首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorption–desorption of the fungicide triadimefon in field‐moist silt loam and sandy loam soils were determined using low‐density supercritical fluid extraction (SFE). The selectivity of SFE enables extraction of triadimefon from the soil water phase only, thus allowing calculation of sorption coefficients (Kd) at field‐moist or unsaturated conditions. Triadimefon sorption was influenced by factors such as soil moisture content and temperature; sorption increased with increased moisture content up to saturation, and decreased with increased temperature. For instance, Kd values for triadimefon on the silt loam and the sandy loam soils at 40 °C and 10% water content were 1.9 and 2.5 ml g−1, respectively, and at 18% water content, 3.3 and 6.4 ml g−1, respectively. Isosteric heats of sorption (ΔHi) were −42 and −7 kJ mol−1 for the silt loam and sandy loam soils, respectively. Sorption–desorption was also determined using an automated accelerated solvent extraction system (ASE), in which triadimefon was extracted from silt loam soil by 0.01 M CaCl2. Using the ASE system, which is basically a fast alternative to the batch equilibration system, gave a similar ΔHi value (−29 kJ mol−1) for the silt loam soil (Kf = 27 µg1 − 1/n ml1/n g−1). In order to predict transport of pesticides through the soil profile more accurately on the basis of these data, information is needed on sorption as a function of soil water content. © 2000 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Variations in soil properties with depth influence retention and degradation of pesticides. Understanding how soil properties within a profile affect pesticide retention and degradation will result in more accurate prediction by simulation models of pesticide fate and potential groundwater contamination. Metolachlor is more persistent than other acetanilide herbicides in the soil environment and has the potential to leach into groundwater. Reasonably, information is needed about the dissipation and eventual fate of metolachlor in subsoils. The objectives were to evaluate the adsorption and desorption characteristics and to determine the dissipation rates of metolachlor in both surface and subsurface soil samples. RESULTS: Adsorption of metolachlor was greater in the high‐organic‐matter surface soil than in subsoils. Lower adsorption distribution coefficient (Kads) values with increasing depth indicated less adsorption at lower depths and greater leaching potential of metolachlor after passage through the surface horizon. Desorption of metolachlor showed hysteresis, indicated by the higher adsorption slope (1/nads) compared with the desorption slope (1/ndes). Soils that adsorbed more metolachlor also desorbed less metolachlor. Metolachlor dissipation rates generally decreased with increasing soil depth. The first‐order dissipation rate was highest at the 0–50 cm depth (0.140 week?1) and lowest at the 350–425 cm depth (0.005 week?1). Degradation of the herbicide was significantly correlated with microbial activity in soils. CONCLUSION: Metolachlor that has escaped degradation or binding to organic matter at the soil surface might leach into the subsurface soil where it will dissipate slowly and be subject to transport to groundwater. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
Bentazon is a widely used herbicide in rice agroecosystems that has commonly been found in water resources. To assess how tillage and water regimes affect sorption/desorption, dissipation and leaching of bentazon in Mediterranean rice‐growing conditions, field experiments were carried out using tillage and flooding (TF), tillage and sprinkler irrigation (TS), no‐tillage and sprinkler irrigation (NTS) and long‐term no‐tillage and sprinkler irrigation (NTS7). After 3 years, the Kd values in TS were 2.3, 1.6 and 1.7 times lower than the values in NTS7, NTS and TF respectively. Greater sorption of bentazon was related to higher contents in total organic carbon and, although to a lesser extent, in humic acids and dissolved organic carbon. The persistence of bentazon was significantly greater under anaerobic (half‐life DT50 = 94.1–135 days) than under aerobic (DT50 = 42.4–91.3 days) incubation conditions for all management regimes. Leaching losses of bentazon were reduced from 78 and 74% in TS and TF to 61 and 62% in NTS7 and NTS respectively. The mid‐ and long‐term implementation of sprinkler irrigation in combination with no‐tillage could be considered a management system that is effective at reducing water contamination by bentazon in Mediterranean rice‐growing agroecosystems. © 2017 Society of Chemical Industry  相似文献   

