首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用野外调查和室内浸泡法对猫儿山水青冈(Fagus longipetiolata)天然林不同分解层凋落物的储量、持水量、持水率和吸水速率进行研究。结果表明,未分解层、半分解层和全分解层的干凋落物储量分别为1.02、1.07、2.28 t/hm2。不同分解层凋落物的持水量和吸水速率在整个浸泡试验过程中均表现为全分解层半分解层未分解层;持水率表现为半分解层未分解层全分解层。方程拟合结果表明,不同分解层的凋落物持水量、持水率与浸泡时间呈对数关系;凋落物吸水速率与浸泡时间呈幂指数关系。  相似文献   

2.
以贵州省溶岩区4种人工林(桤木林、杜仲林、刺槐林、滇柏林)为对象,对其凋落物及表层土壤的水源涵养功能进行了初步研究。结果表明:4种人工林凋落物储量的大小顺序为桤木林〉杜仲林〉刺槐林〉滇柏林,凋落物持水量呈现桤木林〉杜仲林〉刺槐林〉滇柏林。凋落物持水量与浸泡时间的关系符合指数函数模型,凋落物吸水速率与浸泡时间的关系符合幂函数模型。人工林土壤持水量的大小关系为桤木林〉杜仲林〉刺槐林〉滇柏林。凋落物饱和含水时相对自由水面蒸发率桤木林为68.12%,刺槐林为76.84%,杜仲林为73.70%,滇柏林为80.41%。在环境一致条件下,滇柏林与其他3种人工林相比凋落物水分损失较易。  相似文献   

3.
对龙陵县三江口国有林场中不同林分类型凋落物的储量、持水量、持水率和吸水速率进行了研究。结果表明:不同林型的凋落物贮备量有所差异,难被微生物降解的云南松林凋落物贮备量最大(2.66 kg/m2),其次是西南桦林(2.03 kg/m2)、旱冬瓜林(1.97 kg/m2),最小的是栎类林(1.81kg/m2)。旱冬瓜林(落叶阔叶林)的最大持水率最高,其次是西南桦林(落叶阔叶林)和栎类林(落叶阔叶林),云南松林(常绿针叶林)最低。  相似文献   

4.
为了定量评价福建柏(Fokienia hodginsii)人工林凋落物的水文功能,采用野外实地调查和室内浸水法,对广西六万林场福建柏纯林、福建柏+红锥(Castanopsis hystrix)混交林两种造林模式林下凋落物的储存量、持水特性、拦蓄特性、吸水过程进行了研究。结果表明:福建柏混交林凋落物储存量大于纯林;混交林半分解层凋落物大于未分解层凋落物,而纯林则相反。混交林凋落物自然含水率、自然含水量和最大持水量均大于纯林,而纯林凋落物最大持水率、最大拦蓄量、有效拦蓄量和有效拦蓄深均大于混交林。混交林凋落物半分解层的持水和拦蓄特性均大于未分解层,而纯林除了自然含水量外,其它则相反。福建柏人工林凋落物持水速率随时间延长而增加;凋落物对最初降水的拦蓄能力较强;凋落物持水速率和吸水速率皆呈幂函数关系。因此,福建柏混交造林能更好地发挥其持水功能。  相似文献   

5.
采用野外实地观测与室内浸提法,对色季拉山5种主要针叶林:方枝柏(Sabina saltuaria)、西藏红杉(Larix griffithiana)、林芝云杉(Picea likiangensis var.linzhiensis)、高山松(Pinus densata)和急尖长苞冷杉(Abies georgei var.smithii)林地凋落物的储量、持水量、持水率和吸水速率进行了研究。结果表明:5种针叶林林下凋落物储量范围在8.48~19.2t/hm2,大小顺序表现为:高山松林急尖长苞冷杉林林芝云杉林方枝柏林西藏红杉林;最大持水量表现为:急尖长苞冷杉林高山松林西藏红杉林林芝云杉林方枝柏林;最大持水率为:西藏红杉林急尖长苞冷杉林林芝云杉林高山松林方枝柏林,且持水量、持水率与浸泡时间表现出明显的对数函数关系;凋落物吸水速率为:西藏红杉林急尖长苞冷杉林林芝云杉林高山松林方枝柏林,且与浸泡时间表现了明显的幂函数关系。研究结果可为该区域森林涵养水源评价及水源涵养林的持续利用提供理论基础。  相似文献   

