defined as the ratio between net vertical fluxes of CO2 and water vapor, was nearly constant during growth of the plants. Evapotranspiration models provided more accurate predictions for larger than for smaller plants. This was due to inadequate treatment of the partial cover of young plants, which could be overcome by the use of a crop coefficient. A modified Penman–Monteith evapotranspiration model adapted to the screenhouse environment, applied here for the first time to a banana screenhouse, was in better agreement with the measurements than an open canopy model.  相似文献   

17.
Z. Wang  J. Li  Y. Li 《Irrigation Science》2014,32(3):221-236
Drip system uniformity is one of the important factors affecting the deep percolation and nitrate leaching under drip-irrigated crops. Field experiments were conducted during two growing seasons of spring maize (Zea may L.) in 2011 and 2012 in North China Plain to evaluate the influence of drip irrigation system uniformity on deep percolation and nitrate leaching under semi-humid conditions. In the experiments, three Christiansen uniformity coefficients of 59, 80, and 97 % (the equivalent distribution uniformity DU values were 57, 71, and 95 %, respectively) and three levels of nitrogen applied at 0, 120, and 210 kg ha?1 were tested. The results of the study demonstrated that nitrate leaching was most importantly affected by the nitrogen applied, followed by the initial nitrogen content in the soil and the drip irrigation system uniformity. An increasing amount of nitrogen applied and initial nitrogen content increased the seasonal nitrate leaching significantly, while an improving system uniformity decreased the nitrate leaching. The conventional nitrogen application rate of 210 kg ha?1 could be reduced, and an extremely low drip uniformity of less than 60 % is not recommended to reduce the risk of deep percolation and nitrate leaching in the semi-humid region of North China Plain.  相似文献   

18.
Field experiments were carried out in the 2004 and 2005 growing seasons on drip irrigated dwarf green beans (Phaseolus vulgaris, humilis). Soil water content (SWC), spectral reflectance and yield were monitored. Based on these data crop evapotranspiration (ETc), soil water deficit index (SWDI), water use efficiency (WUE) and four separate spectral indexes were calculated. In order to determine use opportunities of spectral indexes for estimation of yield, SWDI and WUE, some statistical analyzes were made. Results showed that spectral indexes could be used for monitoring of yield, SWDI and WUE. Especially, Soil Adjusted Vegetation Index (SAVI) had the highest correlations with all three of the parameters. The estimation procedure which was given in this study has a potential use either during, or at the end of the growing season. Estimated values of WUE and SWDI were 3.2 (kg m?3) and 0.12, respectively, through SAVI and the given procedure, indicates the optimal water use and yield conditions for dwarf green beans. At this situation, probably ETc was 580 mm and yield was 25.5 t ha?1.  相似文献   

19.
A long-term (30 year) historical analysis of turfgrass monthly net irrigation requirements for southeast USA is analyzed and discussed in this paper. The process involved gathering weather data for ten locations in Florida plus one in Alabama, from 1980 through 2009, and data quality. Available weather data included maximum and minimum temperature, maximum and minimum relative humidity, wind speed, and rainfall. Solar radiation was estimated using the Hargreaves–Samani equation, and coefficients were calibrated for every location. Reference evapotranspiration (ETos) was calculated using the ASCE-EWRI standardized reference evapotranspiration equation. Net irrigation was estimated using a daily soil–water balance. Variability in soil types and root depth was taken into account during the simulations, and three sets of monthly K c values from the literature were applied from north through south Florida. Results showed that the calibrated Hargreaves–Samani adjustment coefficients varied from 0.14 in Tallahassee to 0.24 in Key West, with an inland average value of 0.15, and a coastal average value of 0.18. The calculated ETos ranged from 1,296 mm year?1 in Tallahassee to 1,658 mm year?1 in Miami. The estimated net irrigation ranged from 423 mm year?1 in Mobile, AL, to 1,063 mm year?1 in Key West, FL. The number of irrigation events per year varied from 25 in Mobile to 161 in Key West. May and December were the months with the highest and lowest net irrigation requirements, respectively.  相似文献   

20.
Cabernet Sauvignon and Malbec grapevines were irrigated at 70 or 23 % of estimated crop evapotranspiration throughout berry development over four growing seasons. Stomatal behavior was characterized by relating predawn leaf water potential and mid-morning stomatal conductance to mid-morning leaf water potential. Seasonal average weekly midday leaf water potential was lower in Cabernet Sauvignon than Malbec despite similar irrigation amounts. Both cultivars exhibited anisohydric behavior with midday leaf water potential decreasing linearly with declining predawn leaf water potential (r 2 = 0.51) and stomatal conductance (r 2 = 0.42). However, both cultivars utilized hydrodynamic mechanisms to maintain a soil-to-leaf water potential gradient of ?0.62 (±0.03) MPa under standard irrigation and ?0.75 (±0.04) MPa under reduced irrigation. Berry fresh weight and titratable acidity decreased, and the concentration of total anthocyanins increased in both cultivars in response to decreases in midday leaf water potential. The slope of regression equations for seasonal mean midday leaf water potential was used to estimate cultivar-specific levels of water stress associated with changes in berry weight and berry composition at fruit maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号