4.
Isoxaflutole is a relatively new herbicide used for weed control in maize. The objective of this research was to increase the understanding of the behaviour and environmental fate of isoxaflutole and its diketonitrile (DKN) degradate in soil, including determination of the strength of sorption to soil and whether sorption is affected by ageing. In sandy loam (SL) and silty clay (SiCl) soils, 14C‐isoxaflutole was found to dissipate rapidly after application to soil; recovery ranged from ~42% to 68% at week 0, and recovery had decreased to <10% at week 12. Decreases in 14C isoxaflutole residues over time in SL and SiCl soils are consistent with hydrolysis of isoxaflutole and formation of bound DKN residues in the soil. DKN recovery from freshly treated SiCl and SL soils was 41% to 52%. After a 12‐week incubation in SL soil at pH 7.1 and 8.0, recoveries were similar, ~40%. However, at week 12 in SL soil pH 5.7, DKN recovery decreased to ~28%. DKN recovery in SiCl soil at week 12 was <10%. Increases in sorption of DKN in SL at pH 5.7 and SiCl soil over time indicate that the DKN degradate is tightly bound to the soil and sorption is affected by soil pH and soil type. Sorption of 14C‐DKN in the SiCl soil more than doubled with ageing compared with the lower Kd sorption coefficient values of the SL soils. In the SiCl soil at time 0, the Kd was 0.6; at 1 week, Kd increased to 2; and at the end of the 12‐week incubation period, Kd was 4.5. This strong binding of DKN to the soil may be due to chelate formation in the interlayer of the clay.  相似文献   

5.
BACKGROUND: Sorption coefficients (the linear KD or the non‐linear KF and NF) are critical parameters in models of pesticide transport to groundwater or surface water. In this work, a dataset of isoproturon sorption coefficients and corresponding soil properties (264 KD and 55 KF) was compiled, and pedotransfer functions were built for predicting isoproturon sorption in soils and vadose zone materials. These were benchmarked against various other prediction methods. RESULTS: The results show that the organic carbon content (OC) and pH are the two main soil properties influencing isoproturon KD. The pedotransfer function is KD = 1.7822 + 0.0162 OC1.5 ? 0.1958 pH (KD in L kg?1 and OC in g kg?1). For low‐OC soils (OC < 6.15 g kg?1), clay and pH are most influential. The pedotransfer function is then KD = 0.9980 + 0.0002 clay ? 0.0990 pH (clay in g kg?1). Benchmarking KD estimations showed that functions calibrated on more specific subsets of the data perform better on these subsets than functions calibrated on larger subsets. CONCLUSION: Predicting isoproturon sorption in soils in unsampled locations should rely, whenever possible, and by order of preference, on (a) site‐ or soil‐specific pedotransfer functions, (b) pedotransfer functions calibrated on a large dataset, (c) KOC values calculated on a large dataset or (d) KOC values taken from existing pesticide properties databases. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Sorption largely controls pesticide fate in soils because it influences its availability for biodegradation or transport in the soil water. In this study, variability of sorption and desorption of isoxaflutole (IFT) and its active metabolite diketonitrile (DKN) was investigated under conventional and conservation tillage. RESULTS: According to soil samples, IFT KD values ranged from 1.4 to 3.2 L kg?1 and DKN KD values ranged from 0.02 to 0.17 L kg?1. Positive correlations were found between organic carbon content and IFT and DKN sorption. IFT and DKN sorption was higher under conservation than under conventional tillage owing to higher organic carbon content. Under conservation tillage, measurements on maize and oat residues collected from the soil surface showed a greater sorption of IFT on plant residues than on soil samples, with the highest sorbed quantities measured on maize residues (KD ≈ 45 L kg?1). Desorption of IFT was hysteretic, and, after five consecutive desorptions, between 72 and 89% of the sorbed IFT was desorbed from soil samples. For maize residues, desorption was weak (<50% of the sorbed IFT), but, after two complementary desorptions allowing for IFT hydrolysis, DKN was released from maize residues. CONCLUSION: Owing to an increase in organic carbon in topsoil layers, sorption of IFT and DKN was enhanced under conservation tillage. Greater sorption capacities under conservation tillage could help in decreasing DKN leaching to groundwater. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Clomazone is a herbicide used to control broadleaf weeds and grasses. Clomazone use in agriculturally important crops and forests for weed control has increased and is a potential water contaminant given its high water solubility (1100 µg mL?1). Soil sorption is an environmental fate parameter that may limit its movement to water systems. The authors used model rice and forest soils of California to test clomazone sorption affinity, capacity, desorption, interaction with soil organic matter and behavior with black carbon. RESULTS: Sorption of clomazone to the major organic matter fraction of soil, humic acid (HA) (Kd = 29–87 L kg?1), was greater than to whole soils (Kd = 2.3–11 L kg?1). Increased isotherm non‐linearity was observed for the whole soils (N = 0.831–0.893) when compared with the humic acids (N = 0.954–0.999). Desorption isotherm results showed hysteresis, which was greatest at the lowest solution concentration of 0.067 µg mL?1 for all whole soils and HA extracts. Aliphatic carbon content appeared to contribute to increased isotherm linearity. CONCLUSION: The results indicate that clomazone does not sorb appreciably to sandy or clay soils. Its sorption affinity and capacity is greater in humic acid, and consequently clomazone has difficulty desorbing from soil organic matter. Sorption appears to follow processes explained by the dual‐mode model, the presence of fire residues (black carbon) and a recently proposed sorption mechanism. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
The adsorption of carbofuran on soils from water‐methanol mixtures has been evaluated by batch shake testing. Two uncontaminated soils having different physicochemical properties were used in these experiments. The volume fraction of methanol in the liquid phase (fs) was varied from 0.25 to 1.0. Higher adsorption of carbofuran was observed in medium black (silt loam) soil than in alluvial (sandy loam) soil; calculated values of the Freundlich constant (Km) and distribution coefficient (Kd) showed that adsorption of carbofuran in both soils decreased with increase in fS values. The decreased carbofuran adsorption in methanol–water mixtures meant a greater potential of ground‐water contamination through leaching from potential sites. The data have been used to evaluate the co‐solvent theory for describing adsorption of carbofuran in methanol–water mixtures. The aqueous phase partition coefficient Kdw (mol g−1) normalized with respect to foc and the aqueous phase adsorption constant Kw for carbofuran were evaluated by extrapolating to fS = 0. © 2000 Society of Chemical Industry  相似文献   

