首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The bioactivity of caffeine aqueous solutions (0.20-2.00 wt %) and caffeine oleate emulsions (20 vol % oil, 2.00 wt % surfactant, 0.04 wt % caffeine, 0.05 wt % oleic acid) was assessed against two biological models: Drosophila melanogaster and Hypothenemus hampei. The caffeine aqueous solutions showed no insecticidal activity, whereas caffeine oleate emulsions had high bioactivity against both D. melanogaster and H. hampei. By preparing the caffeine oleate emulsions with anionic surfactants (i.e., sodium lauryl sulfate, sodium laureate, and sodium oleate), we obtained a lethal time 50 (LT50) of 23 min. In the case of caffeine oleate emulsions prepared with nonionic surfactants (i.e., Tween 20 and Tween 80), a LT50 of approximately 17 min was observed. The high bioactivity of the caffeine oleate emulsion against H. hampei opens the possibility of using this insecticide formulation as an effective way to control this pest that greatly affects coffee plantations around the world.  相似文献   

2.
The coffee berry borer, Hypothenemus hampei (Ferrari), is an important devastating coffee pest worldwide. Both trypsin and chymotrypsin enzyme activities from H. hampei larval midgut can be inactivated by proteinaceous enzyme-inhibitors. A serine proteinase inhibitor belonging to the Bowman-Birk class was purified from a wild accession of Phaseolus coccineus L. seeds. The inhibitor (PcBBI1) is a cysteine-rich protein that is heat-stable at alkaline pH. MALDI-TOF/MS analysis showed that PcBBI1 occurs in seeds as a monomer (8689 Da) or dimer (17,378 Da). Using in vitro inhibition assays, it was found that PcBBI1 has a high inhibitory activity against H. hampei trypsin-like enzymes, bovine pancreatic chymotrypsin, and trypsin. According to this, PcBBI1 could be a promising tool to make genetically modified coffee with resistance to coffee berry borer.  相似文献   

3.
The content of caffeine in coffee extracts prepared for radioimmunoassay of aflatoxin B1 was determined by gas chromatography. The extracts from coffee beans and decaffeinated coffee contained 1.76-4.60 and 0.71-0.85 g caffeine/kg, respectively. These concentrations of caffeine caused false results in radioimmunoassay of aflatoxin B1 in the range 1.0-2.8 micrograms/kg for coffee beans and 0.3-0.4 micrograms/kg for decaffeinated coffee.  相似文献   

4.
The iron-reducing activity of coffee beverages was determined by the ferric reducing antioxidant power (FRAP) assay. The influence on FRAP due to the degree of roasting (light, medium, and dark), species (Coffea arabica and Coffea robusta), and caffeine content (regular and decaffeinated) was investigated using ground and soluble coffee samples. The concentration of specific chlorogenic acids and caffeine in the beverages was determined by high-performance liquid chromatography and related to FRAP using Pearson correlation coefficients. All measurements were expressed per unit of soluble solids. Beverages prepared with ground coffee had, on average, 27% higher FRAP values than those prepared with soluble coffee (p < 0.05). In the former beverages, FRAP of C. robusta samples was significantly higher (on average, 50.3%) when compared to that of C. arabica samples, and FRAP values decreased with increasing degree of roasting (p < 0.05). A strong correlation (r > 0.91) was found between FRAP and the total content of chlorogenic acids, particularly that of the caffeoylquinic acid isomers. The iron-reducing activity of coffee beverages was not influenced by caffeine.  相似文献   

5.
The in vitro antimicrobial activity of commercial coffee extracts and chemical compounds was investigated on nine strains of enterobacteria. The antimicrobial activity investigated by the disc diffusion method was observed in both the extracts and tested chemical compounds. Even though pH, color, and the contents of trigonelline, caffeine, and chlorogenic acids differed significantly among the coffee extracts, no significant differences were observed in their antimicrobial activity. Caffeic acid and trigonelline showed similar inhibitory effect against the growth of the microorganisms. Caffeine, chlorogenic acid, and protocatechuic acid showed particularly strong effect against Serratia marcescens and Enterobacter cloacae. The IC(50) and IC(90) for the compounds determined by the microtiter plate method indicated that trigonelline, caffeine, and protocatechuic acids are potential natural antimicrobial agents against Salmonella enterica. The concentrations of caffeine found in coffee extracts are enough to warrant 50% of the antimicrobial effect against S. enterica, which is relevant to human safety.  相似文献   

