首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
蔡祖聪 《土壤学报》2003,40(2):239-245
用15N分别标记尿素和KNO3,研究了淹水条件下 ,黄泥土和红壤性水稻土的无机氮转化过程及尿素和KNO3对氮素转化过程的影响。结果表明 ,淹水条件下 ,土壤中存在15NH 4 的成对硝化和反硝化过程。红壤性水稻土15NH 4 硝化只检测到15NO- 2 ,但有反硝化产物15N2 生成 ,因此 ,很可能存在着好气反硝化过程。15NO- 3浓度的下降符合一级反应方程 ,黄泥土的速率常数几乎是红壤性水稻土的 1 0倍。反硝化过程和DNRA过程共同参与15NO- 3的还原。加入尿素提高土壤pH ,增加黄泥土DNRA过程对反硝化过程的基质竞争能力 ,但反硝化过程仍占绝对优势。加入尿素或KNO3改变土壤pH是导致对无机氮转化影响有所不同的主要原因 ,浓度的作用较为次要。  相似文献   

2.
NBPT与DMPP不同剂量组合对尿素氮转化的影响   总被引:3,自引:0,他引:3  
采用室内模拟试验的方法,探讨了脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)和硝化抑制剂3,4-二甲基吡唑磷酸盐(DMPP)的不同浓度组合对尿素氮转化的影响。结果表明,NBPT与DMPP不同浓度组合均不同程度的延缓了尿素的水解,使尿素N水解产物更加以NH4+-N形态保持在土壤中;延缓了硝化作用进程并减少了硝酸盐在土壤累积,在此基础上增加了土壤有效态N含量。综合不同浓度组合对尿素水解的抑制、土壤NH4+-N和NO3--N含量变化、硝化作用抑制效果、土壤有效态N水平等指标并结合成本考虑,NBPT和DMPP分别为0.1%和0.5%施氮量时为最适宜的组合。  相似文献   

3.
采用15N同位素稀释法研究不同层次土壤氮素总转化速率   总被引:2,自引:0,他引:2  
兰婷  韩勇  唐昊冶 《土壤》2011,43(2):153-160
采用15N同位素稀释方法,开展短期(7天)室内培养实验,估算了一水稻土0~20、20~60和60~90 cm土层土壤主要N素转化过程的总转化速率,结果表明,标记N溶液加入后2 h内各土层土壤的总矿化、硝化、固定速率显著高于其他时间段(p<0.01)。2 h后,矿化速率在小范围内起伏。0~20 cm土层土壤N素的硝化速率随培养时间延长而降低,另外两层土壤则基本保持稳定,硝化速率的变化与硝化作用底物NH4+-N浓度的变化呈显著正相关。值得注意的是,外源无机N溶液加入后2 h内,大量NH4+-N和NO3--N被固定,并认为N素的非生物固定起主导作用。2 h后,出现了N素在固定与再矿化间反复转换的现象。实验结果表明,与净转化速率相比总转化速率能更好地描述单个N素转化过程,但由于外源N加入对N素转化的影响、再矿化作用以及忽略了N素转化过程中的气体损失、DNRA(硝态氮异化还原为铵)过程等,本研究结果与真实值间存在一定差异。  相似文献   

4.
李振高  俞慎  吴胜春  王俊华  潘映华 《土壤》2003,35(6):490-494
本文采用自行设计根箱,研究了不同形态N肥(硫铵、尿素)施用条件下,植稻模拟生态系统中水稻苗期根圈微生物生物量C、N和亚硝酸细菌及反硝化细菌的动态变化。结果表明:不同N肥处理的水稻根圈土壤中微生物生物量C和N均高于非根圈土壤,而尿素处理又高于硫铵。两组N肥处理的水稻根圈土壤中亚硝酸细菌和反硝化细菌数量也比非根圈土壤高。硫铵处理的根圈亚硝酸细菌数量在施肥后第7天达到高峰;反硝化细菌数量有随时间呈递增现象。而尿素处理的根圈亚硝酸细菌和反硝化细菌均在第11天出现数量高峰。说明水稻根圈有明显的根圈效应,亚硝酸细菌和反硝化细菌的存在,是引起土壤硝化、反硝化气态N损失的潜在动力;对N的生物有效性而言,施用尿素比硫铵具有明显滞后期,有利于土壤N素对植物生长的持续供应,减少N素损失和环境污染。  相似文献   

