首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为解决南方红壤旱地花生空壳问题,探明花生对钙素吸收及分配的特性,以大籽品种湘花2008和南方典型缺钙红壤为材料,设置3个基施钙肥梯度(不施钙、施钙375 kg/hm~2、施钙750 kg/hm~2,分别标记为Ca0、Ca375、Ca750)和2种栽培方式(露地与覆膜栽培),采用土柱栽培,测定成熟期花生产量、钙素含量、积累、分配特性及钙肥利用率。结果表明:施钙与覆膜栽培提高花生单株生物量、荚果产量。增施钙肥显著提高叶、茎、0~20 cm土层根系、生殖器官的钙素含量,而覆膜降低叶钙素含量。施钙与覆膜栽培显著提高营养器官、生殖器官及整个植株钙素积累量。施钙提高了叶与籽仁钙素分配率、降低20~40 cm,40 cm以下土层根系钙素分配率,而覆膜栽培降低了2014年根系和果针钙素分配率。不同器官钙素含量、积累量、分配率大小顺序:叶茎秆果针根果壳、籽仁。花生荚果产量和植株钙素累积量呈极显著正相关关系(y=47.353x+367.89,R~2=0.654 8,P0.000 1)。植株钙吸收量每增加10 kg/hm~2,花生荚果产量增加841 kg/hm~2、籽仁产量增加606 kg/hm~2。不同年份、栽培方式处理的钙素生产效率(PE_(Ca))、钙肥农学利用率(AECa)、钙肥偏生产力(PFPCa)差异较小,但Ca375处理钙肥偏生产力(PFP_(Ca))显著高于Ca750处理。不同钙肥梯度与覆膜栽培对钙肥利用率(CaUE)影响较小。  相似文献   

2.
为了解高油酸花生的养分吸收和利用规律,以高油酸花生品种和普通花生品种为研究对象,在整个生育期内取样,测定花生各部位干物质量和养分含量、计算各生育时期氮、磷、钾养分积累量,明确高油酸花生干物质积累及氮、磷、钾养分吸收、利用规律,为指导花生生产提供理论依据.结果表明:高油酸花生的整个植株及不同器官干物质积累变化规律与普通花生基本一致,呈先升高后降低趋势,但高油酸花生根系干物质量高于普通花生,而茎叶则相反,总干物质量显著低于普通花生约6.86%.高油酸花生与普通花生氮、磷、钾的吸收积累趋势一致,氮、磷二者的积累自出苗至荚果成熟期呈直线上升,最终收获时稍有下降;而钾至花期(播后69 d)达到最大值,后趋于平缓.不同器官氮、磷、钾积累趋势也大致相同,但高油酸花生根系的氮、磷、钾积累量显著高于普通花生.花生全生育期氮、磷、钾的需求量表现为氮>钾>磷.播后39 d,氮磷钾平均需求量分别为54.57,12.43,52.99 kg/hm2.播后39~69 d,氮磷钾养分的需求量分别为87.18,22.62,99.10 kg/hm2.播后69~109 d,钾需求量很少,氮磷养分的需求量分别为88.48,33.49 kg/hm2.根、茎、叶中的部分养分在花期后会转移到荚果,氮、磷、钾养分的转移量均表现为叶>茎>根.花生荚果中来自营养器官转移的氮量比例为33.31%,而磷仅为17.43%,钾却高达87.84%.总之,花生营养生长期较大的生物量是生殖生长期荚果形成的重要物质基础,在花生实际生产中,应根据不同花生品种养分的需求及积累分配特点,适时合理施肥,以达到养分资源高效利用和花生高产的目的.  相似文献   

