首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polyculture experiment with the large carp rohu, catla and either mrigal or common carp (as cash crop fish), and the small indigenous fish punti (as food for the farmer's family) was carried out at Bangladesh Agricultural University, Mymensingh. The main objectives were to compare polycultures of large carp in which the bottom feeder is either the native mrigal or the exotic common carp, and to assess the effects of adding the small indigenous species punti to those polycultures. The results of fish–fish interactions and overall fish production have already been reported. The present paper presents the effects on the water quality, and discusses fish–environment interactions. The main conclusions are: time changes in the pond environment were stronger than fish composition effects. The main practice affecting water quality was liming, that incresed alkalinity, pH and water transparency and decreased ammonia. Rain affected photosynthesis and the match‐mismatch of the two steps of nitrification. The more that bottom feeding fish species disrupt the mud bottom, the stronger their effects on pond environment. Common carp produce the strongest disruption of the mud bottom, followed by punti and then by mrigal. Mud disruption produced by common carp leads to a stronger liming effect, nutrient release into the water, and provides more particles that rain‐floods wash out, facilitating the mismatch of the two steps of nitrification, and increased phosphorus adsorption into the mud bottom. Mud disruption by punti is only enough to improve the liming effect. Mud disruption by mrigal is the least, hence less particles are resuspended, nitrification is not affected during floods and relatively more phosphate remains in the water available for photosynthesis. The bottom feeder common carp can be seen not only as a target‐cultured fish but also as a management tool. Farmers can get double benefit in introducing common carp in the ponds as it enhances the effectiveness of lime application and increases the availability of nutrients to phytoplankton. Through the manipulation of species in the polyculture alone, farmers can maintain the environment better and also reduce input costs.  相似文献   

2.
This experiment was carried out in the framework of a project to develop a viable fish polyculture technology under Bangladeshi conditions that allows simultaneous fish production of small indigenous species for the farmers' family consumption and of large carp species as a cash crop. The objectives of this experiment were to assess the effects of adding punti and mola in different proportions on the large carp and on the environment, and to assess the effects of punti on mola and mola on punti. The polyculture included the large carp rohu, catla and common carp (as cash crop fish), and the small indigenous fish punti and mola (as food for the small‐scale farmer family). The total large carp stocking density was 10 000 fish ha?1, at a species ratio of 1:1:1. The total small fish stocking densities were 0 in the control and 30 000 punti and mola ha?1 in the treatments, these at rates 2:1, 1:1 and 1:2. Stocking punti and mola at the density and all ratios tested were viable solutions to obtain simultaneously large carp cash crops and small fish to feed the farmer's family. Statistically marginal differences in large carp production were obtained in stocking small fish in the different proportions. These marginal differences could be explained by food competition between punti and common carp and between mola and rohu, which had different outcomes depending on the proportions of the small fish stocked. Stocking punti and mola at a 1:1 ratio would result in more small fish for the farmer's family, while the individual size of rohu, the most expensive large carp, would be somewhat smaller, but not necessarily small enough to decrease its selling price. Stocking one of the small fish in higher proportion than the other (2:1 or 1:2) would result in less mola for the family consumption, while harvesting of common carp would be somewhat lower and of smaller fish. Since common carp is the cheapest of the large carps, this small reduction would not necessarily affect the family income in an important way. With these results, farmers would now be able to reorganize their stocking practices with large carps and small fish and decide the appropriate small fish stocking ratios to meet their needs.  相似文献   

3.
Diel rhythmicity of grazing, swimming, resting and social interactions of rohu (Labeo rohita) (weight 66.5–68.3 g) and common carp (Cyprinus carpio) (79.9–82.0 g) were observed in 1 m2 simulated ponds using video images. Fish behaviour was monitored during a full 24‐h period, starting at 08:00 hours with a 15‐min recording, which was repeated every 3 h. Rohu spent more time grazing during the day than at night. Grazing activity peaked at the beginning and at the end of the day. Grazing and resting of rohu were negatively correlated. Common carp grazed day and night, showing no distinct grazing peak. Considering the grazing time of rohu and common carp, a feeding schedule with two feeding times at 07:30 and 16:30 hours might be appropriate for better food intake and conversion in rohu–common carp polyculture system.  相似文献   

