首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human gamma-aminobutyric acid A (GABAA) receptor subunits were expressed transiently in cultured mammalian cells. This expression system allows the simultaneous characterization of ligand-gated ion channels by electrophysiology and by pharmacology. Thus, coexpression of the alpha and beta subunits of the GABAA receptor generated GABA-gated chloride channels and binding sites for GABAA receptor ligands. Channels consisting of only alpha or beta subunits could also be detected. These homomeric channels formed with reduced efficiencies compared to the heteromeric receptors. Both of these homomeric GABA-responsive channels were potentiated by barbiturate, indicating that sites for both ligand-gating and allosteric potentiation are present on receptors assembled from either subunit.  相似文献   

2.
A new type of agonist-binding subunit of rat neuronal nicotinic acetylcholine receptors (nAChRs) was identified. Rat genomic DNA and complementary DNA encoding this subunit (alpha 2) were cloned and analyzed. Complementary DNA expression studies in Xenopus oocytes revealed that the injection of messenger RNAs (mRNAs) for alpha 2 and beta 2 (a neuronal nAChR subunit) led to the generation of a functional nAChR. In contrast to the other known neuronal nAChRs, the receptor produced by the injection of alpha 2 and beta 2 mRNAs was resistant to the alpha-neurotoxin Bgt3.1. In situ hybridization histochemistry showed that alpha 2 mRNA was expressed in a small number of regions, in contrast to the wide distribution of the other known agonist-binding subunits (alpha 3 and alpha 4) mRNAs. These results demonstrate that the alpha 2 subunit differs from other known agonist-binding alpha-subunits of nAChRs in its distribution in the brain and in its pharmacology.  相似文献   

3.
The receptor with high affinity for immunoglobulin E (IgE) on mast cells and basophils is critical in initiating allergic reactions. It is composed of an IgE-binding alpha subunit, a beta subunit, and two gamma subunits. The human alpha subunit was expressed on transfected cells in the presence of rat beta and gamma subunits or in the presence of the gamma subunit alone. The IgE binding properties of the expressed human alpha were characteristic of receptors on normal human cells. These results now permit a systematic analysis of human IgE binding and a search for therapeutically useful inhibitors of that binding.  相似文献   

4.
5.
Whole-cell and single-channel voltage-clamp techniques were used to identify and characterize the channels underlying the fast transient potassium current (A current) in cultured myotubes and neurons of Drosophila. The myotube (A1) and neuronal (A2) channels are distinct, differing in conductance, voltage dependence, and gating kinetics. The myotube currents have a faster and more voltage-dependent macroscopic inactivation rate, a larger steady-state component, and a less negative steady-state inactivation curve than the neuronal currents. The myotube channels have a conductance of 12 to 16 picosiemens, whereas the neuronal channels have a conductance of 5 to 8 picosiemens. In addition, the myotube channel is affected by Shaker mutations, whereas the neuronal channel is not. Together, these data suggest that the two channels are separate molecular structures, the expression of which is controlled, at least in part, by different genes.  相似文献   

6.
Ion channels in yeast   总被引:21,自引:0,他引:21  
Voltage-dependent ion channels have been found in the plasma membrane of the yeast Saccharomyces cerevisiae. Ion channel activities were recorded from spheroplasts or patches of plasma membrane with the patch-clamp technique. The most prominent activities came from a set of potassium channels with the properties of activation by positive but not negative voltages, high selectivity for potassium over sodium ion, unit conductance of 20 picosiemens, inhibition by tetraethylammonium or barium ions, and bursting kinetics.  相似文献   

7.
Measurement of single channel currents from cardiac gap junctions   总被引:10,自引:0,他引:10  
Cardiac gap junctions consist of arrays of integral membrane proteins joined across the intercellular cleft at points of cell-to-cell contact. These junctional proteins are thought to form pores through which ions can diffuse from cytosol to cytosol. By monitoring whole-cell currents in pairs of embryonic heart cells with two independent patch-clamp circuits, the properties of single gap junction channels have been investigated. These channels had a conductance of about 165 picosiemens and underwent spontaneous openings and closings that were independent of voltage. Channel activity and macroscopic junctional conductance were both decreased by the uncoupling agent 1-octanol.  相似文献   