6.
为了解楠杆自然保护区不同植被类型枯落物的储量和持水特性,以保护区9种不同植被类型作为研究对象,分别对枯落物储量、持水量和持水过程进行分析。结果表明,(1)不同植被类型下的枯落物层平均厚度在1.15-4.57cm之间,大小顺序为落叶阔叶林杉木林马尾松林麻栎林竹林灌木林针阔混交林杨树林华山松林;枯落物蓄积量为1.13-11.36t/hm~2,大小顺序为杉木林马尾松林竹林落叶阔叶林针阔混交林麻栎林灌木林华山松林杨树林。(2)9种不同植被类型下的枯落物最大持水量在3.817 9-21.405 3t/hm~2之间,其大小顺序为杉木林马尾松林竹林落叶阔叶林麻栎林针阔混交林华山松林灌木林杨树林;枯落物最大持水率为336.46%-460.45%,表现为落叶阔叶林马尾松林华山松林麻栎林灌木林竹林杉木林针阔混交林杨树林。(3)9种不同植被类型下的枯落物持水量随浸泡时间增加而增加,未分解层和半分解层持水量分别在12h和1.5h基本达到饱和,吸水速率随浸泡时间的增加而减小,在前5min内速率最大,而未分解层和半分解层持水速率分别在12h和1.5h之后趋近于零。  相似文献   

7.
冰雪灾害后粤北杉木林冠残体和凋落物的持水特性   总被引:6,自引:0,他引:6  
对冰雪灾害后杉木林的林冠残体和凋落物的储量、持水量、持水率和吸水速率进行研究.结果表明:杉木林冠残体的干、枝、叶和皮的干质量分别为11.42,7.03,5.76和1.78 t·hm-2,凋落物干质量为5.93 t·hm-2;各组分的最大持水量表现为干(11.83 t·hm-2)>叶(11.24 t-hm-2)>凋落物(10.88 t-hm-2)>枝(6.73 t·hm-2)>皮(2.38 t·hm-2);各组分中叶的最大持水率居首位,达295%,凋落物为272%,皮为234%,枝和干分别为196%和193%;浸泡时间在0.5~6 h之间,各组分的吸水速率随浸泡时间的增长急剧下降,此后缓慢下降;各组分的持水量和持水率随着浸泡时间的增加按照自然对数方程增加,各组分的吸水速率随浸泡时间的增长按负指数方程下降.  相似文献   

8.
鼎湖山3种不同演替阶段森林凋落物的持水特性   总被引:4,自引:0,他引:4  
研究鼎湖山自然保护区内处于演替前期的马尾松针叶林(PF)、处于演替中期的马尾松针阔混交林(MF)和处于演替顶极阶段的季风常绿阔叶林(M EBF)3种群落的凋落物及其不同分解层的现存量、持水量、持水速率和持水率.结果表明:凋落物现存量表现为PF(21.96 t·hm-2)>MF(14.59 t·hm-2)>MEBF(10.40 t·hm-2),顶极群落MEBF凋落物现存量最小;3种群落凋落物最大持水量为13.68 ~ 50.10 t·hm-2,持水深表现为PF(5.0mm)>MF(2.8 mm)>MEBF(1.4 mm);PF凋落物已分解层持水量占凋落物持水总量比重大(44.3%),而MEBF已分解层的贡献仅为16.7%;凋落物及其各分解层的持水量均随浸水时间呈对数关系增加,其截持水过程主要发生在0.5~2 h内,0.5h内平均持水速率表现为PF(4.35 mm·h-1) >MF(2.22 mm·h-1) >MEBF(1.19 mm·h-1),均随浸水时间的增加按幂函数方程降低;凋落物最大持水率表现为PF(306.3%)>MF(289.0%)>MEBF(239.3%),且伴随PF→MF→MEBF的演替,半分解层及已分解层凋落物的持水率即持水能力明显降低;演替早期PF凋落物具有较高的降水截留能力,尤其是其凋落物的已分解层,而后期MEBF凋落物未分解层对整体截留能力贡献大.  相似文献   