6.
Espresso spent coffee grounds were chemically characterized to predict their potential, as a source of bioactive compounds, by comparison with the ones from the soluble coffee industry. Sampling included a total of 50 samples from 14 trademarks, collected in several coffee shops and prepared with distinct coffee machines. A high compositional variability was verified, particularly with regard to such water-soluble components as caffeine, total chlorogenic acids (CGA), and minerals, supported by strong positive correlations with total soluble solids retained. This is a direct consequence of the reduced extraction efficiency during espresso coffee preparation, leaving a significant pool of bioactivity retained in the extracted grounds. Besides the lipid (12.5%) and nitrogen (2.3%) contents, similar to those of industrial coffee residues, the CGA content (478.9 mg/100 g), for its antioxidant capacity, and its caffeine content (452.6 mg/100 g), due to its extensive use in the food and pharmaceutical industries, justify the selective assembly of this residue for subsequent use.  相似文献   

7.
During coffee seed development, proteins are predominantly deposited in cotyledons and in the endosperm. Reserve proteins of the 11S family are the most abundant globulins in coffee seeds, acting as a nitrogen source during roasting and guaranteeing flavor and aroma. The aim of the present study was to compare the protein profiles of endosperm and zygotic embryos of coffee seeds. Proteins were extracted from whole seed as well as from embryo and endosperm, separately. Total proteins were analyzed by two-dimensional electrophoresis (2-DE) followed by identification by mass spectrometry (MS). The most abundant spots observed in the gels of coffee seeds were excised, digested with trypsin, and identified by MS as subunits of the 11S globulin. Spots with identical pI and molecular masses were also observed in the protein profiles of coffee endosperm and embryo, indicating that 11S protein is also highly expressed in those tissues. Peptide sequence coverage of about 20% of the entire 11S globulin was obtained. Three other proteins were identified in the embryo and endosperm 2-DE profiles as a Cupin superfamily protein, an allergenic protein (Pru ar 1), exclusive to the endosperm 2D map, and a hypothetical protein, observed only in the zygotic embryo profile.  相似文献   

8.
Commercial whole coffee fruit extracts and powder samples were analyzed for chlorogenic acids (CGA), caffeine and antioxidant activities. CGA and caffeine were characterized by LC-MS(n) and HPLC accordingly, and quantified by UV absorbance. ORAC, HORAC, NORAC, SORAC and SOAC (antioxidant capacities) were assessed. Three caffeoylquinic acids, three feruloylquinic acids, three dicaffeoylquinic acids, one p-coumaroylquinic acid, two caffeoylferuloylquinic acids and three putative chlorogenic lactones were quantified, along with a methyl ester of 5-caffeoylquinic acid (detected in one sample, the first such report in any coffee material). Multistep whole coffee fruit extracts displayed higher CGA content than single-step extracts, freeze-dried, or air-dried whole raw fruits. Caffeine in multistep extracts was lower than in the single-step extracts and powders. Antioxidant activity in whole coffee fruit extracts was up to 25-fold higher than in powders dependent upon the radical. Total antioxidant activity of samples displayed strong correlation to CGA content.  相似文献   

9.
Volatile aroma principles, nonvolatile taste constituents (caffeine and chlorogenic and caffeic acids), and glycosidically bound aroma compounds of monsooned and nonmonsooned raw arabica coffee were analyzed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Among the most potent odor active constituents known to contribute to the aroma of the green beans, 3-isopropyl-2-methoxypyrazine, 3-isobutyl-2-methoxypyrazine, 4-vinylguaiacol, beta-damascenone, (E)-2-nonenal, trans,trans-2,4-decadienal, phenylacetaldehyde, and 3-methylbutyric acid were detected by GC-MS in both samples. A decrease in content of methoxypyrazines and an increase in 4-vinylguaiacol and isoeugenol resulted in a dominant spicy note of monsooned coffee. These phenolic compounds exist partly as their glycosides, and their release from the bound precursors during monsooning accounted for their higher content in monsooned coffee. A considerable decrease in astringent chlorogenic acid as a consequence of hydrolysis to bitter caffeic acid was noted in monsooned coffee. Radiation processing of nonmonsooned beans at a dose of 5 kGy resulted in an increased rate of monsooning. At this dose a quantitative increase in most of the aroma active components could be observed in all samples studied. Hydrolysis of chlorogenic acid to caffeic acid was noted in radiation-processed monsooned coffee beans irrespective of whether the treatment was carried out before or after monsooning. These changes were, however, not observed in irradiated, nonmonsooned coffee beans, suggesting an enzymatic rather than a radiolytic cleavage of chlorogenic acid. A rationale behind the mechanism of monsooning and radiation-induced enhancement of the monsooning process is discussed.  相似文献   