8.
Acetylcholine receptor: an allosteric protein   总被引:51,自引:0,他引:51  
The nicotine receptor for the neurotransmitter acetylcholine is an allosteric protein composed of four different subunits assembled in a transmembrane pentamer alpha 2 beta gamma delta. The protein carries two acetylcholine sites at the level of the alpha subunits and contains the ion channel. The complete sequence of the four subunits is known. The membrane-bound protein undergoes conformational transitions that regulate the opening of the ion channel and are affected by various categories of pharmacologically active ligands.  相似文献   

9.
Secretion of activin by interstitial cells in the testis   总被引:3,自引:0,他引:3  
Activin, a dimer formed by the beta subunits of inhibin, has an effect that is opposite to that of inhibin in a number of biological systems. Which cell types secrete activin in vivo is not known. TM3 cells, a Leydig-derived cell line, contained messenger RNAs that hybridized with human beta A and beta B complementary DNA probes and were similar in size to the porcine messenger RNA for the beta subunits of inhibin. No hybridization to the inhibin alpha subunit was detectable in the TM3 cells. Conditioned medium from TM3 cells and from primary cultures of rat and porcine interstitial cells stimulated the release of follicle-stimulating hormone in a pituitary cell culture assay. It is likely that, in the testis, the Leydig cells secrete activin and the Sertoli cells produce inhibin, or a combination of both.  相似文献   

10.
gamma-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in mammalian brain, is believed to act by increasing membrane conductance of chloride ions. In this study it was found that GABA agonists increased the uptake of chloride-36 by cell-free membrane preparations from mouse brain. This influx was rapid (less than 5 seconds), and 13 micromolar GABA produced a half-maximal effect. The GABA antagonists (bicuculline and picrotoxin) blocked the effect of GABA, whereas pentobarbital enhanced the action. This may be the first demonstration of functional coupling among GABA and barbiturate receptors and chloride channels in isolated membranes. The technique should facilitate biochemical and pharmacological studies of GABA receptor-effector coupling.  相似文献   

11.
The quaternary structure and functional properties of synaptophysin, a major integral membrane protein of small presynaptic vesicles, were investigated. Cross-linking and sedimentation studies indicate that synaptophysin is a hexameric homo-oligomer, which in electron micrographs exhibits structural features common to channel-forming proteins. On reconstitution into planar lipid bilayers, purified synaptophysin displays voltage-sensitive channel activity with an average conductance of about 150 picosiemens. Because specific channels and fusion pores have been implicated in vesicular uptake and release of secretory compounds, synaptophysin may have a role in these processes.  相似文献   

12.
Inhibitory conductance changes at synapses in the lamprey brainstem   总被引:1,自引:0,他引:1  
Although the conductance and kinetic behavior of inhibitory synaptic channels have been studied in a number of nerve and muscle cells, there has been little if any detailed study of such channels at synapses in the vertebrate central nervous system or of the relation of such channels to natural synaptic events. In the experiments reported here, current noise measurements were used to obtain such information at synapses on Müller cells in the lamprey brainstem. Application of glycine to the cells activated synaptic channels with large conductances and relaxation time constants (70 picosiemens and 33 milliseconds, respectively, at 3 degrees to 10 degrees C). Spontaneous inhibitory synaptic currents had a mean conductance of 107 nanosiemens and decayed with the same time constant. In addition, the glycine responses and the spontaneous currents had the same reversal potential and both were abolished by strychnine. These results support the idea that glycine is the natural inhibitory transmitter at these synapses and suggest that one quantum of transmitter activates about 1500 elementary conductance channels.  相似文献   