9.
不同林龄杉木人工林凋落物持水特性研究   总被引:1,自引:0,他引:1  
结合取样法与浸泡法,对湖南会同不同林龄杉木(Cunninghamia lanceolata)人工林凋落物现存量、凋落物(叶和枝)持水特性进行研究。结果表明,凋落物现存量表现为成熟林(2.72 t/hm~2)近熟林(2.36 t/hm~2)中龄林(1.26 t/hm~2)。叶凋落物最大持水量表现为成熟林(5.50 t/hm~2)近熟林(4.49 t/hm~2)中龄林(2.20 t/hm~2);枝凋落物最大持水量表现为近熟林(1.20 t/hm~2)成熟林(1.09 t/hm~2)中龄林(0.27 t/hm~2)。叶凋落物最大持水率表现为中龄林(241.37%)近熟林(224.80%)成熟林(208.17%);枝凋落物最大持水率表现为成熟林(148.63%)近熟林(107.37%)中龄林(81.80%)。叶凋落物最大吸水速率表现为中龄林(3.54 g·g~(-1)·h~(-1))近熟林(3.06 g·g~(-1)·h~(-1))成熟林(2.79 g·g~(-1)·h~(-1));枝凋落物最大吸水速率表现为近熟林(1.92 g·g~(-1)·h~(-1))成熟林(1.74 g·g~(-1)·h~(-1))中龄林(1.44 g·g~(-1)·h~(-1))。叶、枝凋落物持水量和持水率与浸泡时间呈对数关系,吸水速率与浸泡时间呈幂函数关系,叶凋落物的持水量与持水率均明显高于枝凋落物,其在持水能力方面起主要作用。研究结果可为评价我国南方杉木人工林水土保持功能与可持续经营提供科学依据。  相似文献   

10.
以燕山山地主要的造林树种华北落叶松(Larix principis-rupprechtii)(16a,23a,34a,42a)和主要混交树种26a白桦(Betula platyphylla)、30a山杨(Populus davidiana)凋落物为研究对象,从不同林龄、不同组成成分、组成比例方面对凋落物的储量和持水特征展开研究。结果表明:1)华北落叶松人工林(16a,23a,34a,42a)以及26a白桦次生林、30a山杨次生林这6种林分类型的凋落物储量分别为35.75,45.50,60.00,65.94,25.40,19.39t/hm2。2)不同林龄落叶松凋落物的持水率呈现出16a23a34a42a的趋势,白桦和34a华北落叶松,山杨和34a华北落叶松分别以不同比例混合的凋落物的持水率以落叶松+白桦(1∶3)的最大,凋落物持水率随着浸泡时间的增加呈指数式增加;3)不同林龄华北落叶松凋落物的吸水速率呈现16a23a34a42a。6种不同比例混合凋落物的吸水速率以落叶松+白桦(1∶3)的最大。凋落物吸水速率与浸水时间之间存在幂函数关系,随浸泡时间的增加,吸水速率减小。  相似文献   

11.
以崇阳县毛竹为研究对象,在4种密度(D1)1 300±100、(D2)1 900±100、(D3)2 500±100及(D4)3 100±100株·hm~(-2)毛竹林分内通过标准地设置与调查对毛竹林分水源涵养能力进行了研究。结果表明,虽然不同毛竹林密度林冠层截留率之间的差异不显著,但截留量之间的差异极显著。半分解以及未分解凋落物持水量与浸泡时间之间均为对数方程,半分解以及未分解凋落物吸水速率与浸泡时间之间均为幂函数方程。不同密度凋落物最大持水量0.81~1.21 mm,并随林分密度增加而增加。凋落物总最大持水率380.39%~402.13%。林分有效拦蓄量0.75~0.92 mm,有效拦蓄率292.92%~311.31%,并密度增大而增大。毛竹林土壤土壤含水率11.21%~13.70%,土壤容重1.19~1.34 g/cm~3,毛管总孔隙度52.89%~54.77%,土壤毛管总孔隙度随土层深度的增加而减小,土壤非毛管孔隙度9.39%~10.22%。林分密度对土壤物理性状及其土壤渗透性能影响均不显著。毛竹林土壤饱和蓄水量3 173.35~3286.11 t·hm~(-2),不同密度毛竹林分土壤层饱和蓄水量之间的差异不显著。虽然不同密度毛竹林分土壤毛管蓄水量之间的差异不显著,但非毛管蓄水量差异显著。毛竹林水源涵养总量584.15~626.58 t·hm~(-2),土壤蓄水量、林冠截留量及凋落物持水量分别占96.41%~97.91%、0.79%~1.51%及1.30%~2.07%。  相似文献   

