首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of aroma extract dilution analysis (AEDA) on the volatile components of low-, medium-, and high-heat-treated nonfat dry milks (NDM) revealed aroma-active compounds in the log(3) flavor dilution (log(3) FD) factor range of 1 to 6. The following compounds contributed the highest log(3) FD factors to overall NDM flavor: 2,5-dimethyl-4-hydroxy-3(2H)-furanone [(Furaneol), burnt sugar-like]; butanoic acid (rancid); 3-(methylthio)propanal [(methional), boiled potato-like]; o-aminoacetophenone (grape-like); delta-decalactone (sweet); (E)-4,5-epoxy-(E)-2-decenal (metallic); pentanoic acid (sweaty); 4,5-dimethyl-3-hydroxy-2(5H)-furanone [(sotolon), curry]; 3-methoxy-4-hydroxybenzaldehyde [(vanillin), vanilla]; 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline (popcorn-like); hexanoic acid (vinegar-like); phenylacetic acid (rose-like); octanoic acid (waxy); nonanal (fatty); and 1-octen-3-one (mushroom-like). The odor intensities of Furaneol, butanoic acid, methional, o-aminoacetophenone, sotolon, vanillin, (E)-4,5-epoxy-(E)-2-decenal, and phenylacetic acid were higher in high-heat-treated samples than others. However, the odor intensities of lactones, 2-acetyl-1-pyrroline, and 2-acetyl-2-thiazoline were not affected by heat treatment. Sensory evaluation results also revealed that heat-generated flavors have a major impact on the flavor profile of NDM.  相似文献   

2.
An investigation by aroma extract dilution analysis (AEDA) of the aroma concentrate of soy milk made from a major Japanese soybean cultivar, Fukuyutaka (FK), revealed 20 key aroma compounds having flavor dilution (FD) factors of not less than 64. Among them, 2-isopropyl-3-methoxypyrazine, cis-4,5-epoxy-(E)-2-decenal, trans-4,5-epoxy-(E)-2-decenal, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, and 2'-aminoacetophenone were identified as the key aroma compounds in soy milk for the first time. (E,E)-2,4-Decadienal exhibiting a fatty note and trans-4,5-epoxy-(E)-2-decenal exhibiting a metallic/sweet note were detected as having the highest FD factors of 4096, followed by hexanal (green), (E)-2-nonenal (fatty), and (E,E)-2,4-nonadienal (fatty) having FD factors of 1024. Although all of these compounds might be generated from lipids, various aroma components, which were thought to be generated from amino acids, sugars, and ferulic acid, were detected having FD factors of 64-256. Investigation by comparative AEDA experiments of the soy milk aroma concentrates of two cultivars for soybean curd and soy milk, FK and Vinton81 (VT), and one cultivar for boiled beans, Miyagishirome (MY), revealed that most of the key aroma compounds were common to all of them, but 2-isopropyl-3-methoxypyrazine, exhibiting a pea-like/earthy note, was detected only in FK and VT. In addition, a sensory experiment revealed that the pea-like/earthy notes in FK and VT were significantly stronger than that in MY. These results demonstrated that a pea-like/earthy note contributed by 2-isopropyl-3-methoxypyrazine might be one of the essential characteristics to describe soy milk aromas.  相似文献   

3.
Characteristic aroma components of buckwheat honey were studied by combined sensory and instrumental techniques. Relative aroma intensity of individual volatile components was evaluated by aroma extract dilution analysis (AEDA) of solvent extracts and by gas chromatography-olfactometry (GCO) of decreasing headspace samples (GCO-H). Results indicated that 3-methylbutanal, 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon), and (E)-beta-damascenone were the most potent odorants in buckwheat honey, with 3-methylbutanal being primarily responsible for the distinct malty aroma. Other important aroma-active compounds included methylpropanal, 2,3-butanedione, phenylacetaldehyde, 3-methylbutyric acid, maltol, vanillin, methional, coumarin, and p-cresol.  相似文献   

