首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Optical gain and stimulated emission in nanocrystal quantum dots   总被引:1,自引:0,他引:1  
The development of optical gain in chemically synthesized semiconductor nanoparticles (nanocrystal quantum dots) has been intensely studied as the first step toward nanocrystal quantum dot lasers. We examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at the wavelength of the emitting transition for close-packed solids of these dots. Narrowband stimulated emission with a pronounced gain threshold at wavelengths tunable with the size of the nanocrystal was observed, as expected from quantum confinement effects. These results unambiguously demonstrate the feasibility of nanocrystal quantum dot lasers.  相似文献   

2.
The quantum cascade laser, which uses electronic transitions within a single band of a semiconductor, constitutes a possible way to integrate active optical components into silicon-based technology. This concept necessitates a transition with a narrow linewidth and an upper state with a sufficiently long lifetime. We report the observation of intersubband electroluminescence from a p-type silicon/silicon-germanium quantum cascade structure, centered at 130 millielectron volts with a width of 22 millielectron volts, with the expected polarization, and discernible up to 180 kelvin. The nonradiative lifetime is found to depend strongly on the design of the quantum well structure, and is shown to reach values comparable to that of an equivalent GaInAs/AlInAs laser structure.  相似文献   

3.
We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top metallic contact allows electrical current injection and provides vertical optical confinement through a bound surface plasmon wave. The miniaturization and tailorable emission properties of this design are potentially important for sensing applications, while electrical pumping can allow new studies of photonic crystal and surface plasmon structures in nonlinear and near-field optics.  相似文献   

4.
Park HG  Kim SH  Kwon SH  Ju YG  Yang JK  Baek JH  Kim SB  Lee YH 《Science (New York, N.Y.)》2004,305(5689):1444-1447
We report the experimental demonstration of an electrically driven, single-mode, low threshold current (approximately 260 microA) photonic band gap laser operating at room temperature. The electrical current pulse is injected through a sub-micrometer-sized semiconductor wire at the center of the mode with minimal degradation of the quality factor. The actual mode of interest operates in a nondegenerate monopole mode, as evidenced through the comparison of the measurement with the computation based on the actual fabricated structural parameters. As a small step toward a thresholdless laser or a single photon source, this wavelength-size photonic crystal laser may be of interest to photonic crystals, cavity quantum electrodynamics, and quantum information communities.  相似文献   

5.
We generated a coherently synthesized optical pulse from two independent mode-locked femtosecond lasers, providing a route to extend the coherent bandwidth available for ultrafast science. The two separate lasers (one centered at 760 nanometers wavelength, the other at 810 nanometers) are tightly synchronized and phase-locked. Coherence between the two lasers is demonstrated via spectral interferometry and second-order field cross-correlation. Measurements reveal a coherently synthesized pulse that has a temporally narrower second-order autocorrelation width and that exhibits a larger amplitude than the individual laser outputs. This work represents a new and flexible approach to the synthesis of coherent light.  相似文献   

6.
High-power and highly directional semiconductor microcylinder lasers based on an optical resonator with deformed cross section are reported. In the favorable directions of the far-field, a power increase of up to three orders of magnitude over the conventional circularly symmetric lasers was obtained. A "bow-tie"-shaped resonance is responsible for the improved performance of the lasers in the higher range of deformations, in contrast to "whispering-gallery"-type modes of circular and weakly deformed lasers. This resonator design, although demonstrated here in midinfrared quantum-cascade lasers, should be applicable to any laser based on semiconductors or other high-refractive index materials.  相似文献   

7.
Quantum dots are typically formed from large groupings of atoms and thus may be expected to have appreciable many-body behavior under intense optical excitation. Nonetheless, they are known to exhibit discrete energy levels due to quantum confinement effects. We show that, like single-atom or single-molecule two- and three-level quantum systems, single semiconductor quantum dots can also exhibit interference phenomena when driven simultaneously by two optical fields. Probe absorption spectra are obtained that exhibit Autler-Townes splitting when the optical fields drive coupled transitions and complex Mollow-related structure, including gain without population inversion, when they drive the same transition. Our results open the way for the demonstration of numerous quantum level-based applications, such as quantum dot lasers, optical modulators, and quantum logic devices.  相似文献   

