首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Causes of climate change over the past 1000 years   总被引:9,自引:0,他引:9  
Recent reconstructions of Northern Hemisphere temperatures and climate forcing over the past 1000 years allow the warming of the 20th century to be placed within a historical context and various mechanisms of climate change to be tested. Comparisons of observations with simulations from an energy balance climate model indicate that as much as 41 to 64% of preanthropogenic (pre-1850) decadal-scale temperature variations was due to changes in solar irradiance and volcanism. Removal of the forced response from reconstructed temperature time series yields residuals that show similar variability to those of control runs of coupled models, thereby lending support to the models' value as estimates of low-frequency variability in the climate system. Removal of all forcing except greenhouse gases from the approximately 1000-year time series results in a residual with a very large late-20th-century warming that closely agrees with the response predicted from greenhouse gas forcing. The combination of a unique level of temperature increase in the late 20th century and improved constraints on the role of natural variability provides further evidence that the greenhouse effect has already established itself above the level of natural variability in the climate system. A 21st-century global warming projection far exceeds the natural variability of the past 1000 years and is greater than the best estimate of global temperature change for the last interglacial.  相似文献   

2.
The El Ni?o-Southern Oscillation (ENSO) is the most potent source of interannual climate variability. Uncertainty surrounding the impact of greenhouse warming on ENSO strength and frequency has stimulated efforts to develop a better understanding of the sensitivity of ENSO to climate change. Here we use annually banded corals from Papua New Guinea to show that ENSO has existed for the past 130,000 years, operating even during "glacial" times of substantially reduced regional and global temperature and changed solar forcing. However, we also find that during the 20th century ENSO has been strong compared with ENSO of previous cool (glacial) and warm (interglacial) times. The observed pattern of change in amplitude may be due to the combined effects of ENSO dampening during cool glacial conditions and ENSO forcing by precessional orbital variations.  相似文献   

3.
Simulation of early 20th century global warming   总被引:3,自引:0,他引:3  
The observed global warming of the past century occurred primarily in two distinct 20-year periods, from 1925 to 1944 and from 1978 to the present. Although the latter warming is often attributed to a human-induced increase of greenhouse gases, causes of the earlier warming are less clear because this period precedes the time of strongest increases in human-induced greenhouse gas (radiative) forcing. Results from a set of six integrations of a coupled ocean-atmosphere climate model suggest that the warming of the early 20th century could have resulted from a combination of human-induced radiative forcing and an unusually large realization of internal multidecadal variability of the coupled ocean-atmosphere system. This conclusion is dependent on the model's climate sensitivity, internal variability, and the specification of the time-varying human-induced radiative forcing.  相似文献   

4.
Several indices of large-scale patterns of surface temperature variation were used to investigate climate change in North America over the 20th century. The observed variability of these indices was simulated well by a number of climate models. Comparison of index trends in observations and model simulations shows that North American temperature changes from 1950 to 1999 were unlikely to be due to natural climate variation alone. Observed trends over this period are consistent with simulations that include anthropogenic forcing from increasing atmospheric greenhouse gases and sulfate aerosols. However, most of the observed warming from 1900 to 1949 was likely due to natural climate variation.  相似文献   

5.
Dynamics of recent climate change in the Arctic   总被引:2,自引:0,他引:2  
The pattern of recent surface warming observed in the Arctic exhibits both polar amplification and a strong relation with trends in the Arctic Oscillation mode of atmospheric circulation. Paleoclimate analyses indicate that Arctic surface temperatures were higher during the 20th century than during the preceding few centuries and that polar amplification is a common feature of the past. Paleoclimate evidence for Holocene variations in the Arctic Oscillation is mixed. Current understanding of physical mechanisms controlling atmospheric dynamics suggests that anthropogenic influences could have forced the recent trend in the Arctic Oscillation, but simulations with global climate models do not agree. In most simulations, the trend in the Arctic Oscillation is much weaker than observed. In addition, the simulated warming tends to be largest in autumn over the Arctic Ocean, whereas observed warming appears to be largest in winter and spring over the continents.  相似文献   

6.
It is currently unclear whether observed pelagic ecosystem responses to ocean warming, such as a mid-1970s change in the eastern North Pacific, depart from typical ocean variability. We report variations in planktonic foraminifera from varved sediments off southern California spanning the past 1400 years. Increasing abundances of tropical/subtropical species throughout the 20th century reflect a warming trend superimposed on decadal-scale fluctuations. Decreasing abundances of temperate/subpolar species in the late 20th century indicate a deep, penetrative warming not observed in previous centuries. These results imply that 20th-century warming, apparently anthropogenic, has already affected lower trophic levels of the California Current.  相似文献   