4.
5.
The influence of epicatechin (EC) on off-flavor development in low-heat skim milk powder samples during processing and storage was investigated. Milk powder samples were prepared from a concentrated skim milk (control) plus a concentrated skim milk with EC (treatment). Volatile extracts of the powders were analyzed by aroma extract dilution analysis (AEDA) at 0 days and after 17 months of storage in conjunction with sensory analysis of the flavor attributes. The treatment milk powders with EC added prior to drying reported a reduction in the formation of three main compounds, 4-hydroxy-2,5-dimethyl-3-(2H)-furanone, o-aminoacetophenone, and furfural, by 8-, 4-, and 4-fold for the 0 day old samples, while for the 17 month aged samples o-aminoacetophenone was the major compound reduced in formation by 8-fold, respectively, based on the flavor dilution factors reported. The sensory evaluations indicated that the treatment milk powders for 0 day old and 17 month aged samples were statistically lower (alpha = 0.05) in stale flavor intensity in comparison to the respective control samples, while no differences were noted in bitterness intensity.  相似文献   

6.
Three tasty (BR-139, FA-624, and FA-612) and two less tasty (R-144 and R-175) fresh greenhouse tomato cultivars, which significantly differ in their flavor profiles, were screened for potent odorants using aroma extract dilution analysis (AEDA). On the basis of AEDA results, 19 volatiles were selected for quantification in those 5 cultivars using gas chromatography-mass spectrometry (GC-MS). Compounds such as 1-penten-3-one, ( E, E)- and ( E, Z)-2,4-decadienal, and 4-hydroxy-2,5-dimethyl-3(2 H)-furanone (Furaneol) had higher odor units in the more preferred cultivars, whereas methional, phenylacetaldehyde, 2-phenylethanol, or 2-isobutylthiazole had higher odor units in the less preferred cultivars. Simulation of the odor of the selected tomato cultivars by preparation of aroma models and comparison with the corresponding real samples confirmed that all important fresh tomato odorants were identified, that their concentrations were determined correctly in all five cultivars, and that differences in concentration, especially of the compounds mentioned above, make it possible to distinguish between them and are responsible for the differential preference. To help elucidate formation pathways of key odorants, labeled precursors were added to tomatoes. Biogenesis of cis- and trans-4,5-epoxy-( E)-2-decenals from linoleic acid and methional from methionine was confirmed.  相似文献   

7.
The aroma extract of Chickasaw blackberry (Rubus L.) was separated with silica gel normal phase chromatography into six fractions. Gas chromatography-olfactometry (GCO) was performed on each fraction to identify aroma active compounds. Aroma extraction dilution analysis (AEDA) was employed to characterize the aroma profile of Chickasaw blackberries from two growing regions of the United States: Oregon and Arkansas. Comparative AEDA analysis showed that the berries grown in the two regions had similar aroma compositions; however, those odorants had various aroma impacts in each region. The compounds with high flavor dilution factors in Oregon's Chickasaw were ethyl butanoate, linalool, methional, trans,cis-2,6-nonadienal, cis-1,5-octadien-3-one, and 2,5-dimethyl-4-hydroxy-3(2H)-furanone, whereas in the Chickasaw grown in Arkansas, they were ethyl butanoate, linalool, methional, ethyl 2-methylbutanoate, beta-damascenone, and geraniol.  相似文献   

8.
An investigation on the odor-active compounds of wholemeal (WWF) and white wheat flour (WF 550) by aroma extract dilution analysis (AEDA) and by quantitative studies using stable isotope dilution assays (SIDA) revealed a significant number of odor-active compounds, such as (E)-2-nonenal, (E,Z)- and (E,E)-2,4-decadienal, (E)-4,5-epoxy-(E)-2-decenal, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, and vanillin, with high odor activities in both wheat flours. The amounts and, consequently, the aroma potencies of vanillin, (E,E)-2,4-decadienal, and 3-(methylthio)propanal were much higher in the WWF than in the WF 550 samples. Fermentation of suspensions of both flours with lactic acid bacteria did not generate new odorants; however, many compounds, such as acetic acid or 3-methylbutanal, were increased, whereas aldehydes (formed from the degradation of unsaturated fatty acids) were decreased. Comparing the odorant concentrations present before and after fermentation gave evidence that the main influence of the microorganisms on sourdough aroma is to either enhance or decrease specific volatiles already present in the flour. A comparison with literature data indicated that most of these odorants are also important for the bread crumb aroma present after baking of the dough.  相似文献   