8.
A quantum-cascade long-wavelength infrared laser based on superlattice active regions has been demonstrated. In this source, electrons injected by tunneling emit photons corresponding to the energy gap (minigap) between two superlattice conduction bands (minibands). A distinctive design feature is the high oscillator strength of the optical transition. Pulsed operation at a wavelength of about 8 micrometers with peak powers ranging from approximately 0.80 watt at 80 kelvin to 0.2 watt at 200 kelvin has been demonstrated in a superlattice with 1-nanometer-thick AlInAs barriers and 4.3-nanometer-thick GaInAs quantum wells grown by molecular beam epitaxy. These results demonstrate the potential of strongly coupled superlattices as infrared laser materials for high-power sources in which the wavelength can be tailored by design.  相似文献   

9.
A monomeric arsinogallane containing a covalent gallium-arsenic bond has been prepared, and its molecular structure has been determined by x-ray crystallography. The compound reacted with tert-butanol at ambient temperature to yield the III-V semiconductor gallium arsenide as a finely divided amorphous solid. During the initial stages of the reaction small clusters of gallium arsenide were apparently present in solution. The band gaps of these particles, as observed by their absorption spectra, were larger than that of the bulk material. This work is a step toward the development of new molecular precursors for technologically important materials and the study of quantum size effects in small semiconductor particles.  相似文献   

10.
Precision spectroscopy at ultraviolet and shorter wavelengths has been hindered by the poor access of narrow-band lasers to that spectral region. We demonstrate high-accuracy quantum interference metrology on atomic transitions with the use of an amplified train of phase-controlled pulses from a femtosecond frequency comb laser. The peak power of these pulses allows for efficient harmonic upconversion, paving the way for extension of frequency comb metrology in atoms and ions to the extreme ultraviolet and soft x-ray spectral regions. A proof-of-principle experiment was performed on a deep-ultraviolet (2 x 212.55 nanometers) two-photon transition in krypton; relative to measurement with single nanosecond laser pulses, the accuracy of the absolute transition frequency and isotope shifts was improved by more than an order of magnitude.  相似文献   

11.
Doping of semiconductors by impurity atoms enabled their widespread technological application in microelectronics and optoelectronics. However, doping has proven elusive for strongly confined colloidal semiconductor nanocrystals because of the synthetic challenge of how to introduce single impurities, as well as a lack of fundamental understanding of this heavily doped limit under strong quantum confinement. We developed a method to dope semiconductor nanocrystals with metal impurities, enabling control of the band gap and Fermi energy. A combination of optical measurements, scanning tunneling spectroscopy, and theory revealed the emergence of a confined impurity band and band-tailing. Our method yields n- and p-doped semiconductor nanocrystals, which have potential applications in solar cells, thin-film transistors, and optoelectronic devices.  相似文献   

12.
Retina: pathology of neodymium and ruby laser burns   总被引:2,自引:0,他引:2  
Chorioretinal lesions hiave been prodluced in monkeys during experitments with ruby and neodlymium lasers. Most of the energy from the ruby laser (wavelength 6943 angstroms) is absorbed by the pigment epithelium, where the greatest damage appears. With the neodymium laser (10,600 angstroms) the neural portions of the retina absorb more of damage than the pigment epithelium and adjacent tissues.  相似文献   

13.
We report on the generation of picosecond self-mode-locked pulses from midinfrared quantum cascade lasers, at wavelengths within the important molecular fingerprint region. These devices are based on intersubband electron transitions in semiconductor nanostructures, which are characterized by some of the largest optical nonlinearities observed in nature and by picosecond relaxation lifetimes. Our results are interpreted with a model in which one of these nonlinearities, the intensity-dependent refractive index of the lasing transition, creates a nonlinear waveguide where the optical losses decrease with increasing intensity. This favors the generation of ultrashort pulses, because of their larger instantaneous intensity relative to continuous-wave emission.  相似文献   

14.
We demonstrate polarization mode selection in a two-dimensional (2D) photonic crystal laser by controlling the geometry of the unit cell structure. As the band diagram of the square-lattice photonic crystal is influenced by the unit cell structure, calculations reveal that changing the structure from a circular to an elliptical geometry should result in a strong modification of the electromagnetic field distributions at the band edges. Such a structural modification is expected to provide a mechanism for controlling the polarization modes of the emitted light. A square-lattice photonic crystal with the elliptical unit cell structure has been fabricated and integrated with a gain media. The observed coherent 2D lasing action with a single wavelength and controlled polarization is in good agreement with the predicted behavior.  相似文献   