3.
以苎麻中苎一号为材料,以常规扦插苗为对照,利用打顶技术(扦插时打顶和插后一周打顶)对低位分枝扦插苗的营养特性进行研究。结果表明:低位分枝扦插苗对氮、磷、钾的积累总量及根、茎、叶中氮、磷、钾的积累量均高于常规扦插苗;低位分枝扦插苗与常规扦插苗根、茎、叶不同部位的氮、磷、钾含量的增长规律一致,氮含量的增长前期表现为叶>根>茎,后期表现为叶>茎>根;磷含量的增长前期表现为根>叶>茎,后期表现为叶>根>茎;钾含量的增长前期表现为根>茎>叶,后期表现为茎>根>叶。  相似文献   

4.
以石羊河下游民勤绿洲内不同退耕年限(1、2、3、4、5、8、15、24、31年)退耕地为对象,分0~10、10~20、20~30、30~40 cm 4个土层,调查分析退耕地在自然修复过程中土壤微生物生物量碳、氮、磷在不同土层、不同退耕年限的动态变化以及和土壤养分的相关性。结果表明:(1)土壤微生物量碳、氮、磷与土壤全氮、速效钾、有效磷之间存在一定的相关性,其中有效磷的含量与土壤微生物量碳、氮、磷之间均存在较显著的正相关性,且其相关系数较全氮和速效钾更高;(2)土壤微生物量在不同深度的土层内随退耕年限的增加其变化规律是不一样的;(3)各土层土壤微生物量之间具有显著差异,土层越深,土壤微生物量越低,并且,随着退耕年限的增加各土层土壤微生物量之间的差异逐渐减小。  相似文献   

5.
了解砂姜黑土地区花生养分的吸收特征,根据花生的需肥特点进行合理施肥,从而提高该地区花生产量和肥料利用率,为该地区花生生产合理施肥提供理论依据。通过田间试验,在花生不同生育时期取样分析植株不同器官养分累积量,研究砂姜黑土地区夏花生养分吸收与分配特征。结果表明:(1)随着花生的生长发育,营养器官根、茎、叶中的氮素含量总体呈下降趋势,并在成熟期降到最低值;磷素含量总体呈现平稳的趋势;茎、叶中的钾素含量呈现S型变化,根中钾素含量呈先降后增的趋势。营养器官氮素含量叶片>根>茎;钾素含量茎>叶>根。荚果中氮、磷、钾的含量分别高于根、茎、叶中氮、磷、钾的含量。(2)花生植株氮、磷、钾的累积吸收量随着生育期的推进和生物量的不断增加而逐渐增加,收获期吸收量达到最大值,氮: 磷: 钾的吸收比例为1.00:(0.20~0.32):(0.47~0.95)。(3)氮、磷、钾在砂姜黑土夏花生各器官中的分配比例,苗期均以茎叶为主,根的分配量相对较少;结荚期开始主要以荚果为主,根、茎、叶中的养分累积量逐渐减少,并向荚果中转移;成熟期荚果中的氮、磷、钾累积量达到最大值,氮素累积量占整株的93.50%、磷素为89.16%、钾素为69.30%,氮、磷、钾在根、茎、叶和荚果中的分配比例分别为0.47%:4.05%:1.98%:93.50%、0.66%:8.32%:1.87%:89.16%和1.32%:24.04%:5.26%:69.39%。综上,结荚至饱果期是花生养分吸收的高峰期生产上应根据花生不同生育时期的需肥特性,合理安排施肥,确保满足生长后期的养分需求,以增加产量。  相似文献   

6.
为探讨花生高产适宜根系的大小,确定作物根系生长的合理空间范围,为花生高产新品种选育和栽培提供理论依据。以高产花生品种青花7号为试材,设长×宽×深分别为40 cm×20 cm×20 cm、40 cm×20 cm×40 cm、40 cm×20 cm×60 cm、40 cm×20 cm×80 cm 4种大小不等的根土空间,采用网袋法,研究了根土空间对花生营养器官氮、磷、钾吸收积累变化的影响。结果表明,根土空间过小限制了花生根茎叶生物量、氮磷钾含量和积累量的提高,当限根深度超过60 cm后,根土空间大小对花生根茎叶生物量、氮磷钾含量和积累量的影响变小。说明限根深度超过60 cm后,根土空间大小已不是限制花生吸收氮磷钾素的关键因素,限根深度不小于60 cm的根土空间是花生获得较高产量水平的一个必要条件。  相似文献   