4.
Abstract This experiment was carried out in the framework of a project to develop a viable fish polyculture technology under Bangladeshi conditions that allows simultaneous fish production of small indigenous species for farm families' consumption and of large carp species as a cash crop. The polyculture included the large carp rohu, catla and mirror carp as cash crop fish, and the small indigenous fish punti and mola as food for the small‐scale household. Total large carp stocking density was 10 000 fish ha?1, at a species ratio 1:1:1. Total small fish stocking densities were 0, 25 000 or 50 000 fish ha?1. The objectives were to assess the effects of adding 25 000 punti and/or mola ha?1 on the large carp and environment, and to assess the effects of punti on mola and mola on punti. It was found that catla was not affected by the addition of small fish in any of the combinations tested; rohu was not affected by punti, and mola reduced rohu performance by 30–40% only when punti was not present; mirror carp was not affected by punti, and mola increased mirror carp growth rate and harvesting weight by 25–30% whether punti was present or not; small fish did not significantly affect total yield and food conversion ratio; punti performance was not affected by mola; mola harvesting weight was not affected by punti, while mola harvesting numbers and biomass were reduced by 55–65% by punti. Factor analysis of water quality data identified photosynthesis–respiration and algal biomass– temperature as the main processes governing water quality. Effects of treatment on those water quality factors are analysed, and the fish–water quality relationships discussed. In a parallel polyculture experiment in 25 farm ponds, the performance of large carp species was found to be unaffected by the addition of punti and/or mola. The results indicate that, at the densities tested, punti and mola addition to the large carp polyculture is viable as they do not reduce cash crop production and might be a good food source for the farmer's family.  相似文献   

5.
The effects of introducing common carp (CC) and of adding artificial feed to fertilized rohu ponds on water quality and nutrient accumulation efficiency were studied. All ponds were stocked with 15 000 rohu ha?1. Treatments included ponds with rohu alone, rohu plus 5000 common carp ha?1 and rohu plus 10 000 CC ha?1. A comparison was also made between supplementally fed and non‐fed ponds. The overall highest nitrogen (N) and phosphorus (P) concentrations were observed in ponds with 5000 CC ha?1, followed by ponds with 10 000 and 0 CC ha?1. The largest fractions of N and P inputs accumulating in fish, phytoplankton and zooplankton were observed in ponds with 5000 CC ha?1, followed by ponds with 10 000 CC ha?1 and subsequently ponds without CC. Relatively more nutrients accumulated in benthic organisms in ponds without than in ponds with CC. A smaller fraction of the nutrient input was retained in fish, plankton and benthic organisms in ponds without CC compared with ponds with CC. Compared with 5000 CC ha?1, stocking 10 000 CC ha?1 can be considered as overstocking, because this leads to lower fish production and relatively less nutrients retained in plankton and benthic organisms.  相似文献   

6.
Mrigal-common carp hybrids were produced and examined. Only few hybrids could be reared up to the age of 14 months. These did not show signs of maturity. The parents species mature in ponds in 6 months (common carp) or 12 months (mrigal).  相似文献   