15.
Byer RL 《Science (New York, N.Y.)》1988,239(4841):742-747
Diode laser-pumped solid-state lasers are efficient, compact, all solid-state sources of coherent optical radiation. Major advances in solid-state laser technology have historically been preceded by advances in pumping technology. The helical flash lamps used to pump early ruby lasers were superseded by the linear flash lamp and arc lamp now used to pump neodymium-doped yttrium-aluminum-garnet lasers. The latest advance in pumping technology is the diode laser. Diode laser-pumped neodymium lasers have operated at greater than 10 percent electrical to optical efficiency in a single spatial mode and with linewidths of less than 10 kilohertz. The high spectral power brightness of these lasers has allowed frequency extension by harmonic generation in nonlinear crystals, which has led to green and blue sources of coherent radiation. Diode laser pumping has also been used with ions other than neodymium to produce wavelengths from 946 to 2010 nanometers. In addition, Q-switched operation with kilowatt peak powers and mode-locked operation with 10-picosecond pulse widths have been demonstrated. Progress in diode lasers and diode laser arrays promises all solid-state lasers in which the flash lamp is replaced by diode lasers for average power levels in excess of tens of watts and at a price that is competitive with flash lamp-pumped laser systems. Power levels exceeding 1 kilowatt appear possible within the next 5 years. Potential applications of diode laser-pumped solid-state lasers include coherent radar, global sensing from satellites, medical uses, micromachining, and miniature visible sources for digital optical storage.  相似文献   

16.
Visible-stimulated emission in a semiconductor quantum dot (QD) laser structure has been demonstrated. Red-emitting, self-assembled QDs of highly strained InAlAs have been grown by molecular beam epitaxy on a GaAs substrate. Carriers injected electrically from the doped regions of a separate confinement heterostructure thermalized efficiently into the zero-dimensional QD states, and stimulated emission at approximately 707 nanometers was observed at 77 kelvin with a threshold current of 175 milliamperes for a 60-micrometer by 400-micrometer broad area laser. An external efficiency of approximately 8.5 percent at low temperature and a peak power greater than 200 milliwatts demonstrate the good size distribution and high gain in these high-quality QDs.  相似文献   

17.
Scanning a charged tip above the two-dimensional electron gas inside a gallium arsenide/aluminum gallium arsenide nanostructure allows the coherent electron flow from the lowest quantized modes of a quantum point contact at liquid helium temperatures to be imaged. As the width of the quantum point contact is increased, its electrical conductance increases in quantized steps of 2 e(2)/h, where e is the electron charge and h is Planck's constant. The angular dependence of the electron flow on each step agrees with theory, and fringes separated by half the electron wavelength are observed. Placing the tip so that it interrupts the flow from particular modes of the quantum point contact causes a reduction in the conductance of those particular conduction channels below 2 e(2)/h without affecting other channels.  相似文献   

18.
Absorption lines in the v, band of water vapor at 6.3 micrometers have been fully resolved by using a tunable semiconductor laser. Three attnospheric water vapor lines near 5.32 micrometers were studied in detail and found to have linle widths two to four times narrower than the width calculated by Benedict and Kaplan.  相似文献   

19.
Hybrid nanorod-polymer solar cells   总被引:1,自引:0,他引:1  
We demonstrate that semiconductor nanorods can be used to fabricate readily processed and efficient hybrid solar cells together with polymers. By controlling nanorod length, we can change the distance on which electrons are transported directly through the thin film device. Tuning the band gap by altering the nanorod radius enabled us to optimize the overlap between the absorption spectrum of the cell and the solar emission spectrum. A photovoltaic device consisting of 7-nanometer by 60-nanometer CdSe nanorods and the conjugated polymer poly-3(hexylthiophene) was assembled from solution with an external quantum efficiency of over 54% and a monochromatic power conversion efficiency of 6.9% under 0.1 milliwatt per square centimeter illumination at 515 nanometers. Under Air Mass (A.M.) 1.5 Global solar conditions, we obtained a power conversion efficiency of 1.7%.  相似文献   

20.
We have demonstrated laser cooling of a single electron spin trapped in a semiconductor quantum dot. Optical coupling of electronic spin states was achieved using resonant excitation of the charged quantum dot (trion) transitions along with the heavy-light hole mixing, which leads to weak yet finite rates for spin-flip Raman scattering. With this mechanism, the electron spin can be cooled from 4.2 to 0.020 kelvin, as confirmed by the strength of the induced Pauli blockade of the trion absorption. Within the framework of quantum information processing, this corresponds to a spin-state preparation with a fidelity exceeding 99.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号