7.
旱地花生不同土壤类型植株钾素积累动态研究   总被引:1,自引:1,他引:0  
为了对旱地花生科学施肥提供依据,在大田条件下,以砂姜黑土和棕壤为对象,研究了花生生育期内植株钾积累特性。结果表明:2种土壤类型花生植株根、茎、叶中钾积累量幼苗期都处于较低水平,二者差异不大;出苗后50天到成熟期,砂姜黑土花生根中钾积累量显著高于棕壤,而茎、叶钾积累量在出苗后60天明显低于棕壤。砂姜黑土花生籽仁中钾积累量比棕壤高60%。2种土壤类型花生整株钾积累符合Logistic方程,成熟期砂姜黑土整株钾积累量比棕壤高10%。棕壤花生茎、叶中钾转移到荚果的绝对量小于砂姜黑土,但其所占荚果钾积累比例高于砂姜黑土,进一步提高花生营养体钾素转化率是砂姜黑土花生高效施钾有效途径之一。  相似文献   

8.
为阐明纳帕海湿地沼泽化草甸土壤真菌群落结构的季节变化规律及其与理化性质的关系,采用稀释培养结合形态鉴定比较,分析旱季和雨季土壤真菌群落结构的季节变化,并探讨其与土壤理化性质的相互关系。结果表明:(1)土壤有机质、全氮、速效氮、速效钾和速效磷在0~20 cm土层为雨季>旱季;20~40 cm土层除全氮外,为旱季>雨季。土壤容重和自然含水率在0~20 cm土层和20~40 cm土层为雨季>旱季。(2)旱季和雨季土壤真菌多样性均具有明显季节变化,0~20 cm土层除均匀度指数JSW外,真菌数量、多样性指数H'和丰富度指数DMA为旱季>雨季。20~40 cm土层,多样性指数H'和丰富度指数DMA为旱季>雨季,真菌数量和均匀度指数JSW为雨季>旱季。(3)经形态鉴定,旱季和雨季分别分离到12 属和11 属真菌,群落结构组成相似性极高,但也表现出一定差异性。曲霉属和腐霉属同为旱季和雨季沼泽化草甸的优势类群;枝孢菌属和壳囊孢属是旱季特有属,链孢菌属是雨季特有属。(4)经Pearson 相关性分析:在旱季和雨季,土壤有机质、全氮、速效氮、速效钾、速效磷、容重和自然含水率与土壤真菌群落结构组成相关性大。不同季节土壤真菌多样性和群落组成有明显的季节变化特征,土壤理化性质与真菌群落结构组成密切相关,为研究真菌群落对纳帕海湿地生态系统的影响提供参考依据。  相似文献   

9.
耕层重构对连作棉田土壤理化性状及棉花生长发育的影响   总被引:2,自引:0,他引:2  
针对黄河流域连作棉田常年旋耕导致犁底层变厚变硬,土壤蓄水保墒能力下降,养分在表层富集,病害加重等问题,探讨土壤耕层重构技术在黄河流域棉区生产上的可行性。试验于2014和2015年在河北省农林科学院棉花研究所威县试验站进行,在连作棉花20年的土壤条件下采用随机区组试验,设置了T1(0~15 cm与15~30 cm土壤互换)、T2(0~20 cm与20~40 cm土壤互换,同时松动40~55 cm土壤)、T3(0~20 cm与20~40 cm土壤互换,同时松动40~70 cm土壤)、CK(旋耕15 cm)4个处理,调查土壤理化性状、棉花生育性状、田间杂草与病衰指数等指标。结果表明,在20~40 cm土层T2处理容重两年较CK分别降低0.13 g cm–3与0.15 g cm–3;20~40 cm土层全氮、速效磷、速效钾含量T2与T3显著高于T1与CK;灌水(雨)后深层土壤蓄水量增加,播种后40~60 cm与60~80 cm土层蓄水量T2较CK 2014年增加3.5 mm、5.5 mm,2015年增加6.7 mm、3.4 mm,在蕾期干旱时0~20 cm与20~40 cm土层蓄水量T2较CK 2014年高6.6 mm、8.7 mm,2015年高4.2 mm、9.2 mm。耕层重构后棉花根系量显著增加,地上部干物质积累表现出开花期前低、开花期后高的趋势;耕层重构处理单株铃数、单铃重、皮棉产量较对照显著提高,T2皮棉产量两年较CK分别增加6.1%、10.2%。耕层重构对灭除田间杂草具有明显效果,T2处理病衰指数两年分别降低41.7与31.9个百分点。适宜的土壤耕层重构方式(T2)是解决连作棉田问题、提高棉花产量的有效措施。  相似文献   