7.
Indian major carp, Cirrhinus mrigala fingerling (3.85 ± 0.50 cm, 0.50 ± 0.02 g) were fed isonitrogenous and isocaloric diets (40% CP, 4.28 kcal g−1, GE) containing casein, gelatin and crystalline amino acids with graded levels of L- methionine (0.50, 0.75, 1.00, 1.25, 1.50 and 2.00 g/ 100 g, dry diet) with 1.00% cystine fixed, to determine its dietary methionine requirement. A feeding trial was conducted in triplicate for six weeks. Diets were fed twice a day at 0800 and 1600 h at 5% of body weight/day. The ration size and feeding regime were worked out prior to the start of the feeding trial. Weight gain (158%) and food conversion ratio (1.45) were significantly (P < 0.05) higher in fish fed diet containing 1.00% methionine with 1.00% cystine fixed. Second degree polynomial regression analysis of the weight gain data indicated the dietary methionine requirement to be 1.20 g/100 g of dry diet, corresponding to 3.00% of dietary protein. Second degree polynomial regression analysis was also employed to determine the relationship between food conversion ratio (FCR) and dietary methionine levels which indicated that the best FCR occurred at approximately 1.20% dietary methionine level. Carcass composition of fish fed diet containing graded levels of methionine varied significantly (P < 0.05) except carcass ash content which showed insignificant (P > 0.05) differences among the dietary methionine levels. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
This study investigated the effects of nursing duration on the subsequent performance of rohu (R) Labeo rohita and mrigal (M) Cirrhina mrigala in polyculture with monosex male Nile tilapia (T) Oreochromis niloticus at four levels of pond fertilization. Nile tilapia, rohu and mrigal were stocked at a ratio of 4:1:1 in a 90‐day trial based on 40 20‐m2 pens fixed in four 400‐m2 earthen ponds. Growth of carp fingerlings during prolonged nursing (5 or 12 months) was stunted compared with fish nursed over a conventional duration of 3 months (3) but showed superior growth subsequently. Mean daily weight gain of stunted rohu (12) ranged from 2.2 to 2.8 g per fish day?1 compared with 1.1–1.6 g per fish day?1 for younger fish (3). The comparable ranges for mrigal were 1.9–2.8 and 1.4–2.1 g per fish day?1. Growth of Nile tilapia was inversely related to duration of carp nursing at the four levels of fertilization. Nile tilapia showed more response to increasing levels of fertilizer input (Y=?1.421+1.716X, where Y is the daily weight gain of Nile tilapia and X is the fertilizer level, r2=0.98, P<0.01, n=12). At a high level of fertilization (3.0 kg N:1.5 kg P ha?1 day?1), performance of stunted fingerlings (5 and 12) of both rohu and mrigal was similar (range 2.3–2.8 g per fish day?1, P>0.05), but younger mrigal (M3) grew faster than rohu (2.1 g per fish day?1 and 1.6 g per fish day?1 respectively). Older rohu (12) appeared to perform particularly well, and Nile tilapia poorly at the lowest level of fertilization (1.5 N:0.75 kg P ha?1 day?1), suggesting the impact of age of seed on competition within polycultures. The net fish yield (NFY) of tilapia was not affected significantly (P>0.05) by differential stocking age of carps; therefore, combined NFY of the three experimental fish species was not affected by the age of carp, as tilapia was the dominant species in polyculture. The highest combined NFY of all species in the most intensively fertilized pond (3.0 N:1.5 P kg ha?1 day?1) was calculated at 4.06±0.08 g·m?2 day?1, which was significantly higher (P<0.001) than the yield (1.82±0.12 g·m?2 day?1) from the pond with the lowest fertilization. At the highest fertilizer level, tilapia, rohu and mrigal contributed 72%, 14% and 14%, respectively, to the NFY, whereas the ratio was 60%, 20% and 20% at the lowest fertilization level. The study indicated that yields from tilapia in polyculture with the two carp species in more eutrophic water can be optimized if advanced nursing of carps is practised. Moreover, higher inputs of inorganic fertilizer and advanced nursing of carp are economically attractive under Bangladeshi conditions. Advanced nursing of rohu also improves its performance in more extensive systems when tilapia densities are high.  相似文献   