12.
采用标准地的方法获取落叶松、红松、蒙古栎、胡桃楸、水曲柳5种树林下未分解层和半分解层的枯落物,进行枯落物持水率、持水量和吸水速率等持水性能的测定。结果表明,针叶树半分解层持水率大于未分解层,阔叶树的规律相反,枯落物的持水率与浸泡时间有良好的相关性,回归方程为WH=aln(t)+b;枯落物的吸水速率与浸泡时间有良好的相关性,回归方程为V=aebt;枯落物未分解层最大持水量从大到小排列顺序为:水曲柳落叶松蒙古栎胡桃楸红松;枯落物半分解层最大持水量从大到小排列顺序为:落叶松红松蒙古栎水曲柳胡桃楸。  相似文献   

13.
杉木等几种人工林凋落物持水特性研究   总被引:3,自引:0,他引:3  
对粤西、粤北杉木、马尾松、湿地松、马占相思、尾叶桉、黎蒴和毛竹等7种主要人工林凋落物的持水量、持水率和吸水速率进行测定。结果表明,马占相思、尾叶桉、黎蒴、湿地松、毛竹、马尾松和杉木的凋落物最大持水率分别为284.74%、253.36%、236.47%、226.06%、212.06%、187.68%和181.16%,树种间差异较大。凋落物持水量和持水率均随浸泡时间增加呈对数方程W=a+blnt增加。7种林分凋落物的吸水速率在浸泡0.5-1.5 h时均为马占相思〉尾叶桉〉湿地松〉毛竹〉黎蒴〉马尾松〉杉木,各林分凋落物吸水速率WA随浸泡时间t的延长呈方程WA=a.t^-b下降。马占相思凋落物水源涵养能力最强,杉木最弱,阔叶树大于针叶树。  相似文献   

14.
利用空间代替时间的方法,研究了流溪河流域马尾松林、以针叶树为优势种的针阔混交林、以阔叶树为优势种的针阔混交林和常绿阔叶林4种不同演替阶段林下凋落物储量及水文特性.结果表明:随着植被向地带性顶极群落演替,各个不同阶段凋落物总储量越来越大,分解的强度越来越大,且半分解层凋落物的持水性能和吸水速率与群落的成熟度有明显的相关性.  相似文献   

15.
对亚热带地区枫香林、樟树林、马尾松林及樟树+马尾松林这4种典型人工林凋落物持水特性进行研究,结果表明:(1)4种森林类型的凋落物年凋落量大小顺序为:樟树+马尾松林(6.09 t/hm~2)枫香林(5.98t/hm~2)马尾松林(5.89 t/hm~2)樟树(3.871 t/hm~2)。(2)4种森林类型的凋落物持水量随着浸水时间的增加而增加,最大持水量为:樟树+马尾松林(19.15 t/hm~2)枫香林(16.20 t/hm~2)樟树林(15.04 t/hm~2)马尾松林(13.84 t/hm~2),最大持水率为樟树林(516.5%)樟树+马尾松林(408.6%)枫香林(314.4%)马尾松林(280.3%),有效持水深为樟树+马尾松林(1.48 mm)枫香林(1.29 mm)樟树林(1.18 mm)马尾松林(1.08 mm)。(3)浸泡时间在0.5~6 h之间时,特别是在2 h内,随浸泡时间的增加各林分凋落物的吸水速率急剧下降,吸水速率为樟树+马尾松林枫香林樟树林马尾松林。(4)随着浸水浸泡时间的增加使得凋落物持水量和凋落物持水率呈对数关系增加,凋落物吸水速率与浸水浸泡时间呈幂函数关系,且3种关系中的R2均大于0.9。由此可见,针阔混交林形式的营林模式,能够更大的发挥森林在涵养水源、水土保持等方面的作用,在今后的森林可持续经营管理中可以考虑。  相似文献   

16.
冀北山地落叶松林枯落物层水文效应研究   总被引:1,自引:0,他引:1  
采用样方法对冀北山地落叶松林的枯落物层进行了调查,并对其水文效应进行了研究。结果表明:(1)冀北山地落叶松林枯落物厚度为3.6~4.2cm,生物量的变化范围为8.41~11.46t·hm~(-2),阴坡枯落物的积累量较大。(2)枯落物最大持水量20.8~29.1t·hm~(-2),最大持水率284%~346%;对枯落物的持水量与浸水时间进行回归分析,符合Q=aln(t)+b的对数关系;枯落物在前0.25h内的吸水速率最大,6h左右速率明显降低。(3)枯落物的半分解层拦蓄能力高于未分解层,以样地C(海拔1180~1310m,西北坡,坡度25-30°)的枯落物拦蓄能力最强。  相似文献   

