首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
单木生物量模型是森林生物量估算的基础。实测广东境内90株木荷的数据,伐倒前测量胸径、树高等测树因子;伐倒后,树干分为3段测定树干和树皮的鲜重;树冠分为3层,每层选取3~5个标准枝,并分别称枝、叶的鲜质量,取样后带回实验室;在85℃恒温下烘干至恒质量,根据样品鲜质量和干质量计算含水率,然后利用各部分的含水率推算样木树干、树皮、树枝及树叶等各部分干质量,最后汇总得到地上部分干质量。利用获得的生物量数据,以相对生长模型为基础,采用加权回归估计消除异方差,建立可加性生物量模型,拟合地上部分及各个分量的生物量。结果表明,可加性生物量模型系统中,树干生物量模型精度最高,确定系数达0.90以上,树叶生物量模型的精度最低,但确定系数也达0.74,树枝和树皮生物量模型确定系数均大于0.80;木荷树干生物量占地上生物量的比重最大,其次是树枝和树皮生物量,树叶生物量所占比重最低,随着径阶的增加,树干生物量不断增加,树枝生物量略有增加,树皮所占比重变化不大,树叶生物量所占比例持续降低。模型的建立有助于精确估算广东省木荷生物量,为碳汇计量提供基础数据和模型支撑。  相似文献   

2.
西伯利亚落叶松天然林立木生物量估算模型研究   总被引:1,自引:0,他引:1  
[目的]构建西伯利亚落叶松地上、地下及各组分器官的生物量估测模型.[方法]基于54株伐倒样木实测数据,运用相关回归分析方法,构建西伯利亚落叶松各组分生物量估测模型,并对比分析各种模型估测精度.[结果]以胸径、树高构建的落叶松各组分二元估测模型优于一元模型,其中地上、树干、树冠和树枝生物量预估精度提高了2.84; ~5.00;,而树叶和地下生物量仅提高了0.33;和0.15;.落叶松树干生物量和地上总生物量最优估测模型为W=aDbhc、树冠和树枝生物量最优模型为W=a(D3/H)b、树叶生物量最优模型为W=aDb;其中地上总生物量预估精度最高,达96.38;;树叶生物量预估最低,为84.07;;地下生物量以实测数据直接建模法与根茎比建模法对比,根茎比建模法预估精度高,其最优模型精度为90.50;.[结论]研究确定西伯利亚落叶松天然立木单株各组分生物量的最优估测模型,根据现地实测数据,可进行立木生物量估测,但人工落叶松立木生物量和天然落叶松不同林分的生物量估测还有待进一步研究.  相似文献   

3.
根据对蔡家川流域30块油松标准地的调查资料,对油松林木生物量进行了研究。结果表明:胸径能够较好地用于全株、树干和树枝的生物量测定,建立了以胸径为基础的林木全株及器官生物量估测模型;平均生物量表现为树干>树枝>树叶,树干平均值为63.82%,树枝平均值为26.47%,树叶平均值为9.72%;坡向影响油松地上部分总生物量,并且影响地上部分生物量的分配;冠幅面积对油松整株、树干、树枝、树叶生物量和树高胸径均有影响:树冠冠幅面积每增加1 m2,整株生物量增加1.842 kg、干生物量增加0.941 kg、枝生物量增加0.704 kg、叶生物量增加0.196 kg;树冠冠幅面积每增加1m2,胸径增加0.149 cm、树高增加0.08m;油松树冠冠幅面积对油松器官生物量分配无影响。  相似文献   