9.
Volatile organic compounds (VOCs) in fermented honeybush, Cyclopia subternata, were sampled by means of a high-capacity headspace sample enrichment probe (SEP) and analyzed by gas chromatography-mass spectrometry (GC-MS). Stereochemistry was determined by means of enantioselective GC-MS with derivatized β-cyclodextrin columns as chiral selectors. A total of 183 compounds, the majority of which are terpenoids (103; 56%), were identified by comparing their mass spectra and retention indices with those of reference compounds or tentatively identified by comparison with spectral library or literature data. Of these compounds, 37 were determined by gas chromatography-olfactometry (GC-O), using detection frequency (DF) and aroma extract dilution analysis (AEDA), to be odor-active (FD ≥ 2). (E)-β-Damascenone, (R/S)-linalool, (E)-β-damascone, geraniol, (E)-β-ionone, and (7E)-megastigma-5,7,9-trien-4-one were identified with the highest FD factors (≥512). The odors of certain compounds, that is, (6E,8Z)-megastigma-4,6,8-trien-3-one, (6E,8E)-megastigma-4,6,8-trien-3-one, (7E)-megastigma-5,7,9-trien-4-one, 10-epi-γ-eudesmol, epi-α-muurolol, and epi-α-cadinol, were perceived by GC-O assessors as typically honeybush-like.  相似文献   

10.
Predominant heat-induced odorants generated in soy milk by ultrahigh-temperature (UHT) processing were evaluated by sensory and instrumental techniques. Soy milks processed by UHT (143 degrees C/14 s, 143 degrees C/59 s, 154 degrees C/29 s) were compared to a control soy milk (90 degrees C/10 min) after 0, 1, and 7 days of storage (4.4 +/- 1 degrees C). Dynamic headspace dilution analysis (DHDA) and solvent-assisted flavor evaporation (SAFE) in conjunction with GC-olfactometry (GCO)/aroma extract dilution techniques and GC-MS were used to identify and quantify major aroma-active compounds. Sensory results revealed that intensities of overall aroma and sulfur and sweet aromatic flavors were affected by the processing conditions. Odorants mainly responsible for the changes in sulfur perception were methional, methanethiol, and dimethyl sulfide. Increases in 2-acetyl-1-pyrroline, 2-acetyl-thiazole, and 2-acetyl-2-thiazoline intensities were associated with roasted aromas. A marginal increase in intensity of sweet aromatic flavor could be explained by increases in 2,3-butanedione, 3-hydroxy-2-butanone, beta-damascenone, and 2- and 3-methylbutanal. Predominant lipid-derived odorants, including (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, (E,Z)-2,4-decadienal, (E)-2-nonenal, (E)-2-octenal, 1-octen-3-one, 1-octen-3-ol, and (E,Z)-2,6-nonadienal, were affected by processing conditions. Intensities of overall aroma and sulfur notes in soy milk decreased during storage, whereas other sensory attributes did not change. Color changes, evaluated by using a Chroma-meter, indicated all UHT heating conditions used in this study generated a more yellow and saturated color in soy milk in comparison to the control soy milk.  相似文献   

11.
12.
Volatile compounds in cod fillets packed in Styrofoam boxes were analyzed during chilled storage (0.5 degrees C) by gas chromatography (GC)-mass spectrometry and GC-olfactometry to screen potential quality indicators present in concentrations high enough for detection by an electronic nose. Photobacterium phosphoreum dominated the spoilage bacteria on day 12 when the fillets were rejected by sensory analysis. Ketones, mainly 3-hydroxy-2-butanone, were detected in the highest level (33%) at sensory rejection, followed by amines (TMA) (29%), alcohols (15%), acids (4%), aldehydes (3%), and a low level of esters (<1%). The electronic nose's CO sensor showed an increasing response with storage time coinciding with the production of ethanol and 2-methyl-1-propanol that were produced early in the storage, followed by the production of 3-methyl-1-butanol, 3-methyl-butanal, 2,3-butandiol, and ethyl acetate. Lipid-derived aldehydes, like hexanal and decanal, were detected in similar levels throughout the storage time and contributed to the overall sweet odors of cod fillets in combination with other carbonyls (3-hydroxy-2-butanone, acetaldehyde, 2-butanone, 3-pentanone, and 6-methyl-5-heptene-2-one).  相似文献   