9.
Dietary arginine requirement of fingerling Indian major carp, Cirrhinus mrigala (4.20 ± 0.05 cm; 0.60 ± 0.02 g) was determined by conducting a 8‐week feeding trial with casein–gelatine‐based diets (400 g kg?1 crude protein; 17.90 kJ g?1, gross energy), containing crystalline amino acids with graded levels of l ‐arginine (10, 12.5, 15, 17.5, 20 and 22.5 g kg?1, dry diet). Fish were randomly stocked, in triplicate groups, in 55‐L indoor polyvinyl flow through circular tanks and fed experimental diets at 5% of their body weight divided into two feedings at 08.00 and 16.00 hours. Live weight gain (321%) and feed conversion ratio (FCR 1.40) were significantly (P < 0.05) higher in fish fed diet containing 17.5 g kg?1dietary arginine compared with other diets. Second‐degree polynomial regression analysis of live weight gain, FCR and protein efficiency ratio data indicated requirements for dietary arginine at 18.7, 18.4 and 18.3 g kg?1 of the dry diet, respectively. Maximum carcass protein, and minimum moisture and fat contents were noticed at the requirement level. Carcass ash content remained insignificantly different among the treatments except at 17.5 g kg?1 dietary arginine showing significantly higher ash content. Based on the above results, it is recommended that the diet for fingerling C. mrigala should contain arginine at 18.4 g kg?1, dry diet, corresponding to 46 g kg?1 dietary protein for optimum growth and efficient feed utilization.  相似文献   

10.
An 8‐week growth trial was conducted to determine the dietary histidine requirement of the Indian major carp, Cirrhinus mrigala fingerling (length 4.22 ± 0.45 cm; weight 0.61 ± 0.08 g; n = 40). Isonitrogenous (400 g kg?1 crude protein) and isoenergetic (17.90 kJ g?1 gross energy) diets with graded levels of l ‐histidine (2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 g kg?1 dry diet) were formulated using casein and gelatin as a source of intact protein, supplemented with l ‐crystalline amino acids. Twenty fish were randomly stocked in 70‐L indoor polyvinyl circular fish tank (water volume 55‐L, water exchange rate 1–1.5 L min?1) and fed experimental diets at the rate of 5% of their body weight/day divided over two feedings at 08:00 and 16:00 h. Maximum live weight gain (295%), best feed conversion ratio (FCR) (1.48) and protein efficiency ratio (PER) (1.69) occurred at 7.5 g kg?1 of dietary histidine level. When live weight gain, FCR and PER data were analysed using second‐degree polynomial regression, the break points indicated histidine requirements at 9.4, 8.6 and 8.5 g kg?1 of dry diet respectively. Significantly (P < 0.05) higher whole body protein and low moisture values were recorded at 7.5 g kg?1 histidine level. Body fat increased significantly (P < 0.05) with increasing histidine levels. However, at 7.5 and 10 g kg?1 histidine diets body fat did not differ (P > 0.05) to each other. Ash content of fish fed diets containing various levels of histidine did not differ except at 2.5 and 5.0 g kg?1 inclusion levels where significantly (P < 0.05) higher ash was recorded. Protein deposition was also found to be significantly (P < 0.05) higher in the 7.5 g kg?1 histidine diet. Based on the polynomial regression analysis of FCR and PER data, it is recommended that the diet for fingerling C. mrigala should contain histidine at 8.5 g kg?1 of dry diet, corresponding to 21.25 g kg?1 of dietary protein for optimum growth and efficient utilization of feed.  相似文献   

11.
The increasing need for aquafeed resources and the finite availability of conventional feed resources are making it necessary to search for alternative high‐protein resources that are not used as human food. The earthworm Perionyx excavatus was tested as a feed ingredient in diets for common carp. An experiment was conducted to evaluate the potential of earthworm powder as a replacement for fishmeal. In a recirculation aquarium system, triplicate groups of five common carp (Cyprinus carpio L.) were fed a control feed (fishmeal based protein), or experimental diets in which 30% (EW30), 70% (EW70), or 100% (EW100) of fishmeal protein was replaced by earthworm protein. Fish growth, feed digestibility and feed utilization were monitored. Growth rate, protein efficiency and energy retention in fish were similar (EW30, EW100) or higher (EW70) for diets containing earthworm meal compared to the control diet. Protein digestibility in EW30, EW70 and EW100 was higher than in the control diet, but in (EW100), lipid conversion was lower. We conclude that earthworm is a suitable partial replacement for fishmeal in feeds for common carp.  相似文献   