10.
研究分层供水条件下施磷对冬小麦产量和氮、 磷、 钾养分吸收及其在不同器官分配的影响, 为指导旱地施磷提供一定理论和实践依据。以土垫旱耕人为土为供试土壤, 进行土柱模拟试验, 研究分层供水施磷对冬小麦产量和氮、 磷、 钾养分吸收及其在不同器官分配的影响。试验设不施磷和施磷于0~30 cm和 30~60 cm土层 3种处理, 每个施磷水平下设整体湿润和上干下湿 (0~30 cm土层干旱胁迫, 30~60 cm土层湿润) 2种水分处理。不同土层水磷处理显著影响冬小麦产量和磷、 氮、 钾养分吸收及其在不同器官分配。结果表明, 与整体湿润处理相比, 上干下湿水分处理下冬小麦产量和籽粒氮、 磷、 钾累积量及分配率均显著增加(P<0.05), 其他营养器官养分累积量及分配率则差异不显著。磷肥施用深度对冬小麦产量和不同器官氮、 磷、 钾养分累积量和分配率的影响与不同土层的土壤水分状况有关。整体湿润条件下, 与磷肥表施处理相比, 磷肥深施处理产量显著降低(P<0.05), 减产 7.49%, 上干下湿水分条件下, 则相反, 增产 11.2%(P<0.05); 整体湿润条件下, 与磷肥表施处理处理相比, 磷肥深施处理显著降低叶片+茎鞘氮、 磷、 钾累积量(P<0.05), 对分配率的影响差异均不显著, 上干下湿水分处理下, 与磷肥表施处理相比, 磷肥深施处理籽粒氮、 磷、 钾累积量及分配率均显著增加(P<0.05)。本模拟试验结果表明, 土壤水分供应不足时, 磷肥深施提高冬小麦籽粒氮、 磷、 钾养分累积量及分配率, 促进光合产物向穗部转移,从而有利于形成高产。  相似文献   

11.
叶面追磷是土壤施磷的重要补充。为明确不同土壤磷水平下花生适宜的叶面追磷浓度,本研究采用营养液沙培试验,研究了土壤充足供磷(P2O5浓度为7.1 mg L~(-1), PA)及磷胁迫(P2O5浓度为0.71 mg L~(-1), PD)时,不同浓度叶面磷肥(P2O50、0.1%和0.2%,简称CK、P0.1%和P0.2%处理)对花生根系形态、结瘤特性、叶片氮代谢酶及干物质重的影响。结果表明:(1)结荚期和饱果期,叶面追磷能够促进2种土壤供磷水平下花生根系和根瘤生长,提高叶片氮代谢关键酶活性, P 0.2%处理各指标增幅高于P 0.1%处理。收获期,土壤充足供磷时,高浓度叶面磷肥(P 0.2%)导致花生早衰,表现为P 0.2%处理根系、根瘤及氮代谢酶相关指标均低于P 0.1%处理。而土壤磷胁迫时, 2种浓度叶面磷肥均能提高上述指标, P 0.2%处理下各指标与P 0.1%处理相当或略高于P 0.1%处理。(2) 2种浓度叶面磷肥均能提高花生各器官氮、磷积累量及干物质重。土壤充足供磷时, P 0.1%处理的荚果氮、磷积累量及干物质重增幅大于P 0.2%处理,其他器官(根、茎、叶及果针)各指标则表现出相反趋势。土壤磷胁迫时,各指标均随叶面磷肥浓度增加而增加。追施叶面磷肥增产的主要原因是增加了单株果数。综上,土壤充足供磷及磷胁迫时,花生适宜的叶面追磷浓度分别为0.1%和0.2%。生产上应根据土壤供磷水平,选择适当浓度叶面磷肥。  相似文献   