4.
为了解新疆山区森林的主要阔叶树种疣枝桦与欧洲山杨各组织器官生物量分配的规律及准确预估其生物量,研究基于整株收获实测数据采用统计回归的方法分析了2树种生物量分配格局和估测模型。结果表明:整体上2树种地上生物量比例分别为76.52%、75.42%,平均根冠比分别为0.307和0.341,在不同林龄不同径阶各器官生物量分配疣枝桦和欧洲山杨均表现为树干比例最高,树叶最低,在幼龄林和胸径0~20cm树根大于树枝,但在中龄林和胸径20cm以上疣枝桦表现为两者接近而山杨表现为树枝大于树根;运用最小二乘法和根茎比方法建立了2树种地上和地下各器官生物量估测的单因子胸径模型和胸径、树高双因子结合模型,结果显示疣枝桦地上部分和树干生物量预估精度显著提高,尤其树干生物量胸径树高的双因子模型比胸径单因子模型预估精度提高了11.3%,但树冠、树枝和树叶生物量各评价指标改进效果不大,而欧洲山杨树干、树冠和树枝生物量评价指标改进显著,精度提高2%~4%,树叶生物量估测反而降低,地上总生物量估测精度几乎没变,2树种地下生物量模型估测精度分别是81.35%%和83.87%。2树种不同器官生物量分配均表现为树干树根树枝树叶,随着林龄和径阶的变化各器官生物量比例的变化趋势一致;优选出2树种各器官最优生物量模型,预估精度均在80%以上,可以满足日常生产需求。  相似文献   

5.
森林生物量测定一直是森林生态系统研究的主要内容,也是地区森林生态系统长期监测所必需的基础性研究。以浙江天童国家森林公园常绿阔叶林为研究对象,于2003年10月份采用收获法(草本层、灌木层)和标准木法(乔木层)相结合的方法,测定了以木荷Schimasuperba,米槠Castanopsis carlesii为优势种的群落地上部分生物量。结果表明:群落地上部分总生物量为(141.0770±17.4298)t.hm-2(平均值±标准差,n=3),其中接近90%集中于乔木层,其他层生物量分配较少。群落及其各层生物量种间分配差异较大,以优势树种木荷和米槠生物量为主,其生物量主要由树干组成,器官分配大小顺序为干>枝>叶。群落萌枝生物量主要集中在灌木层,50%以上由米槠萌枝生物量构成。群落生物量及其分配状况基本体现了以木荷和米槠为优势种的该群落结构特征及常绿阔叶林群落生物量分配特征。表5参15  相似文献   

6.
新疆雪岭杉生物量模型对比研究   总被引:1,自引:0,他引:1  
基于80株样木的实测数据,运用相关分析和回归分析方法构建了雪岭杉的地上部组织、地下部和各组分器官的生物量估测模型,并根据评价指标对比分析各种模型。结果表明:地上各部分生物量一元模型精度除树叶为77%,其他均在90%以上,可以满足大尺度森林生物量估计;地上各生物量二元模型拟合效果要优于一元模型,但是不同组分生物量模型适合的因子组合不同,地上生物量和树干生物量模型W=aDbHc相对最优,预估精度97.38%和97.26%,树枝、树叶生物量模型W=a(D3/H)b最优,预估精度93.96%和90.37%;地下生物量模型以根茎比方程建立的一元模型最优,预估精度89.01%。建立的地上及各组分生物量模型和地下生物量模型可用于新疆天山山区雪岭杉生物量估计。  相似文献   

7.
丁洪峰 《安徽农业科学》2016,44(30):136-138
[目的]研究杉木生物量及其分配的动态变化。[方法]以闽北杉木林为研究对象,在典型区域设置46块样地,采用收获法测定46株标准木的生物量,林龄为5~33年。[结果]建立了闽北杉木器官及整株生物量与测树指标(胸径和树高)的回归模型;除树枝和树叶外,其他器官(树干、地上和树根)及整株的回归效果良好;随着林龄的增加,器官及整株生物量逐渐增加,在林龄为40年左右时达到稳定,同时构建了林木生物量与林龄的回归模型;随着林龄的增加,树干生物量的比例逐渐增加,其他器官生物量的比例逐渐减小,并在林龄为25年左右达到稳定。[结论]随着林龄的增加,杉木生物量及其分配呈现可预测的动态变化。  相似文献   