12.
Indian major carp fingerling, Cirrhinus mrigala (3.85±0.75 cm, 0.52±0.21 g), were fed isonitrogenous and isocaloric diets (40% crude protein, 4.28 kcal g?1, gross energy) containing casein, gelatin and crystalline amino acids with graded levels of l ‐threonine (1.00, 1.25, 1.50, 1.75, 2.00 and 2.25 g 100 g?1, dry diet) to determine the dietary threonine requirement. The feeding trial was conducted in triplicate for 8 weeks. Diets were fed twice a day at 08:00 and 16:00 hours at 5% body weight day?1. The ration size and feeding schedule were worked out before the start of the feeding trial. Highest weight gain (304%) and best feed conversion ratio (1.43) were evident in fish fed diet containing 1.75% dietary threonine. Second‐degree polynomial regression analysis of weight gain, feed conversion ratio and protein efficiency ratio data indicated the dietary threonine requirement to be at 1.84%, 1.81% and 1.78%, respectively, corresponding to 4.60%, 4.52% and 4.45% of dietary protein. Minimum carcass moisture, fat and maximum carcass protein were evident in fish fed 1.75% threonine level. However, ash content did not affect body composition, except the 1.00% threonine level, which showed a significantly higher ash content value. Based on the above results, it is recommended that the diet for C. mrigala should contain threonine at 1.80 g 100 g?1 dry diet, corresponding to 4.50 g 100 g?1 dietary protein for optimum growth and efficient feed utilization.  相似文献   

13.
An 8‐week feeding trial was conducted to evaluate the effects of dietary tryptophan concentration on weight gain and feed efficiencies of fingerling Indian major carp, Cirrhinus mrigala. Six isonitrogenous (40% crude protein) and isocaloric (17.90 kJ g?1) amino acid test diets containing casein, gelatin and l ‐crystalline amino acids with graded levels of l ‐tryptophan (0.06, 0.16, 0.26, 0.36, 0.46 and 0.56 g 100 g?1 dry diet) were formulated. Fish (4.25±0.30 cm, 0.62±0.02 g) were randomly stocked in triplicate groups in 70 L (water volume 55 L) flow‐through (1–1.5 L min?1) indoor circular tanks and fed experimental diets at 5% of their body weight/day in two feedings at 08:00 and 16:00 hours. Maximum live weight gain (277%), lowest feed conversion ratio (FCR) (1.50) and highest protein efficiency ratio (PER) (1.66) were measured at 0.36% dietary tryptophan. The relationship between dietary tryptophan levels and weight gain, FCR and PER data were described using second‐degree polynomial regression analysis indicating the tryptophan requirement at 0.42, 0.39 and 0.38 g 100 g?1 of dry diet respectively. Whole body moisture decreased with increasing tryptophan up to 0.36%. Significantly (P<0.05) higher protein content was evident in fish fed diet containing 0.36% tryptophan. Body fat increased significantly (P<0.05) in fish fed with different tryptophan concentrations except those fed 0.36% tryptophan where a significantly lower fat content was noted. Significantly (P<0.05) higher ash content was reported at 0.06% and 0.16% tryptophan levels. Survival was 100% in fish fed all the diets except those fed 0.06% tryptophan. Based on the results, diets for fingerling C. mrigala should contain tryptophan at 0.38 g 100 g?1 dry diet, corresponding to 0.95 g 100 g?1 dietary protein for optimum growth and efficient feed utilization.  相似文献   