9.
The mobility and retention of atrazine and dicamba in six Atlantic Coastal Plain soils were estimated by soil thin-layer chromatography (soil-TLC). The soils studied were representative of the major agricultural regions in Delaware and were sampled, by horizon, to the water table. Four horizons from each profile were leached simultaneously with distilled water on one soil-TLC plate. Two values were obtained from each plate: the ratio of the distance traveled by the herbicide center of mass over that traveled by the solvent front (Rm), and a sorption distribution coefficient (Kd). The Rm values ranged from 0·06 to 0·94 for atrazine and from 0·80 to 0·94 for dicamba. Herbicide mobility was found to be greatest in coarse-textured soil horizons that contained low levels of organic matter, clay, and Fe and Al oxides. Correlation analysis indicated that effective cation exchange capacity, exchangeable acidity, exchangeable aluminum, and clay were useful predictive variables or both atrazine mobility and sorption. Organic matter was not useful for predicting soil-TLC derived sorption estimates; however, it was correlated to Kd-batch estimates. Distribution coefficients calculated from soil-TLC data were found to be in general agreement with Kd values obtained for the same soils by batch equilibrium techniques. The average Kd-soil-TLC values for atrazine and dicamba were 2·09(±2·24) and 0·03(±0·02), respectively. The ratio of the batch Kd to the soil-TLC Kd ranged from 0·1 to 19 (x̄=1·6, SD=3·8) for atrazine and from 2·9 to 38 (x̄=12·6, SD=8·7) for dicamba. Thus, although for some horizons agreement between the two methods was good, for other horizons significant discrepancies existed. It is suggested that the soil-TLC gives results under non-equilibrium conditions, whereas the batch procedure is, by definition, at quasi-equilibrium. These fundamental differences may account for the observed differences between the two methods. It is also suggested that, due to this difference, the soil-TLC procedure can provide additional information relevant to herbicide partitioning in the field environment that is not provided by traditional batch equilibrium techniques. © 1998 Society of Chemical Industry  相似文献   