13.
The sensorial representativeness of the headspace solid-phase microextraction (HS-SPME) aroma extract from commercial Sherry vinegars has been determined by direct gas chromatography-olfactometry (D-GCO). Extracts obtained under optimal conditions were used to characterize the aroma of these vinegars by means of GCO and aroma extract dilution analysis (AEDA). Among the 37 different odorants determined, 13 of them were identified for the first time in Sherry vinegars: 2 pyrazines (3-isopropyl-2-methoxypyrazine, 3-isobutyl-2-methoxypyrazine), 2 sulfur compounds (methanethiol, dimethyl trisulfide), 1 unsaturated ketone (1-octen-3-one), 1 norisoprenoid (β-damascenone), 1 ester (ethyl trans-cinnamate) and 6 aldehydes (2- and 3-methylbutanal, octanal, nonanal, (E)-2-nonenal and (E,E)-2,4-decadienal). The determination of the odor thresholds in a hydroacetic solution together with the quantitative analysis-which was also performed using the simple and fast SPME technique-allowed obtaining the odor activity values (OAV) of the aromatic compounds found. Thus, a first pattern of their sensory importance on commercial Sherry vinegar aroma was provided.  相似文献   

14.
Published research has indicated that ethyl 2-methylpropanoate, ethyl 2-methybutanaote, ethyl 3-methylbutanoate, hexanoic acid, butanoic acid, and 3-methylbutanoic acid are responsible for fruity fermented (FF) off-flavor; however, these compounds were identified in samples that were artificially created by curing immature peanuts at a constant high temperature. The objective of this study was to characterize the volatile compounds contributing to naturally occurring FF off-flavor. Volatile compounds of naturally occurring FF and no-FF samples were characterized using solvent-assisted flavor evaporation (SAFE), solid phase microextraction (SPME), gas chromatography-olfactometry (GC-O), and gas chromatography-mass spectrometry (GC-MS). Aroma extract dilution analysis (AEDA) identified 12 potent aroma active compounds, none of which were the previously identified esters, with no consistent differences among the aroma active compounds in no-FF and FF samples. Hexanoic acid alone was identified in the naturally occurring FF sample using the SAFE GC-MS methodology, whereas two of the three previously identified esters were identified in natural and artificially created samples. The same two esters were confirmed by SPME GC-MS in natural and artificially created samples. This study demonstrated the need for caution in the direct application of data from artificially created samples until those compounds are verified in natural samples. However, these results suggest that a laboratory method using SPME-GC techniques could be developed and correlated on an ester concentration versus FF intensity basis to provide an alternative to sensory analysis for detection of FF off-flavor in peanut lots.  相似文献   

15.
Application of the aroma extract dilution analysis (AEDA) on the volatile fraction carefully isolated from an American Bourbon whisky revealed 45 odor-active areas in the flavor dilution (FD) factor range of 32-4096 among which (E)-beta-damascenone and delta-nonalactone showed the highest FD factors of 4096 and 2048, respectively. With FD factors of 1024, (3S,4S)-cis-whiskylactone, gamma-decalactone, 4-allyl-2-methoxyphenol (eugenol), and 4-hydroxy-3-methoxy-benzaldehyde (vanillin) additionally contributed to the overall vanilla-like, fruity, and smoky aroma note of the spirit. Application of GC-Olfactometry on the headspace above the whisky revealed 23 aroma-active odorants among which 3-methylbutanal, ethanol, and 2-methylbutanal were identified as additional important aroma compounds. Compared to published data on volatile constituents in whisky, besides ranking the whisky odorants on the basis of their odor potency, 13 aroma compounds were newly identified in this study: ethyl (S)-2-methylbutanoate, (E)-2-heptenal, (E,E)-2,4-nonadienal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-isopropyl-3-methoxypyrazine, ethyl phenylacetate, 4-methyl acetophenone, alpha-damascone, 2-phenylethyl propanoate, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, trans-ethyl cinnamate, and (Z)-6-dodeceno-gamma-lactone.  相似文献   