14.
镉对鲤血清促性腺激素和生长激素的影响   总被引:3,自引:0,他引:3  
马广智 《水产学报》1995,19(2):120-126
采用CdCl2浸没法处理鲤,研究镉对鲤血清促性腺激素(GtH)和生长激素(GH)水平的影响,结果表明,较镐浓度镉(CdCl29mg/L)处理引起血清GtH水平降低,GH水平升高,提高水中钙浓度,能使由镉引起的GtH水平的降低恢得取正常水平,并对镉引起的GH水平升高起延迟作用,镉处理使鲤对LHRH-A刺激GtH分泌的反应性下降,提高水中钙浓度也不能恢复正常,实验结果提示,镉引起的GtH和GH的变化可  相似文献   

15.
The effect of varying dietary levels of defatted soybean meal on the growth and survival of mrigal, Cirrhinus mrigala (Hamilton) was investigated. In a feeding trial of 90 days, three experimental diets containing soybean meal at 200, 300 and 400 g kg?1 level of incorporation were fed to quadruplicate groups of 10 fish each. The conventional feed used in India, consisting of a mixture of groundnut oil cake and rice bran in 1 : 1 ratio served as the control. Best growth in terms of percentage weight gain, specific growth rate, protein efficiency ratio (PER), feed conversion ratio and survival rate was obtained for the test diet with 354 g kg?1 crude protein and with 400 g kg?1 soybean meal inclusion level. However, no statistical significant difference was observed between the three soybean‐based diets, except for PER and survival rate. Soybean meal is an easily available, acceptable and cost‐effective protein source in formulated feeds for Indian major carps. The results of the present study indicate that a diet of 350 g kg?1 overall protein with soybean meal included at 400 g kg?1 can elicit good growth response and survival in mrigal.  相似文献   

16.
棉酚对鲤鱼急性中毒的研究   总被引:4,自引:0,他引:4  
鲤鱼(体重约16克)腹腔注射乙酸棉酚0,7.3,54,100,200,400mg/kg体重,经四天(96小时)后,死亡率分别是0,0,20%,70%,90%,100%。96小时半数致死剂量是63.6mg/kg体重。注射剂量高于54mg/kg体重时,发生腹腔红肿、体壁溃烂,甚至死亡。实验结果说明虽然棉籽水平的棉酚不引起鲤鱼的任何可见的中毒症状,但是腹腔注射大剂量棉酚可引起与哺乳类相似的中毒症状。  相似文献   

17.
Two experiments were conducted to quantify the dietary thiamin (experiment I) and pyridoxine (experiment II) requirements of fingerling Cirrhinus mrigala for 16 weeks. In experiment I, dietary thiamin requirement was determined by feeding seven casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) with graded levels of thiamin (0, 0.5, 1, 2, 4, 8 and 16 mg kg?1 diet) to triplicate groups of fish (6.15 ± 0.37 cm; 1.89 ± 0.12 g). Fish fed diet with 2 mg kg?1 thiamin had highest specific growth rate (SGR), protein retention (PR), RNA/DNA ratio, haemoglobin (Hb), haematocrit (Hct), RBCs and best feed conversion ratio (FCR). However, highest liver thiamin concentration was recorded in fish fed 4 mg thiamin kg?1 diet. Broken‐line analysis of SGR, PR and liver thiamin concentrations exhibited the thiamin requirement in the range of 1.79–3.34 mg kg?1 diet (0.096–0.179 μg thiamin kJ?1 gross energy). In experiment II, six casein–gelatin‐based diets (400 g kg?1 CP; 18.69 kJ g?1 GE) containing graded levels of pyridoxine (0, 2, 4, 6, 8 and 10 mg kg?1 diet) were fed to triplicate groups of fish (6.35 ± 0.37 cm; 1.97 ± 0.12 g). Fish fed diet containing 6 mg kg?1 pyridoxine showed best SGR, FCR, PR, RNA/DNA ratio, Hb, Hct and RBCs, whereas maximum liver pyridoxine concentration was recorded in fish fed 8 mg kg?1 dietary pyridoxine. Broken‐line analysis of SGR, PR and liver pyridoxine concentrations reflected the pyridoxine requirement from 5.63 to 8.61 mg kg?1 diet. Data generated during this study would be useful in formulating thiamin‐ and pyridoxine‐balanced feeds for the intensive culture of this fish.  相似文献   