10.
The effect of agronomic doses of three suspension concentrate formulations and two anionic surfactant adjuvants on the solubilisation and sorption characteristics of triticonazole fungicide in a loamy clay soil was investigated. Soil sorption of [14C]triticonazole alone, in the formulations, and in the presence of increasing doses of formulation additives was measured using the classical batch equilibration technique. Triticonazole solubilisation in water‐formulation systems was also evaluated using a batch procedure, and sorption of the formulation aqueous phases on soil was examined. Solubilisation of triticonazole in the formulation systems occurred in excess of the solubility in water (Sw). This was attributed to triticonazole association with surfactant monomers. Sorption isotherms of triticonazole with diluted surfactants and other formulation additives were similar to that of triticonazole alone. We concluded that in soil‐formulation systems, triticonazole solubilisation in excess of the Sw may increase the amount available in soil solution for plant absorption. However, triticonazole molecules preferentially associated with the soil surfaces, and the presence of diluted amounts of the formulation adjuvants would not significantly affect the soil sorption process. © 2000 Society of Chemical Industry  相似文献   

11.
The adsorption of metolachlor, acetochlor, pretilachlor and butachlor, as a group of acetanilide herbicides, on eight soils with various physical and chemical properties was studied. The adsorption isotherms fit the Freundlich equation well. The extent of adsorption increased in the order: metolachlor < acetochlor < pretilachlor < butachlor. The product of the Freundlich adsorption constants, Kf(1/n), showed good correlation with organic matter content (OM) of soils for each of these herbicides, suggesting that the latter is the main factor controlling the adsorption process of these acetanilide herbicides. Multivariant correlation regression between Kf(1/n) and two factors, water solubility (Sw) of herbicides and OM, was also performed. Kf(1/n) correlated well with 1/Sw and OM/Sw, showing that high Sw corresponds to a weak tendency to adsorb on soils. IR spectra and ESR parameters confirmed that multifunctional H bonds and charge-transfer bonds between humic acids (HA) and the herbicides were the main adsorption mechanisms of the latter. The ability of herbicides to form these adsorption bonds with HA increased in the same order as the extent of adsorption. © 1999 Society of Chemical Industry  相似文献   

12.
Sorption of a range of permanent cations, bases and zwitterionic compounds was measured as a function of pH in two soil types. Pyridinium cations were more strongly sorbed (Kd 10– > 1000) than aliphatic cations (Kd < 5). At very low pH, sorption of the aliphatic cations sharply decreased, probably because they are displaced by protons. Most weak bases, including carbendazim andpyridines, were strongly sorbed (Kd 9–35) at low pH, where they would be appreciably protonated, sorption becoming much weaker at soil pH values > 6. However, an additional mechanism of sorption was observed for those zwitterions capable of chelation (e.g. picolinic acid and alanine) which gave rise to high Kd values at pH values near neutral. Inorganic phosphate was strongly sorbed (Kd > 140) save at very low pff. Glyphosate and inorganic phosphate were sorbed very strongly at pH values near to 4 (Kd > 200). The very strong sorption was attributed to ligand exchange interaction. Sorption of picolinic acid was similar when measured in water or calcium chloride solution (0.01 M). However, sorption decreased with increasing concentration of calcium chloride up to 1 M, probably because the protonated form of picolinic acid was displaced by calcium ions.  相似文献   

13.
BACKGROUND: The objectives of these laboratory experiments were: (1) to assess bromoxynil sorption, mineralization, bound residue formation and extractable residue persistence in a Dundee silt loam collected from 0–2 cm and 2–10 cm depths under continuous conventional tillage and no‐tillage; (2) to assess the effects of autoclaving on bromoxynil mineralization and bound residue formation; (3) to determine the partitioning of non‐extractable residues; and (4) to ascertain the effects of bromoxynil concentration on extractable and bound residues and metabolite formation. RESULTS: Bromoxynil Kd values ranged from 0.7 to 1.4 L kg?1 and were positively correlated with soil organic carbon. Cumulative mineralization (38.5% ± 1.5), bound residue formation (46.5% ± 0.5) and persistence of extractable residues (T1/2 < 1 day) in non‐autoclaved soils were independent of tillage and depth. Autoclaving decreased mineralization and bound residue formation 257‐fold and 6.0‐fold respectively. Bromoxynil persistence in soil was rate independent (T1/2 < 1 day), and the majority of non‐extractable residues (87%) were associated with the humic acid fraction of soil organic matter. CONCLUSIONS: Irrespective of tillage or depth, bromoxynil half‐life in native soil is less than 1 day owing to rapid incorporation of the herbicide into non‐extractable residues. Bound residue formation is governed principally by biochemical metabolite formation and primarily associated with soil humic acids that are moderately bioavailable for mineralization. These data indicate that the risk of off‐site transport of bromoxynil residues is low owing to rapid incorporation into non‐extractable residues. Published 2009 by John Wiley & Sons, Ltd  相似文献   