8.
【目的】灌木是森林生产力的重要组成部分,探索北亚热带地区常绿阔叶林林下灌木生长模型,为森林生物量及其碳储量估算奠定基础。【方法】在安徽南部查湾自然保护区,选取4种常见林下灌木树种(老鼠矢、乌药、朱砂根和香桂),通过野外实测获得地径(D)、树高(H)、地径平方乘树高(D2 H)、冠径树高乘积(CH)、植冠面积(AC)和植冠体积(VC)等模型参数,拟合生物量模型,基于独立检验数据对模型进行验证,获得生物量最优模型。【结果】各灌木树种单器官及全株生物量模型以D2 H和CH为自变量都具有较高的拟合优度(0.815~0.983)和较小的标准误(SEE)。不同灌木树种、不同器官之间的生物量最优模型选用方程均存在一定差异,以幂函数、二项式方程为主,且模型检验精度均较高(总相对误差(RS)30%,平均相对误差绝对值(RMA)20%)。模型的普适性研究表明,叶、枝和根生物量最优通用模型为W=a+bX+cX2(X为D2 H(叶、枝)或CH(根)),拟合效果较优;而全株生物量最优模型为W=1.423 2(D2 H)0.832 4,拟合指数(FI)=0.960,适用于4种灌木叶、枝、根和全株生物量的估算,但根系通用模型的估算精度低于叶、枝与全株的最优生物量通用模型。【结论】基于生物量模型可以精准地估算亚热带地区的灌木生物量。  相似文献   

9.
根据5个不同林龄15块1000m2样地的调查资料,利用15株不同林龄和径阶的栎类样木数据,建立以胸径平方乘以树高(D2H)为单变量的生物量估算模型。采用样木回归分析法(乔木层)和样方收获法(灌木层、草本层、地上凋落物)获取不同林龄栎类的生物量,并分析了其组成、分配特征及不同林龄生物量的变化趋势。结果表明:栎类林分的总生物量随林龄而增加,5个不同林龄的生物量分别为73.67Mg/hm2、127.47Mg/hm2、149.93Mg/hm2、169.90Mg/hm2、200.65Mg/hm2,其中活体植物的贡献达95.58%以上,地上凋落物的总量不超过4.42%;生物量的层次分配方面乔木层占绝对优势,占93.66%-98.68%,其次为地上凋落物,占1.02%-4.42%,灌木层和草本层生物量较小,分别占0.20%-2.13%和0.03%-0.27%,均随林龄的增加呈递减趋势;乔木层器官分配以干所占比例最高,占46.64%-80.78%,且随林龄而增加,枝、叶、根分别占11.61%-36.80%、1.00%-4.85%和6.61%-11.71%,均随林龄而下降;灌木层器官分配以枝所占比例最高,为32.50%-69.07%,叶和根分别占12.89%-25.00%和18.04%-42.50%;不同林龄栎类草本层生物量大小与林龄成反比例关系,地上部分的生物量大于地下部分的生物量。随着林龄的增加,凋落物呈现升→降→升的趋势。以上研究结果表明,林龄可以影响桂西地区栎类的生物量和分配格局。  相似文献   

10.
  目的  雪岭云杉Picea schrenkiana是新疆山区重要树种。了解雪岭云杉地上地下生物量分配及碳储量,对新疆森林资源调查具有一定意义。  方法  采用整株收获法分析30株雪岭云杉地上地下生物量分配格局,利用胸径(D)、树高(H)和胸径-树高(D2H、D3/H和DbHc)作为变量建立树干、树枝、树叶、树根、地上及整株生物量异速生长模型。  结果  雪岭云杉树干、树枝、树叶及树根生物量存在显著性差异(P<0.01)。整株生物量为12.04~2 014.34 kg·株?1,地上和地下生物量分别为10.16~1 475.17和1.88~539.18 kg·株?1,树干、树枝、树叶及树根生物量占整株生物量的56.86%、13.03%、5.96%和24.15%,根冠比为0.08~0.55。植株水平上,建立基于胸径及树高变量的各器官生物量模型,其中树根生物量的最优生物量模型为W=a(D2H)b,其他器官生物量模型均为W=aDbHc。影响云杉生物量的主要环境因素重要性排序依次为坡位、坡度、海拔及土壤厚度。  结论  基于胸径-树高因素的异速生长模型可以较好地实现雪岭云杉各器官生物量的拟合,可对其生物量及碳储量进行有效估算。图4表3参30  相似文献   