10.
In vitro antioxidant activity of coffee compounds and their metabolites   总被引:2,自引:0,他引:2  
In this paper we report the antioxidant activity of different compounds which are present in coffee or are produced as a result of the metabolism of this beverage. In vitro methods such as the ABTS*+ [ABTS = 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] decolorization assay and the oxygen radical absorbance capacity assay (ORAC) were used to assess the capacity of coffee compounds to scavenge free radicals. The importance of caffeine metabolites and colonic metabolites in the overall antioxidant activity associated with coffee consumption is shown. Colonic metabolites such as m-coumaric acid and dihydroferulic acid showed high antioxidant activity. The ability of these compounds to protect human low-density lipoprotein (LDL) oxidation by copper and 2,2'-azobis(2-amidinopropane) dihydrochloride was also explored. 1-Methyluric acid was particularly effective at inhibiting LDL oxidative modification. Different experiments showed that this caffeine metabolite is not incorporated into LDL particles. However, at physiologically relevant concentrations, it was able to delay for more than 13 h LDL oxidation by copper.  相似文献   

11.
【目的】为深入了解云南主要咖啡产区的土壤养分状况及其对咖啡生豆品质的影响,本文对云南主要咖啡产区的土壤及咖啡生豆进行了采样分析。【方法】在云南咖啡种植区共采集咖啡生豆样品38份、土壤混合样品49个,土壤采样深度为0—20 cm。测定了土壤有机质、pH、碱解氮、有效磷和速效钾含量,分析了咖啡生豆中灰分、咖啡因、总糖、还原糖和脂肪含量。根据土壤样品中各项养分指标确定其隶属函数类型及阈值,采用主成分分析法求得各指标的权重,运用加乘法算出各土样的土壤肥力综合指标值(IFI),并将IFI值采用欧氏距离聚类方法进行聚类,然后根据IFI值对每个聚类等级进行定义,最后用典型相关分析的方法分析咖啡生豆品质与土壤养分之间的关系。【结果】云南各咖啡种植区的土壤综合肥力存在显著变化(P <0.05),IFI值主要位于0.43~0.67之间,均值为0.53。IFI值聚类结果可将土壤肥力分为4类,Ⅰ类为适宜(0.55~0.67)、Ⅱ类为一般(0.43~0.53)、Ⅲ类为差(0.35~0.39)、Ⅳ类为较差(0.24~0.29)。Ⅰ类和Ⅱ类占咖啡种植区域面积的98.8%,其中第Ⅰ类占54.2%,主要分布于德宏与普洱地区;第Ⅱ类占44.6%,主要分布于临沧和保山地区。各区域IFI值的大小顺序为德宏(0.64)>普洱(0.58)>临沧(0.46)>保山(0.43)。咖啡生豆品质与土壤养分指标有着显著的典型相关关系(P <0.05),影响咖啡风味的咖啡因和总糖含量随着土壤速效钾的升高呈降低趋势;而影响咖啡醇厚度的脂肪含量则随着土壤pH值和碱解氮的升高而降低。【结论】云南主要咖啡产区的土壤养分状况适宜咖啡生长,土壤综合肥力一般。土壤速效钾、碱解氮含量和pH值对咖啡生豆品质有重要影响,其含量过高或过低均可能降低咖啡生豆的品质。  相似文献   

12.
This study is the first of two publications that investigate the phenomena of coffee nonvolatiles interacting with coffee volatile compounds. The purpose was to identify which coffee nonvolatile(s) are responsible for the interactions observed between nonvolatile coffee brew constituents and thiols, sulfides, pyrroles, and diketones. The overall interaction of these compounds with coffee brews prepared with green coffee beans roasted at three different roasting levels (light, medium, and dark), purified nonvolatiles, and medium roasted coffee brew fractions (1% solids after 1 or 24 h) was measured using a headspace solid-phase microextraction technique. The dark roasted coffee brew was slightly more reactive toward the selected compounds than the light roasted coffee brew. Selected pure coffee constituents, such as caffeine, trigonelline, arabinogalactans, chlorogenic acid, and caffeic acid, showed few interactions with the coffee volatiles. Upon fractionation of medium roasted coffee brew by solid-phase extraction, dialysis, size exclusion chromatography, or anion exchange chromatography, characterization of each fraction, evaluation of the interactions with the aromas, and correlation between the chemical composition of the fractions and the magnitude of the interactions, the following general conclusions were drawn. (1) Low molecular weight and positively charged melanoidins present significant interactions. (2) Strong correlations were shown between the melanoidin and protein/peptide content, on one hand, and the extent of interactions, on the other hand (R = 0.83-0.98, depending on the volatile compound). (3) Chlorogenic acids and carbohydrates play a secondary role, because only weak correlations with the interactions were found in complex matrixes.  相似文献   