14.
BACKGROUND: In Chile, rice is cultivated under water‐seeded and continuously flooded conditions. Because herbicide dynamics in paddy fields and non‐flooded fields is different, 3 year experiments were performed to study the dissipation of molinate and penoxsulam in water and sediment. RESULTS: In field experiments, both herbicides dissipated by 45–55% from the initial applied amounts during the first 6 h after application in all crop seasons; in lysimeter experiments, dissipation amounts were approximately 10% for penoxsulam and 16% for molinate. Penoxsulam field water DT50 values varied from 1.28 to 1.96 days during the three study seasons, and DT90 values from 4.07 to 6.22 days. Molinate field water DT50 values varied from 0.89 to 1.73 days, and DT90 values from 2.82 to 5.48 days. Sediment residues were determined 2 days after herbicide application into the paddy water, and maximum concentrations were found 4–8 days after application. In sediment, DT50 values varied from 20.20 to 27.66 days for penoxsulam and from 15.02 to 29.83 days for molinate. CONCLUSIONS: Results showed that penoxsulam and molinate losses under paddy conditions are dissipated rapidly from the water and then dissipate slowly from the sediment. Penoxsulam and molinate field water dissipation was facilitated by paddy water motion created by the wind. Sediment adsorption and degradation are considered to have a secondary effect on the dissipation of both herbicides in paddy fields. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
BACKGROUND: Acetochlor, introduced on the market in 1994, is used extensively worldwide, but sorption and degradation studies, including subsurface, are scarce, and there appear to be no such studies with aquifer sediment according to the present mini‐review. Sorption, degradation and mineralisation of acetochlor were investigated in heterogeneous limestone down to 43 m below surface (mbs) in four European aquifers (1.7–59 mbs), both aerobic and anaerobic. RESULTS: Sorption revealed Kd values of 3.39–4.96 L kg?1 in topsoil, < 0.01–2.02 L kg?1 in heterogeneous limestone, 0.06–0.72 L kg?1 in aerobic aquifers and 1.03–4.60 L kg?1 in microaerobic or anaerobic aquifers. The mineralisation half‐lives in the samples from 0.0–0.6 mbs were 0.8–2.1 years and 4.7–95 years in the unsaturated limestone samples from 1–43 mbs. Out of 22 samples from four different European aquifers, acetochlor was mineralised in five samples (half‐lives of 9–19 years), all from the same aquifer and core section (19.25–19.53 mbs). CONCLUSION: Sorption was weak in limestone and aerobic sandy aquifers, and strong in topsoils and in reduced sandy aquifers. Redox conditions controlled the extent of acetochlor sorption in aquifers, as reduced conditions induced increased sorption. Acetochlor was mineralised in deep subsurface, though slowly, and, as mineralisation is the only true removal mechanism in natural attenuation, even slow mineralisation in aquifers with long residence times can have a significant impact. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
For efficient integrated management of verticillium wilt in olive (VWO), it is important to establish whether irrigation treatments (with Verticillium dahliae‐free water) that mitigate the disease in V. dahliae‐infested soil, also reduce the levels of more and less persistent propagules of the pathogen in the soil. Effects of irrigation on VWO and V. dahliae propagules were evaluated under natural environmental conditions. Potted plants were irrigated (pathogen‐free water) to two ranges of soil water content (RWC; high and low) at three surface drip‐irrigation frequencies (daily, weekly, and daily during some periods and otherwise weekly). VWO and total inoculum density (ID), density of less persistent micropropagules (MpD) and more persistent sclerotia in wet soil (SwD), and sclerotia density for air‐dried soil (SdD) were monitored. A logistic model (multiple sigmoid) of disease incidence revealed the lowest parameter values in treatments irrigated daily. Daily frequency of irrigation showed significantly lower disease incidence (39.2%) and disease intensity index (43.9%) and MpD (88.0%) values as areas compared with other frequencies, regardless of the RWC. High RWC significantly reduced (70.8–84.9%) ID, SwD and SdD as areas, but significantly increased (18.0%) the incidence of infected plants (IIP), regardless of the irrigation frequency. The disease incidence was not correlated with temperature. Daily irrigation to low RWC mitigated the VWO and the IIP, kept soil to the lowest MpD and resulted in the lowest SdD level at the end of the trial. Results suggested that less persistent propagules could have played a part in the disease development.  相似文献   