12.
通过调查黄河流域棉区149个采样点早衰棉田和正常棉田土壤养分情况,构建土壤综合肥力指数(Integrated fertility index,IFI),研究引起棉花早衰发生的土壤养分原因。结果表明:早衰棉田土壤肥力各指标均低于正常棉田,其中0~20 cm土层的有机质和钾含量差异极显著。调查区域0~20 cm土层,正常生长棉田的IFI值为0.41,早衰棉田仅为正常棉田的75.6%;20~40 cm土层的IFI值显著低于0~20 cm土层,正常棉田的IFI值为早衰棉田的1.67倍。土层各肥力指标对IFI影响的直接通径系数0~20 cm从大到小的顺序为速效钾、速效磷、全氮、有机质、碱解氮含量,20~40 cm从大到小的顺序为为速效钾、速效磷、有机质、全氮含量;间接通径系数0~20 cm土层从大到小的顺序是碱解氮、全氮、速效磷、速效钾、有机质含量;20~40 cm从大到小的的顺序为有机质、全氮、速效钾、速效磷含量。综合分析,IFI与棉花早衰密切相关,其值越小越易引起早衰的发生,其中钾素和碱解氮分别是对IFI产生直接影响和间接影响的最大营养元素,大田生产中需要合理施入钾肥和氮肥,合理调节IFI值,方能有效防控因土壤肥力引发的棉田早衰的发生。  相似文献   

13.
干旱区滴灌葡萄园戈壁土壤氮磷钾分布特征研究   总被引:1,自引:1,他引:0  
为了在节水灌溉条件下给葡萄科学施用氮磷钾肥,提高肥料利用率,同时保护葡萄园生态环境,对葡萄园不同滴肥时间戈壁土壤水解性氮、有效磷、速效钾运移分布特征及不同生育期土壤氮磷钾养分时空分布特征进行研究。结果表明:葡萄滴肥后0~20 cm表层戈壁土壤水解性氮变化幅度较小,有效磷含量变化幅度较大,速效钾含量变化介于两者之间,0~80 cm土层戈壁土壤水解性氮、有效磷、速效钾含量自表层垂直向下的分布特点分别是:氮素为40~60 cm>20~40 cm>0~20 cm>60~80 cm;磷素为0~20 cm>20~40 cm>40~60 cm>60~80 cm;钾素为20~40 cm>40~60 cm>10~20 cm>60~80 cm。戈壁土壤养分随生育期变化特点是:水解性氮含量从花前到果实采收后呈直线递减;有效磷从花前到果实采收后呈直线递增;速效钾从花前到果实采收后呈先升后降趋势,果实膨大期后缓慢递减。  相似文献   

14.
为探索黄河三角洲盐碱土区花生高产高效栽培技术、提高出苗和建苗率,田间条件下,设置Ca-0 (CK、 0 kg/hm2 CaO)、Ca-1(180 kg/hm2 CaO)和Ca-2(360 kg/hm2 CaO)试验,研究盐碱土花生开花期后0-100 cm剖面土壤水分、盐分和速效氮磷养分含量随花生生育进程的动态变化。研究结果表明,施用钙肥可明显降低0-60 cm土层含盐量, 80 cm以下土层含盐量明显增加,对0-40 cm土层含水量影响不大,但明显提高开花后60-80 cm土层土壤含水量,且较高钙肥用量可降低60-100 cm土层含水量。施用钙肥可明显提高开花期后0-60 cm土层水解性氮和速效磷含量,明显降低土壤水解性氮的淋溶强度,尤以Ca-2处理表现明显。黄河三角洲盐碱土区,土壤水解性氮含量匮乏,速效磷含量虽然较充足,但由于盐碱胁迫、团粒结构缺乏、土壤板结严重等因素制约,不利于花生根系对养分的吸收,使土壤磷效率难以发挥,基施钙肥可有效提高0-60 cm土层水解性氮和速效磷含量,降低水解性氮的淋溶强度,使其土壤肥力有效发挥。  相似文献   