13.
Near-infrared spectroscopy (NIRS), combined with diverse feature selection techniques and multivariate calibration methods, has been used to develop robust and reliable reduced-spectrum regression models based on a few NIR filter sensors for determining two key parameters for the characterization of roasted coffees, which are extremely relevant from a quality assurance standpoint: roasting color and caffeine content. The application of the stepwise orthogonalization of predictors (an "old" technique recently revisited, known by the acronym SELECT) provided notably improved regression models for the two response variables modeled, with root-mean-square errors of the residuals in external prediction (RMSEP) equal to 3.68 and 1.46% for roasting color and caffeine content of roasted coffee samples, respectively. The improvement achieved by the application of the SELECT-OLS method was particularly remarkable when the very low complexities associated with the final models obtained for predicting both roasting color (only 9 selected wavelengths) and caffeine content (17 significant wavelengths) were taken into account. The simple and reliable calibration models proposed in the present study encourage the possibility of implementing them in online and routine applications to predict quality parameters of unknown coffee samples via their NIR spectra, thanks to the use of a NIR instrument equipped with a proper filter system, which would imply a considerable simplification with regard to the recording and interpretation of the spectra, as well as an important economic saving.  相似文献   

14.
Coffee brew is a widely consumed beverage with multiple biological activities due both to naturally occurring components and to the hundreds of chemicals that are formed during the roasting process. Roasted coffee extract possesses antibacterial activity against a wide range of microorganisms, including Staphylococcus aureus and Streptococcus mutans, whereas green coffee extract exhibits no such activity. The naturally occurring coffee compounds, such as chlorogenic acids and caffeine, cannot therefore be responsible for the significant antibacterial activity exerted by coffee beverages against both bacteria. The very low minimum inhibitory concentration (MIC) found for standard glyoxal, methylglyoxal, and diacetyl compounds formed during the roasting process points to these alpha-dicarbonyl compounds as the main agents responsible for the antibacterial activity of brewed coffee against Sa. aureus and St. mutans. However, their low concentrations determined in the beverage account for only 50% of its antibacterial activity. The addition of caffeine, which has weak intrinsic antibacterial activity, to a mixture of alpha-dicarbonyl compounds at the concentrations found in coffee demonstrated that caffeine synergistically enhances the antibacterial activity of alpha-dicarbonyl compounds and that glyoxal, methylglyoxal, and diacetyl in the presence of caffeine account for the whole antibacterial activity of roasted coffee.  相似文献   

15.
The mineral ion composition of six different cultivars of Bahraini dates palm (Phoenix dactylifera) seeds (Khalas, Murzban, Khunaizi, Khawajah, Khasaib Asfor, and Khaseeb) were analyzed using flame atomic absorption spectroscopy (AA and ICPS). Murzban was found to contain the higher mineral ion content. The essential bulk metal ions in the six cultivars were found to be dominant, where [K+] was the highest and [Ca2+] was the lowest. The decreasing order of essential trace metal ion concentrations is Fe2+ > Mn2+ > Zn2+. Lead ion content was found to be higher than cadmium ion as metal ion pollutant. Mineral ion contents of Bahraini date palm seeds and those of imported coffee grain and barley were studied, because date palm seeds, coffee grain, and barley are used for coffee drinks.  相似文献   

16.
Seeds of scarlet runner bean ( Phaseolus coccineus L.) were analyzed for alpha-amylase inhibitor (alpha-AI) activity. Through the use of polyclonal antibodies raised against pure alpha-AI-1 from common bean ( Phaseolus vulgaris L.), typical alpha-AlphaIota polypeptides (Mr 14-18 kDa) as well as a large polypeptide of Mr 32000 Da, usually referred to as "amylase inhibitor like", were detected. The inhibitor activity present in four accessions of P. coccineus was examined, both in semiquantitative zymograms allowing the separation of different isoforms and in quantitative assays against human salivary amylase, porcine pancreatic amylase, and coffee berry borer, Hypothenemus hampei Ferrari (Coleoptera: Scolytidae) amylase. Differential inhibition curves lead to the suggestion that the gene encoding one of the inhibitors in P. coccineus (in accession G35590) would be a good candidate for genetic engineering of coffee resistance toward the coffee berry borer. An in vitro proteolytic digestion treatment of pure alpha-AlphaIota-1 resulted in a rapid loss of the inhibitory activity, seriously affecting its natural capacity to interact with mammalian alpha-amylases.  相似文献   