18.
A study was conducted to assess the effects of common carp and the African catfish on growth and reproduction of the native tilapia Oreochromis shiranus in Malawi. The study was done from 1 May to 1 October 2018 at the National Aquaculture Centre (NAC), Zomba. Four triplicated treatments were used: O. shiranus + carp (T1), O. shiranus + catfish (T2), O. shiranus + carp + catfish polyculture (T3) and O. shiranus monoculture (T4). Fish were stocked at uniform density of 0.8 fish/m2. Data collection was done once every month. Results showed that O. shiranus mean weight gain (%), specific growth rate (% body weight/day), average daily gain (g fish?1 day?1) and condition factor (g/cm3) were highest in T3 and lowest in T1 and T4 treatments. T3 had better water quality regime and higher tilapia biomass than T1 and T4 treatments. Tilapia fry production (no. fry pond?1 day?1) was highest in T4 but did not significantly differ (p > .05) between T2 and T3 treatments. It is concluded that the farming of common carp in aquatic ecosystems containing the African catfish may not adversely affect growth and reproduction of O. shiranus and that the polyculture of the African catfish, common carp and tilapia can be adopted to mitigate the potential adverse effects of carp on the environment and improve tilapia growth.  相似文献   

19.
The physiological response of common carp, Cyprinus carpio (L.) to increased stocking density and an additional acute net confinement stressor was investigated. Stocking densities were increased from 28.4 to 56.8 or 113.6 kg m?3 by the use of crowding screens and fish were sampled from the crowded groups after 15, 39 and 87 hours of crowding (hc). A transient elevation of plasma cortisol was found in the higher density group after 15 hc before values returned to control levels. Increased stocking density also increased plasma levels of glucose, free fatty acids (FFA) and lactate during the experimental period. No effect was found on oxygen radical production in the blood, haemoglobin or haematocrit levels, but leucocrit values were lower after 39 hc in both groups. Net confinement resulted in a significant increase in plasma cortisol levels in all groups. However, after 15 hc, cortisol and FFA levels in both crowded plus confinement groups were higher than in the control and confined groups. Confinement resulted in increased oxygen radical production in the crowded plus confined groups at all times. Results indicate that although carp responded with a mild stress response to increased stocking density and adaptation occurred by 87 hc, the crowded fish were more sensitive to an additional acute stressor.  相似文献   

20.
Common carp juveniles were fed for 9 weeks one of the eight semipurified diets containing graded levels of magnesium, 0.08, 0.6, 1.1, 3, 2 g Mg kg–1 and 25 or 44% protein.Fish growth and feed utilization were significantly affected by both Mg and protein levels in the diets. Significant interaction between these two studied variables existed in relation to the fish performance as well as to mean deposition rate of several minerals in common carp body. The fish fed diets containing 0.08 g Mg kg–1 had reduced growth and developed deficiency signs such as muscle flaccidity and skin hemorrhages.Results indicated that a minimum Mg level of 0.6 g Mg kg–1 was required to elevate plasma and bone magnesium content and to reduce the whole body Ca concentration (hypercalcinosis symptom). Further increase of dietary Mg up to 3.2 g Mg kg–1 improved growth rate of fish insignificantly, but the deposition rate of dietary Mg fell to as low as 7.4 and 10.7 percent in low- and high-protein diet fed fish, respectively. In Mg-deficient fish, considerable amount of magnesium was absorbed via extra-oral routes, however, this way of the covering magnesium need becomes insufficient in fast growing fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号