11.
银杏生物量分配格局及异速生长模型   总被引:2,自引:1,他引:2  
以苏北地区银杏人工林为研究对象,选取13株进行整株挖掘,分析不同器官生物量的分配格局,以及地上和地下生物量之间的关系;再分别以胸径(D)、树高(H)、D2H、DaHb为自变量建立银杏各器官生物量模型,选择调整决定系数(Radj2)、残差平方和(SSE)、平均偏差(ME)、平均绝对偏差(MAE)和平均相对误差(MPE)作为选择最优模型的检验指标,根据检验结果筛选出各器官的最优模型。结果表明:13株银杏的整株生物量变化范围为28.50~320.27 kg,树干生物量占总生物量的49.4%~56.6%,树枝生物量占总生物量的12.1%~18.9%,树叶生物量占总生物量的3.8%~5.5%,根生物量占总生物量的26%;地上部分生物量与地下生物量线性方程的斜率为0.35,具有显著的线性相关性(P<0.01);枝和叶生物量都集中于树冠中部,树冠上层和下层的枝、叶生物量明显低于树冠中层生物量(P<0.05),上层和下层生物量之间差异不显著(P>0.05),70%根生物量集中0~1.0 m的土层;枝水平上,基于基径和枝长的枝生物量模型解释量超过95%;在各器官生物量最优模型选择上,以D为自变量的W=aDb的叶、枝、地上部分生物量模型要优于其他模型;树干、根和全株生物量则是以W=aDbHc模型最优。银杏各器官生物量表现为干>根>枝>叶,枝和叶生物量垂直分配上,中冠层占最大比例;基于树高和胸径的相对生长模型可以实现对银杏各器官生物量的准确拟合,银杏生物量及碳储量的有效估算。   相似文献   

12.
铁力木人工林生物量与碳储量及其分配特征   总被引:2,自引:2,他引:0  
在样方调查和实测生物量的基础上,采用相对生长法对28年生铁力木人工林碳储量及其分配特征进行了研究。结果表明:铁力木各器官碳含量在452.4~524.5 g/kg之间,大小排序为:树叶树干树枝树根树皮;土壤碳含量以表土层最高,且随土层深度增加而降低;铁力木人工林乔木层生物量和碳储量分别为165.8和79.3 t/hm2, 分配顺序均为树干树枝树根树叶树皮;铁力木人工林生态系统生物量与碳储量分别为173.5和203.1 t/hm2,生物量的分配主要集中在乔木层(95.6%), 碳储量的分配顺序为土壤层(59.3%)乔木层(39.0%)地被层(1.7%);林下植被碳含量为地上部分地下部分,而生物量和碳储量的分配均为地上部分地下部分。   相似文献   

13.
刨花楠生物量及其结构动态分析   总被引:8,自引:2,他引:8  
为了研究和预估刨花楠这一优良树种的各器官的生物量及其结构变化动态,选用四种模型分别对其树干,枝,叶,皮及地上部分总生物量进行拟合,并对拟合结果进行分析。结果表明:(1)刨花楠单木树干,树皮及地上部分生物量与胸径及树高两因子密切相关,且以模型2拟合为最优,树枝,树叶生物量则仅与胸径紧密相关,且以模型1拟合为最优;(2)30年的树木,其树干,树皮,树枝和树叶分别约占地上部分总生物量的66%,12%,19%和3%。(3)随着年龄的增大,刨花楠地上部分各器官生物量结构变化的趋势为;树干占地上部分总生物量的比较在30年前表现为增加,其中10年以前增加速度较快,在30年后表现为逐渐减少的趋势;树皮与树枝则一直表现为增加的态势,树叶则一直表现为下降的态势,其中15年以前下降速度较快。  相似文献   

14.
[目的]探讨桂南地区桉树中大径材人工林生物量与林分生产力。[方法]采用样方收获法和生物量异速生长模型法对桂南地区15年生桉树人工林的生物量和生产力进行测算。[结果] 15年生桉树人工林乔木层总生物量为449.79 t/hm~2,其中地上部分生物量为377.69 t/hm~2,地下部分生物量为72.10 t/hm~2;林分乔木层年均生产力为37.27 t/(hm~2·a)。不同器官生物量大小排序为树干、根蔸、树枝、粗根、树叶、中根、细根。15年生桉树地上与地下生物量比值随胸径增长呈现递减趋势,比值在4.83~6.80,平均比值为5.24。[结论]桉树中大径材人工林具有很高的生物量与生产力,同时在营林后期林木地上部分生物量的生长更为突出,桉树大径材培育具有良好的发展前景。  相似文献   