17.
Relationships between volatile and nonvolatile compounds and the antioxidant capacity of coffee brews prepared from commercial conventional and torrefacto roasted coffees, employing commonly used doses and prepared by four brewing procedures (filter, plunger, mocha, and espresso machine) were assessed. Significant correlations between volatile Maillard reaction products and antioxidant capacity (measured by both 2,2-diphenyl-1-picrylhydrazyl radical and redox potential methods) were not observed. Highly positive correlations between browned compounds and caffeine with both antioxidant capacity parameters were reported. Principal component analysis allowed coffee brews separation according to coffee roasting processes (PC1) and brewing procedures (PC2), showing that in all cases coffee brews from torrefacto roasted coffee were more antioxidant that those extracted from conventional ones; also, coffee brews extracted by an espresso machine were more antioxidant than those extracted by mocha, plunger, and filter machines.  相似文献   

18.
In this study, Brazilian coffee beans processed to different stages of roast at 210, 220, 230, and 240 °C were analyzed for pH value, titratable acidity, moisture content, and color lightness. Fourier transform infrared (FTIR) spectroscopy, in conjunction with principal component analysis, was conducted to study the effects of process time and temperature on the IR-active components of the acetyl acetate extract of the roasted coffee. The results showed that high-temperature-short-time resulted in higher moisture content, higher pH value, and higher titratable acidity when the beans were roasted beyond the start-of-second-crack stage, as compare to low-temperature-long-time process (LTLT). The LTLT process also resulted in greater IR absorbance for aldehydes, ketones, aliphatic acids, aromatic acids, and caffeine carbonyl bands on the FTIR spectra. Clusters for principal component score plots were well separated, indicating that the changes IR-active components in the coffee extracts, due to the different roasting treatments, can be discriminated by the FTIR technique. On the basis of the loading plots of principal components, changes of IR-active compounds in the coffee extract at various stages of roasting were discussed.  相似文献   

19.
New experimental data on the extraction of caffeine from guaraná seeds and maté tea leaves, and theobromine from cocoa beans, with supercritical CO2 were obtained using a high-pressure extraction apparatus. The effect of the addition of ethanol to carbon dioxide on the extraction efficiency was also investigated. Caffeine extraction yields of 98% of the initial caffeine content in both wet ground guaraná seeds and maté tea leaves were obtained. Extractions of caffeine from guaraná seeds and maté tea leaves also exhibited a retrograde behavior for the two temperatures considered in this work. In the removal of theobromine from cocoa beans, a much smaller extraction yield was obtained with longer extraction periods and consequently larger solvent requirements. The results of this study confirm the higher selectivity of CO2 for caffeine in comparison with that for theobromine, and also the influence of other components in each particular natural product on the extraction of methylxanthines. The effect of the addition of ethanol to carbon dioxide on the extraction of methylxanthines was significant, particularly in the extraction of theobromine from cocoa beans. In general, the use of ethanol results in lower solvent and energy requirements and thereby improved extraction efficiency.  相似文献   

20.
Nutritional and physiological significance of micronutrients in coffee plants, especially with regard to nickel (Ni) is still unknown. The dynamics of nitrogen (N), phosphorus (P), potassium (K) and Ni accumulation in coffee fruits, as well as their relationships with total soluble protein, amino acids, reducing sugars, and starch content during coffee fruit development (green, ripe, and dry fruits), were investigated. Coffee trees received three N fertilizer rates (0, 150, and 300 kg of N ha?1) as ammonium sulfate split into three applications per year. Nitrogen fertilization increased reducing sugars and starch concentrations in ripe fruits. In contrast, green fruits showed the highest amino acid and Ni concentrations. Fruit Ni concentration decreased in both green and ripe fruits as N rates increased; thus, indicating the possibility of either a N-associated dilution effect on Ni concentration or that Ni uptake by roots and/or transport to developing fruit was limiting. Plant nutritional status and fruit development stage influenced the coffee grain chemical composition. Furthermore, the variation in reducing sugars and starch content was more closely linked to the stage of fruit development than to N supply. A supposed relationship among the decreased of caffeine, starch, amino acids, and proteins with Ni content during green fruit development suggests a fundamental role for Ni in coffee fruit ripening. The interaction between N and Ni metabolism during fruit ripening might influence the chemical parameters involved in the coffee grain quality. This is the first report documenting changes in Ni concentrations of coffee fruit as a function of N fertilization rates and the development stage, but further research is needed to better understand the significance of N-Ni interaction in developing coffee fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号