7.
A comparison of observations with simulations of a coupled ocean-atmosphere general circulation model shows that both natural and anthropogenic factors have contributed significantly to 20th century temperature changes. The model successfully simulates global mean and large-scale land temperature variations, indicating that the climate response on these scales is strongly influenced by external factors. More than 80% of observed multidecadal-scale global mean temperature variations and more than 60% of 10- to 50-year land temperature variations are due to changes in external forcings. Anthropogenic global warming under a standard emissions scenario is predicted to continue at a rate similar to that observed in recent decades.  相似文献   

8.
The evolution of climate over the last millennium   总被引:9,自引:0,他引:9  
Knowledge of past climate variability is crucial for understanding and modeling current and future climate trends. This article reviews present knowledge of changes in temperatures and two major circulation features-El Ni?o-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)-over much of the last 1000 years, mainly on the basis of high-resolution paleoclimate records. Average temperatures during the last three decades were likely the warmest of the last millennium, about 0.2 degrees C warmer than during warm periods in the 11th and 12th centuries. The 20th century experienced the strongest warming trend of the millennium (about 0.6 degrees C per century). Some recent changes in ENSO may have been unique since 1800, whereas the recent trend to more positive NAO values may have occurred several times since 1500. Uncertainties will only be reduced through more extensive spatial sampling of diverse proxy climatic records.  相似文献   

9.
Human-induced Arctic moistening   总被引:1,自引:0,他引:1  
The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.  相似文献   

10.
近48年安徽省宿州市气候变化特征分析   总被引:2,自引:0,他引:2  
王东 《安徽农业科学》2009,37(30):14755-14757
根据1961~2008年宿州市气温和降水资料,运用一元回归、相关分析等数理统计方法,对近48年来安徽省宿州市气候变化进行分析。结果表明:近48年来宿州市年平均气温呈上升趋势,各季中冬季增温最明显,而夏季却出现降温趋势;增温最显著的是20世纪90年代以后。年平均降水量呈增加趋势,增量最大出现在20世纪90年代;夏、冬季平均降水量呈增加趋势,其中夏季增加对年均降水量增加的贡献最大,而春、秋季平均降水量呈减少趋势。  相似文献   

11.
Bonan GB 《Science (New York, N.Y.)》2008,320(5882):1444-1449
The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.  相似文献   

12.
Projected changes in the Earth's climate can be driven from a combined set of forcing factors consisting of regionally heterogeneous anthropogenic and natural aerosols and land use changes, as well as global-scale influences from solar variability and transient increases in human-produced greenhouse gases. Thus, validation of climate model projections that are driven only by increases in greenhouse gases can be inconsistent when one attempts the validation by looking for a regional or time-evolving "fingerprint" of such projected changes in real climatic data. Until climate models are driven by time-evolving, combined, multiple, and heterogeneous forcing factors, the best global climatic change "fingerprint" will probably remain a many-decades average of hemi-spheric- to global-scale trends in surface air temperatures. Century-long global warming (or cooling) trends of 0.5 degrees C appear to have occurred infrequently over the past several thousand years-perhaps only once or twice a millennium, as proxy records suggest. This implies an 80 to 90 percent heuristic likelihood that the 20th-century 0.5 +/- 0.2 degrees C warming trend is not a wholly natural climatic fluctuation.  相似文献   

13.
为了揭示日本樱花花期演变的特点及其与春温、植物生育期变化的关系,从1979~2006年近30年来,对陕西杨凌日本樱花花期进行了连续观测,统计分析了日本樱花花期序列,花期和春温的关系以及其与小麦生育期的相关关系。结果表明,近30年来,日本樱花花期有随时间推移逐渐提早的趋势,20世纪90年代的平均开花始期、盛期均较80年代提早1 d,进入21世纪以来提早明显加快,其平均开花始期、盛期均较20世纪90年代提早9 d。20世纪80和90年代,日本樱花最早和最晚花期相差21 d,到21世纪10年代,相差仅15~17 d,花期的变动明显趋于稳定。陕西杨凌早春和整个春季的气温均与日本樱花花期呈极显著负相关,日本樱花开花盛期与小麦抽穗期、开花期、乳熟期呈极显著相关,与小麦蜡熟期、成熟期呈显著相关。说明日本樱花花期变化和春温升高密切相关,是全球气候变暖的又一具体表现。根据日本樱花花期能较好预报小麦等农作物生长后期各生育期的变化,可以提早安排小麦授粉杂交、后代选择、后期栽培管理等一系列农事活动,对整个农业生产具有重要作用。  相似文献   