15.
杉木人工林灌木层生物量模型构建   总被引:4,自引:1,他引:3  
目的本研究选择湖南、安徽、江西3省杉木人工林为研究对象,构建乔灌层调查因子与其生物量之间的估算模型。试图获取更为可靠、精准的灌木层生物量估算模型,为提高估算杉木人工林灌木层生物量模型精度提供参考。方法在研究区域进行典型抽样调查,测定不同林龄杉木林上层乔木郁闭度Cs、林分密度Ds(株/hm2)、平均胸径Dm(cm),下层灌木平均高度H(m)、平均地径D(cm)、盖度C、灌木层枝、干、叶、根干鲜质量(kg),通过计算获得乔木层杉木蓄积量V(m3/hm2)、灌木层生物量数据(t/hm2)。通过Pearson相关性分析灌木层结构和乔木层调查因子对灌木层生物量的影响,选取最佳灌木层结构因子为模型参数建立枝叶、干、地上、地下生物量估算模型。将乔木层林分调查因子作为自变量加入模型中,对比分析模型R2在乔木层调查因子作为自变量加入后的变化,并用样本外的数据进行检验,构建估算灌木层生物量更为精确的模型。结果研究结果显示:灌木层各组分生物量模型以幂函数为主,各林龄灌木层地下生物量与自变量D2H获取了最佳模型,R2为0.516~0.955;其余部分生物量以盖度与高度乘积(CH)为自变量获得了拟合效果较好的模型, R2为0.516~0.718。与单独采用灌木层结构因子为预测变量建立的灌木层生物量预估模型相比,乔木层平均胸径Dm作为自变量的加入使中幼龄林除地下生物量以外的各组分生物量模型拟合效果有了显著提高,R2为0.718~0.990;郁闭度Cs的加入使近成过熟林除地下生物量以外的各组分生物量模型拟合效果有了显著提高,R2为0.817~0.886。结论因此,评价和分析乔木林下层灌木生物量,不仅要考虑灌木层自身结构生物量关系,还要考虑到乔木层相关因子的影响,从而建立更符合灌木生物学与生态学相一致的生物学结构模型,本研究可为亚热带地区杉木人工林下层灌木生物量的估算提供参考。   相似文献   

16.
广东主要乡土阔叶树种单木生物量生长模型   总被引:1,自引:0,他引:1  
【目的】选择广东主要乡土阔叶树种樟树Cinnamomum camphora、木荷Schima superba和枫香Liquidambarformosana为研究对象,建立3个树种的单木生物量生长模型,快速精确计量和监测森林碳汇造林项目的碳储量变化。【方法】每个树种按10个径阶均匀分配伐倒90株样木(共270株),以样木的生物量数据为单木生物量,以立木年龄为自变量,分别建立不同起源(天然林和人工林) 3个树种的地上和地下4种方程生物量生长模型,并选择最优模型通过联立方程组总量控制法解决地上各组分(干材、树皮、树枝、树叶)的生长模型相容性问题。【结果】天然林和人工林起源条件下,相同树种在同一生物量生长模型形式下生物量增长的上限值和最大增速年龄均有差异。各方程在相同起源和树种条件下所得的生物量上限和拐点年龄差异明显。估计地上生物量时,各树种最优方程形式不同。选择Logistic方程对3个树种地上各组分生物量联立方程组建立相容性生长模型,3个树种干材生物量方程的R_(adj)~2为0.560~0.768,平均预估误差(MPE)为3.05%~6.73%;树皮生物量方程的R_(adj)~2为0.552~0.866,MPE为2.02%~6.27%;树枝生物量方程的R_(adj)~2为0.309~0.706,MPE为3.01%~14.33%;树叶生物量方程的R_(adj)~2为0.495~0.767,MPE为4.16%~7.14%。【结论】比较4种模型的参数及评价指标可知,地上生物量生长最优模型为Logistic方程,地下生物量生长最优模型为Schumacher方程。地上各组分生物量在立木生长的周期中占地上总生物量的比例随着年龄的增长而不断变化。选择Logistic方程对3个树种地上各组分生物量联立方程组建立相容性生长模型,干材和树皮的生物量方程拟合效果相对于树枝和树叶更好。该模型主要适用于在已知年龄的人工碳汇造林的生物量估计;结合含碳系数,可预估未来一定时期内的碳储量及碳汇量。  相似文献   