16.
An investigation of the volatile fraction of a freshly prepared sourdough rye bread crumb by means of the aroma extract dilution analysis (AEDA), followed by identification experiments, revealed 22 flavor compounds in the flavor dilution (FD) factor range of 128 to 2048. Quantitations performed by stable isotope dilution assays (SIDA) and a calculation of odor activity values (OAV; ratio of concentration to odor threshold) revealed the following as contributors to the overall crumb flavor: 3-methylbutanal (malty), (E)-2-nonenal (green, fatty), (E,E)-2,4-decadienal (fatty, waxy), hexanal (green), acetic acid (sour, pungent), phenylacetaldehyde (honey-like), methional (boiled potato-like), vanillin (vanilla-like), 2,3-butandione (buttery), 3-hydroxy-4,5-dimethyl-2(5H)-furanone (spicy), and 2- and 3-methylbutanoic acid (sweaty). Using either citrate buffer, starch, or deodorized crumb as model matrixes, the typical malty and sour rye bread crumb flavor was reproduced by adding a mixture of 20 reference odorants in the "natural" concentrations as quantitatively determined in the fresh crumb.  相似文献   

17.
The aroma of a Grenache rosé wine from Calatayud (Zaragoza, Spain) has been elucidated following a strategy consisting of an aroma extract dilution analysis (AEDA), followed by the quantitative analysis of the main odorants and the determination of odor activities values (OAVs) and, finally, by a series of reconstitution and omission tests with synthetic aroma models. Thirty-eight aroma compounds were found in the AEDA study, 35 of which were identified. Twenty-one compounds were at concentrations higher than their corresponding odor thresholds. An aroma model prepared by mixing the 24 compounds with OAV > 0.5 in a synthetic wine showed a high qualitative similarity with the aroma of the rosé wine. The addition of compounds with OAV < 0.5 did not improve the model, whereas the aroma of a model containing only odorants with OAV > 10 was very different from that of the wine. Omission tests revealed that the most important odorant of this Grenache rosé wine was 3-mercapto-1-hexanol, with a deep impact on the wine fruity and citric notes. The synergic action of Furaneol and homofuraneol also had an important impact on wine aroma, particularly in its fruity and caramel notes. The omission of beta-damascenone, which had the second highest OAV, caused only a slight decrease on the intensity of the aroma model. Still weaker was the sensory effect caused by the omission of 10 other compounds, such as fatty acids and their ethyl esters, isoamyl acetate, and higher alcohols.  相似文献   

18.
19.
20.
Freshness of ice-stored sardine was assessed by two sensory methods, the quality index method (QIM) and the European Union freshness grading system, and by instrumental means using the method of aroma extract dilution analysis. Screening of sardine potent volatiles was carried out at three freshness stages. In the very fresh state, the plant-like fresh volatiles dominated the odor pattern, with the exception of methional. Overall odor changes in sardine throughout storage correlated with changes in the concentration of some potent volatiles: after 2 days of ice storage, (Z)-4-heptenal, (Z)-1,5-octadien-3-one, and methional imparted an overall "fishy" odor character to sardine, whereas at a lower sensory grade (B), the compounds (E)-2-nonenal and (E,Z)-2,6-nonadienal could be, in part, associated with the slightly rancid aroma top notes. Trimethylamine was detected as a highly volatile odorant using solid-phase microextraction (SPME) headspace analysis of refrigerator-stored sardine. Intensity and sensory characteristics of some SPME determined volatiles, for example, 3-methylnonane-2,4-dione, were closely related to overall odor changes. SPME headspace analysis may be useful in the characterization of off-flavors in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号