14.
Penetration of human-induced warming into the world's oceans   总被引:1,自引:0,他引:1  
A warming signal has penetrated into the world's oceans over the past 40 years. The signal is complex, with a vertical structure that varies widely by ocean; it cannot be explained by natural internal climate variability or solar and volcanic forcing, but is well simulated by two anthropogenically forced climate models. We conclude that it is of human origin, a conclusion robust to observational sampling and model differences. Changes in advection combine with surface forcing to give the overall warming pattern. The implications of this study suggest that society needs to seriously consider model predictions of future climate change.  相似文献   

15.
Trends in global lower tropospheric temperature derived from satellite observations since 1979 show less warming than trends based on surface meteorological observations. Independent radiosonde observations of surface and tropospheric temperatures confirm that, since 1979, there has been greater warming at the surface than aloft in the tropics. Associated lapse-rate changes show a decrease in the static stability of the atmosphere, which exceeds unforced static stability variations in climate simulations with state-of-the-art coupled ocean-atmosphere models. The differential temperature trends and lapse-rate changes seen during the satellite era are not sustained back to 1960.  相似文献   

16.
Extracting a climate signal from 169 glacier records   总被引:4,自引:0,他引:4  
I constructed a temperature history for different parts of the world from 169 glacier length records. Using a first-order theory of glacier dynamics, I related changes in glacier length to changes in temperature. The derived temperature histories are fully independent of proxy and instrumental data used in earlier reconstructions. Moderate global warming started in the middle of the 19th century. The reconstructed warming in the first half of the 20th century is 0.5 kelvin. This warming was notably coherent over the globe. The warming signals from glaciers at low and high elevations appear to be very similar.  相似文献   

17.
Anthropogenic aerosols and the weakening of the South Asian summer monsoon   总被引:3,自引:0,他引:3  
Observations show that South Asia underwent a widespread summertime drying during the second half of the 20th century, but it is unclear whether this trend was due to natural variations or human activities. We used a series of climate model experiments to investigate the South Asian monsoon response to natural and anthropogenic forcings. We find that the observed precipitation decrease can be attributed mainly to human-influenced aerosol emissions. The drying is a robust outcome of a slowdown of the tropical meridional overturning circulation, which compensates for the aerosol-induced energy imbalance between the Northern and Southern Hemispheres. These results provide compelling evidence of the prominent role of aerosols in shaping regional climate change over South Asia.  相似文献   

18.
Climate reconstructions reveal unprecedented warming in the past century; however, little is known about trends in aspects such as the monsoon. We reconstructed the monsoon winds for the past 1000 years using fossil Globigerina bulloides abundance in box cores from the Arabian Sea and found that monsoon wind strength increased during the past four centuries as the Northern Hemisphere warmed. We infer that the observed link between Eurasian snow cover and the southwest monsoon persists on a centennial scale. Alternatively, the forcing implicated in the warming trend (volcanic aerosols, solar output, and greenhouse gases) may directly affect the monsoon. Either interpretation is consistent with the hypothesis that the southwest monsoon strength will increase during the coming century as greenhouse gas concentrations continue to rise and northern latitudes continue to warm.  相似文献   

19.
Since the dawn of the industrial era, the atmospheric concentrations of several radiatively active gases have been increasing as a result of human activities. The radiative heating from this inadvertent experiment has driven the climate system out of equilibrium with the incoming solar energy. According to the greenhouse theory of climate change, the climate system will be restored to equilibrium by a warming of the surfacetroposphere system and a cooling of the stratosphere. The predicted changes, during the next few decades, could far exceed natural climate variations in historical times. Hence, the greenhouse theory of climate change has reached the crucial stage of verification. Surface warming as large as that predicted by models would be unprecedented during an interglacial period such as the present. The theory, its scope for verification, and the emerging complexities of the climate feedback mechanisms are discussed.  相似文献   

20.
Quantifying global warming from the retreat of glaciers   总被引:6,自引:0,他引:6  
Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure: one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last 100 years appears to be coherent over the globe. On the basis of modeling of the climate sensitivity of glaciers, the observed glacier retreat can be explained by a linear warming trend of 0.66 kelvin per century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号