13.
Interleukin-2 (IL-2) binds to two distinct receptor molecules, the IL-2 receptor alpha (IL-2R alpha, p55) chain and the newly identified IL-2 receptor beta (IL-2R beta, p70-75) chain. The cDNA encoding the human IL-2R beta chain has now been isolated. The overall primary structure of the IL-2R beta chain shows no apparent homology to other known receptors. Unlike the IL-2R alpha chain, the IL-2R beta chain has a large cytoplasmic region in which a functional domain (or domains) mediating an intracellular signal transduction pathway (or pathways) may be embodied. The cDNA-encoded beta chain binds and internalizes IL-2 when expressed on T lymphoid cells but not fibroblast cells. Furthermore, the cDNA gives rise to the generation of high-affinity IL-2 receptor when co-expressed with the IL-2R alpha chain cDNA.  相似文献   

14.
The gene for the human platelet alpha 2-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the purified receptor. The identity of this gene has been confirmed by the binding of alpha 2-adrenergic ligands to the cloned receptor expressed in Xenopus laevis oocytes. The deduced amino acid sequence is most similar to the recently cloned human beta 2- and beta 1-adrenergic receptors; however, similarities to the muscarinic cholinergic receptors are also evident. Two related genes have been identified by low stringency Southern blot analysis. These genes may represent additional alpha 2-adrenergic receptor subtypes.  相似文献   

15.
Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits   总被引:42,自引:0,他引:42  
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) dissociate into guanosine triphosphate (GTP)-bound alpha subunits and a complex of beta and gamma subunits after interaction with receptors. The GTP-alpha subunit complex activates appropriate effectors, such as adenylyl cyclase, retinal phosphodiesterase, phospholipase C, and ion channels. G protein beta gamma subunits have been found to have regulatory effects on certain types of adenylyl cyclase. In the presence of Gs alpha, the alpha subunit of the G protein that activates adenylyl cyclase, one form of adenylyl cyclase was inhibited by beta gamma, some forms were activated by beta gamma, and some forms were not affected by beta gamma. These interactions suggest mechanisms for communication between distinct signal-transducing pathways.  相似文献   

16.
17.
18.
The structure of the cytoplasmic assembly of voltage-dependent K+ channels was solved by x-ray crystallography at 2.1 angstrom resolution. The assembly includes the cytoplasmic (T1) domain of the integral membrane alpha subunit together with the oxidoreductase beta subunit in a fourfold symmetric T1(4)beta4 complex. An electrophysiological assay showed that this complex is oriented with four T1 domains facing the transmembrane pore and four beta subunits facing the cytoplasm. The transmembrane pore communicates with the cytoplasm through lateral, negatively charged openings above the T1(4)beta4 complex. The inactivation peptides of voltage-dependent K(+) channels reach their site of action by entering these openings.  相似文献   

19.
Guanine nucleotide binding (G) proteins (subunit composition alpha beta gamma) dissociate on activation with guanosine triphosphate (GTP) analogs and magnesium to give alpha-guanine nucleotide complexes and free beta gamma subunits. Whether the opening of potassium channels by the recently described Gk in isolated membrane patches from mammalian atrial myocytes was mediated by the alpha k subunit or beta gamma dimer was tested. The alpha k subunit was found to be active, while the beta gamma dimer was inactive in stimulating potassium channel activity. Thus, Gk resembles Gs, the stimulatory regulatory component of adenylyl cyclase, and transducin, the regulatory component of the visual system, in that it regulates its effector function--the activity of the ligand-gated potassium channel--through its guanine nucleotide binding subunit.  相似文献   

20.
Free calcium (Ca(2+)) in the cytoplasm of plant cells is important for the regulation of many cellular processes and the transduction of stimuli. Control of cytoplasmic Ca(2+) involves the activity of pumps, carriers, and possibly ion channels. The patch-clamp technique was used to study Ca(2+) channels in the vacuole of sugar beet cells. Vacuolar currents showed inward rectification at negative potentials, with a single-channel conductance of 40 picosiemens and an open probability dependent on potential. Channels were inhibited by verapamil and lanthanum. These channels could participate in the regulation of cytoplasmic Ca(2+) by sequestering Ca(2+) inside the vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号