17.
The persistence of tralkoxydim herbicide in wheat crop and in soil was evaluated under Indian sub-tropical field conditions at two application rates (400 g a.i ha ?1 and 800 g a.i ha ?1). At 400 g a.i ha ?1, tralkoxydim persisted up to 28 days in soil but became non-detectable only after 45 days in the crop. However, at 800 g a.i ha ?1, tralkoxydim residues persisted for 45 days in both soil and crop. The dissipation of the herbicide from both soil and crop appeared to occur in two phases at both rates of application. Each phase followed first-order kinetics. The values of DT50 and DT90 for both soil and crop are reported.  相似文献   

18.
BACKGROUND: Sorption‐desorption processes govern the movement of pesticides in soil. These processes determine the potential hazard of the pesticide in a given environment for groundwater contamination and need to be investigated. RESULTS: In the present study, sorption‐desorption processes of benfuracarb were investigated using a batch method in two mollisols. The kinetics of benfuracarb sorption in mollisols conformed to two‐compartment (1 + 1) first‐order kinetics. The fast sorption rate constant was about 3 times higher for silt loam than for loam soil. However, the slow sorption rate constants were statistically similar for both soils. The concentration‐dependent sorption‐desorption isotherms of benfuracarb could not closely conform to the Freundlich isotherm in mollisols of high organic C content. The computed values of both the sorption (log K) and desorption (log K′) capacities were higher for silt loam than for loam soil. The desorption index (n′/n) values in the range 30.0–41.3 indicated poor reversibility of sorbed benfuracarb in mollisols. CONCLUSION: In view of the strong sorption of benfuracarb in mollisols with only partial desorption, the possibility of the leaching of soil‐applied benfuracarb to contaminate groundwaters appears to be low. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Ruling factors governing pre-emergence herbicidal activity were analysed for 16 photosynthesis-inhibiting 5-hydroxy-3-methyl-2–oxo-imidazolidine-1-carboxamide derivatives. Herbicidal performance was quantified by the reduction in area of experimental weed vegetation, measured by a computer-aided image analysis system. A system for fluorometric estimation of photosynthesis inhibitor concentration in aqueous solution greatly facilitated determination of the soil adsorption coefficients (Kd). Maximum herbicidal performance was found for N-sec-butyl-5-hydroxy-3-methyl-2-oxo-imidazolidine-1-carboxamide, a compound with the second lowest soil adsorptivity and average photosynthesis-inhibiting activity. A multiple regression analysis suggested that herbicidal performance of the soil-applied imidazolidine derivatives was determined by a balance between Kd and photosynthesis-inhibiting activity. In the present experimental system, however, the main influence was attributed to Kd.  相似文献   

20.
The metabolites of pesticides can contaminate groundwater and pose a risk to human health when this water is used for drinking. This paper reports the results of a laboratory study on aldicarb and its main metabolites, aldicarb sulfone and aldicarb sulfoxide. Aldicarb and its metabolites showed Koc values (6–31) which were lower than that of atrazine (55), indicating that they are very mobile in soil. They are less persistent than atrazine (DT50 = 25 days), with DT50 values from less than 1 day and up to 12 days. Aldicarb behaved as a non‐leacher, whereas its metabolites clearly showed the characteristics of leachers. Aged residue leaching experiments showed that aldicarb can occur at high concentrations in the leachate, together with its two metabolites. The leachate composition depends on the incubation time of the parent compound. Aldicarb and its metabolites can form various mixtures in groundwater on the basis of the time elapsing between the application of the insecticide and the first significant rainfall. This study confirms the characteristics of contaminants of aldicarb and especially its metabolites, as reported in the literature. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号