17.
2008年1~2月广东粤北地区遭受冰雪灾害的袭击,导致杉木林产生了大量的林冠残体。作者对2008年林冠残体各组分和2008-2011年各年的凋落物持水特性进行研究,可以了解灾后杉木林凋落物的涵养水源特点和为生态系统的修复提供参考。结果表明:2008年,各组分最大持水量为叶(10.9 t/hm2)凋落物(8.22 t/hm2)枝(8.13 t/hm2)干(6.25 t/hm2)皮(2.72 t/hm2),各组分最大持水率呈现叶(320%)干(296%)皮(280%)凋落物(227%)枝(214%);各年度凋落物层的最大持水量呈现2008年(27.25t/hm2)2011年(19.68 t/hm2)2010年(22.71 t/hm2)2009年(24.06 t/hm2)。2008年凋落物层的最大持水率为268%,2009—2011年在194%~200%之间。林冠残体或凋落物持水量与浸泡时间、持水率与浸泡时间的关系均按照自然对数方程变化,而各组分和各年度的吸水速率随浸泡时间按负指数方程下降。  相似文献   

18.
[目的]探究林龄对华北落叶松林枯落物水文效应的影响。[方法]于2017年6月在宁夏六盘山香水河小流域选择4种林龄阶段(16、25、34、43a)的华北落叶松人工林样地,调查林分结构和测量林下枯落物蓄积量、厚度、持水量等指标,分析不同林龄华北落叶松枯落物层持水能力差异。[结果]研究表明:(1)华北落叶松枯落物厚度介于4.5~6.0 cm,总蓄积量在29.08~33.21 t·hm~(-2),且半分解层蓄积量高于未分解层蓄积量,4种林龄枯落物厚度与蓄积量均表现为成熟林近熟林中龄林幼龄林。(2)各龄林枯落物最大持水量介于79.47~110.05 t·hm~(-2),成熟林最大;最大持水率变动在273.32%~341.27%,中龄林最大。(3)各龄林枯落物持水量、吸水速率与浸水时间动态变化均类似,枯落物持水过程表现为浸水0.5 h内吸水速率最大,4 h之后吸水速率趋于平缓,10 h后枯落物持水量基本饱和,持水量与浸水时间均呈明显对数关系(R~20.92)。(4)各龄林枯落物有效拦蓄量在43.64~70.52 t·hm~(-2)之间,成熟林拦蓄能力最强。[结论]综合分析4种林龄枯落物水文效应,成熟林枯落物层水文功能最强。  相似文献   

19.
对浙江省桐庐县7种不同林分类型枯落物进行水文效应研究表明:(1)不同林分类型枯落物持水量、吸水速率随时间的动态变化规律基本相似。持水量随浸泡时间的增加呈上升趋势,但当浸泡8 h之后,趋势变缓;不同林分类型的吸水速率在6 h内变化最快,随着时间继续增加,吸水基本达到饱和。(2)不同林分类型枯落物都具有不同程度的蓄水、保水作用,最大持水率在101.78%~319.91%之间,最大持水量大小顺序为:落叶阔叶林>未成林>毛竹林>经济林>杉木林>常绿阔叶林>马尾松林,阔叶林明显大于针叶林。  相似文献   

20.
茂兰喀斯特森林主要演替群落枯落物的水文特性   总被引:1,自引:0,他引:1  
对茂兰喀斯特森林两种主要演替群落——喀斯特原生乔木林和次生林枯落物的储量和水文特性进行了调查研究,结果表明:两种演替群落枯落物的平均总储量为4.77 t/hm2,喀斯特原生乔木林的总储量要高于次生林;两种演替群落之间,枯落物的最大持水率和最大持水量均为喀斯特原生乔木林高于次生林;枯落物不同层次之间,两种演替群落枯落物未分解层的最大持水率和最大持水量均高于半分解层;枯落物的持水量和吸水速率与浸泡时间分别存在明显的函数关系:V=a ln(t)+b和S=ktn;在自然状态下,茂兰喀斯特森林两种演替群落枯落物的平均有效拦蓄量为8.31 t/hm2,喀斯特原生乔木林的有效拦蓄量要高于次生林。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号