17.
通过对广西红锥(Castanopsis hystrix) 5~7 a生人工林进行调查,采用生物量模型估算法对广西红锥人工林生物量和生产力及其分配特征进行研究。结果表明:红锥人工林林分及各部位器官生物量与测树因子D2H间存在密切关系,拟合的回归模型预测精确高,可用于红锥人工林生长分析和预测。不同径阶各部位器官生物量的分配规律存在差异,各径阶生物量均以树干最大(32. 37%~42. 43%),其次为树枝;红锥5~7 a生人工林林分平均净生产力为8. 88 t·hm~(-2)·a~(-1),表现出较高的生产力水平,生产力分配规律为树干(37. 39%)树枝(26. 80%)树叶(14. 63%)根系(14. 41%)根桩(6. 77%)。  相似文献   

18.
  目的  采用遥感数据估算森林地上生物量仍存在一些不确定性问题,研究估算过程中的误差来源及其占比,对提高森林地上生物量的估测精度具有重要意义。  方法  从遥感影像提取因子,结合高山松Pinus densata外业调查数据,建立多元线性回归、梯度提升回归树、随机森林等3种地上生物量估测模型,对样地尺度与3种模型的不确定性进行分析和度量。  结果  ①高山松单株生物量模型不确定性为16.43%,样地尺度的不确定性为7.07%;②多元线性回归模型残差不确定性为34.86%,参数不确定性为21.30%,与样地不确定性合成后总不确定性为41.45%;③非参数模型中,梯度提升回归树估测高山松地上生物量的总不确定性为23.12%,随机森林为19.42%。  结论  3种遥感估算模型中,非参数模型的不确定性明显低于参数模型。相较于样地尺度,遥感估算模型的不确定性对地上生物量估算精度的影响较大。图3表3参26  相似文献   

19.
短轮伐期巨桉人工林地上部分生物量和生产力研究   总被引:10,自引:0,他引:10  
研究了5年生巨桉人工林在不同处理水平条件下,地上部分各器官的生物量积累和分配及生产力;并运用回归分析研究了不同处理水平对林分生物量的影响以及利用方程W=a(D2H)b,W=a+bD+cD2,W=a+bD,W=aDb建立巨桉人工林林分地上部分与各器官生物量模型。结果表明各器官生物量分配顺序:树干>树皮>树枝>树叶;巨桉由于是速生树种,对肥水要求很高,在巨桉栽培时,除了适当的气候条件及合理的林分密度外,应选择立地条件良好的立地,同时加强林分肥水管理;所建模型R2值均大于临界值R20.01及r0.01可以运用于巨桉单株木生物量的生产估计。  相似文献   

20.
【目的】准确构建库布齐沙漠地区4种人工灌木林生物量预测模型,为估算当地灌木林生态系统碳储量提供基础。【方法】以库布齐沙漠地区4种人工灌木林(柠条、沙棘、沙柳、杨柴)为研究对象,采用平均株收获法测定4种灌木不同营养器官(干、枝、叶、根)的生物量,将实测生长因子(地径D、株高H、冠幅直径C)及其组合因子(冠幅面积S、植冠体积V、植株体积D2H)作为自变量,利用生物量模型法选取一元线性函数、二次函数、对数函数、幂函数和指数函数,构建4种灌木各器官、地上及全株生物量模型。【结果】4种灌木不同器官中,柠条叶生物量最优模型为幂函数,干、枝、根3种器官生物量最优模型均为二次函数。沙棘干生物量最优模型为幂函数,枝、叶、根3种器官生物量最优模型均为一元线性函数。沙柳干、枝、根生物量最优模型均为一元线性函数,叶生物量最优模型为二次函数。杨柴干生物量最优模型为一元线性函数,枝、叶、根3种器官生物量最优模型均为二次函数。4种灌木地上生物量与全株生物量最优模型相同,柠条和杨柴最优模型为二次函数,沙棘和沙柳最优模型为一元线性函数。4种灌木全株与地上生物量模拟方程平均相对误差(RMA)为13.46%~24.07%,总相对误差(RS)为-11.19%~7.66%,拟合精度较高。【结论】构建的4种人工灌木林全株与地上生物量预测模型拟合精度较高,可用于库布齐沙漠地区区域尺度生物量和碳储量估算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号