15.
长期施肥对菜地土壤氮磷钾养分积累的影响   总被引:5,自引:1,他引:5  
以皖北地区菜地土壤为供试土壤,以其相邻粮田为对照,研究了菜地土壤氮磷钾含量变化及其分布特征,结果表明:经过长时间种植蔬菜,菜地土壤氮磷钾养分发生了不同变化,与一般粮田相比,菜地土壤铵态氮含量没有发生明显变化,而菜地土壤硝态氮含量明显增加,菜地土壤0 ̄60cm土层中硝态氮含量一般为相邻粮田土壤的3 ̄20倍;菜地土壤磷素积累特别明显,主要积累于0 ̄40cm土层中,菜地土壤全磷积累量为粮田的1 ̄5倍,有效磷积累量为粮田的7 ̄20倍;菜地耕层土壤速效钾含量也明显高于粮田土壤,为粮田土壤的0.6 ̄4倍左右。种植蔬菜时间越长,土壤养分积累量越高。  相似文献   

16.
镍胁迫对玉米幼苗氮、磷、钾积累与分配的研究   总被引:2,自引:0,他引:2  
研究发现吉林省黑土中镍含量逐年增加,造成土壤理化性质恶化和玉米产量、品质降低,因此,了解镍胁迫对玉米植株生长特性的影响有重要意义。采用盆栽试验,研究了不同镍浓度(0、50、100、200、400 mg/kg)胁迫处理下玉米植株各部位的生物量、生物量分配格局以及氮、磷、钾积累和分配特征。结果表明,(1)镍浓度为50 mg/kg时,增加了玉米幼苗根、茎、叶生物量和总生物量,镍浓度大于50 mg/kg时,减少了各部位生物量及总生物量;(2)各部位对镍的吸收和积累随土壤外源镍浓度的增加而增加;(3)镍浓度为50 mg/kg时,增加了各部位的钾含量和根、茎钾的积累比例,而植株中的氮、磷含量随土壤中镍含量的增加呈降低趋势。因此得出,镍浓度为50 mg/kg的处理增加了玉米植株的生物量、根茎叶中钾含量及养分积累,改变了养分在玉米植株内的分配格局,而浓度大于50 mg/kg时抑制了玉米生长,降低了根茎叶中氮和磷的含量及积累。  相似文献   

17.
为探究伊犁河谷滴灌条件下复播大豆高产及减少土壤硝态氮残留的耕作方式,2017年进行了复播大豆农田不同耕作方式对土壤物理性质、硝态氮及大豆产量影响的大田试验。结果表明:各处理土壤容重随土层深度的加深呈现先增后降的趋势,土壤孔隙度呈现出与土壤容重相反的规律,0~20 cm,20~40 cm土层中,NT处理土壤容重均达最大值、孔隙度值均表现为最小,且与其他处理间差异显著(P0.05);各处理各生育时期土壤含水量均随土层深度的加深逐渐增大,表现为TPSTNT;土壤硝态氮含量的变化趋势与土壤容重相同,且各处理各生育时期也表现为STPTNT;各处理土壤容重、孔隙度、含水量、硝态氮含量均在0~40 cm土壤范围内差异明显。TP处理的产量最高,达3 185.96 kg/hm~2,分别较S、T、NT处理的高12.33%,20.04%,26.19%,且较后三者均达到显著差异(P0.05),未覆膜处理中,S处理较T、NT处理高6.86%,12.35%,并与NT处理达到显著差异(P0.05)。因此,在伊犁河谷地区,翻耕覆膜是大豆高产的最佳耕作方式,深松耕则是保证较高的大豆产量,并能减少土壤硝态氮残留的耕作方式。  相似文献   

18.
为了筛选出牧草最优种植模式,为退化农田地力提升和土地可持续利用提供理论和技术支撑,以敖汉苜蓿和老芒麦为材料,设置3种不同种植模式:单播敖汉苜蓿(Ms)、单播老芒麦(Es)和混播牧草(敖汉苜蓿+老芒麦,In),以休闲处理为对照(CK)。结果表明:随种植年限增加,土壤速效磷含量先降后升;有机质、速效钾、全氮、全钾含量上升。与CK比较,第1年,各种植模式均提高了土壤有机质、速效钾、碱解氮和全氮含量;Ms和In提高了土壤全磷、全钾含量。第2年,Ms、Es和In土壤碱解氮含量在10~20 cm土层显著降低20.91%~40.05%,速效磷含量在20~40 cm土层显著降低32.19%~39.65%;土壤有机质、全钾含量总体呈升高趋势,速效磷、速效钾含量呈下降趋势,全磷含量在20~40 cm土层显著降低。  相似文献   

19.
施氮量对冬马铃薯氮素利用和土壤氮含量的影响   总被引:1,自引:1,他引:0  
在大田条件下,以马铃薯品种费乌瑞它为试验材料,研究施氮量(N 0、80、160、240kg/hm2)对冬马铃薯氮素吸收利用和土壤氮含量变化的影响。结果表明,施氮可显著提高马铃薯根、茎、叶及块茎全N含量;施N量在0~160kg/hm2范围,马铃薯茎、叶、块茎及植株全N积累量随施N量的增加而明显增加,但继续增加施N量,茎、块茎及植株全N积累量增加不明显;马铃薯氮肥农学利用率、吸收利用率、偏生产力及氮素块茎生产效率随施N量的增加呈明显下降趋势,氮肥生理利用率和氮素收获指数呈先增加而后降低趋势。马铃薯收获后,施N量为0~80kg/hm2的种植地0~30cm土层碱解氮含量不同程度下降,施N量为160~240kg/hm2的各土层碱解氮含量显著增加,但施N量对土壤全N含量影响不明显。可见,本研究条件下施N量应控制在80~160kg/hm2。  相似文献   

20.
陕北黄土高原植被恢复对土壤理化性状的影响   总被引:3,自引:0,他引:3  
为了解陕北黄土高原不同植被恢复类型对土壤理化性状的影响及其季节变化,采用完全随机设计,以陕北黄土高原恢复19年的杏树林、沙棘林、油松林和刺槐林为研究对象,以耕作相同年限农田为对照,分析不同植被恢复类型、土层和季节对土壤有机质、碱解氮、速效磷、速效钾、pH以及电导率的影响。结果表明,土壤有机质、速效磷和速效钾在不同人工林地间达到显著差异水平,人工林地土壤养分含量均高于玉米农地,杏树林和沙棘林相对较高,刺槐林相对较低。碱解氮、pH和电导率在不同人工林地间没有达到显著差异水平。随着土层加深,土壤有机质、碱解氮、速效磷和速效钾显著降低,pH和电导率土层间变化规律不一致。土壤有机质、碱解氮、速效钾和电导率在夏季和春季较高,土壤速效磷和pH在冬季和秋季较高。0~20 cm土层,有机质与碱解氮和速效钾均达到显著正相关水平;20~40 cm土层,土壤有机质与电导率呈显著正相关关系,速效磷与速效钾呈显著负相关;速效钾和电导率在各土层间均达到显著正相关水平,pH与电导率在各土层间均呈显著负相关关系。植被恢复显著提高了土壤养分,杏树林和沙棘林富集土壤养分能力优于油松林和刺槐林。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号