5.
蔡祖聪 《土壤学报》2003,40(3):414-419
采用15N技术标记尿素和KNO3,研究了淹水条件下黄泥土和红壤性水稻土生成N2 O的主要过程。结果表明 ,黄泥土反硝化过程产物以N2 为主 ,N2 O的生成量可以略而不计。加入KNO3促进NO- 3异化还原成铵过程 ,从而增加N2 O生成速率。红壤性水稻土主要通过反硝化或好气反硝化过程生成N2 O ,随着土壤pH的提高或NO- 3 浓度升高 ,N2 O生成速率增大。无论是黄泥土还是红壤性水稻土 ,有相当一部分样本的N2 O的15N丰度在NO- 2 、NO- 3 、NH 4的15N丰度范围外 ,由此推论 ,氮转化生成N2 O的过程应在微生物细胞内进行。  相似文献   

6.
土壤水分平衡与作物生长模拟模型的开发与验证   总被引:1,自引:1,他引:0  
基于模块化和面向对象化程序设计思想,根据土壤水分平衡过程和作物生长发育的特点,采用VisualBasic程序设计语言,实现了界面友好的土壤水分平衡与作物生长模拟模型。在土壤、作物和气象参数数据文件的支持下,对红壤性水稻土上的作物生长过程进行了模拟和验证,田间验证结果表明,冬小麦田间0~5,5~15,30~35cm三个土壤深度土壤含水量模拟值与实测值相对误差分别为7.0%、8.1%、4.5%。小麦、早稻、晚稻、玉米产量模拟值与实测值之间的相对误差分别为6.7%、2.4%、5.3%、1.9%。  相似文献   

7.
棉花膜下滴灌土壤水盐运移规律数值模拟   总被引:3,自引:1,他引:3  
通过棉花桶栽试验,获取棉花全生育期土壤蒸发蒸腾量以及土壤含水率、含盐量变化规律。以土壤水分运动基本方程和溶质运移对流-弥散方程为基础,在考虑棉花根系吸水和土壤蒸发蒸腾条件下,对膜下滴灌棉花全生育期时段内土壤中水盐运移规律进行了数值模拟,并与实测的土壤含水率和含盐量进行了对比分析。其结果显示:土壤表层和深层的土壤含水率和含盐量模拟值与实测值均存在不同程度的偏差,而中间层土壤含水率和含盐量的模拟值较接近实测值。因此,只要能够获得足够的精确的大田实测资料,就可以将该模型应用于棉花膜下滴灌土壤水盐运移规律的实际预测。  相似文献   

8.
研究尿素与硝化抑制剂3,4-二甲基吡唑磷酸盐(DMPP)混施对新疆沙砾土壤氮素转化及葡萄叶片光合的影响,以期为DMPP科学应用提供理论依据。以葡萄品种“赤霞珠”为供试作物,试验设不施肥、单施尿素以及在尿素中分别添加0.5%、1%、3%、5%的DMPP(含氮量的0.5%、1%、3%、5%),共6个处理,探讨不同浓度DMPP与尿素混施对土壤中NH4+-N、NO3--N、硝化抑制率、pH值以及叶片SPAD值、净光合速率和胞间CO2浓度等指标的影响。结果表明:施入尿素使土壤中NH4+-N含量增幅达150 mg/kg以上;与单施尿素相比,添加不同浓度的DMPP不仅可以延缓NH4+-N下降趋势,还能有效降低土壤中NO3--N上升的趋势,但DMPP在0.5%~5%浓度范围内未发生明显的剂量效应,其中添加1%DMPP作用效果最显著;不同浓度的DMPP对土壤的硝化抑制率也不相同,1%DMPP在第14 d的抑制效果可达到49.60%;与不施肥相比,施入尿素可显著提高叶片净光合速率和SPAD值;利用主成分分析提取出的4个主成分可涵盖原始信息的84.146%,其中1%DMPP处理得分最高。综上所述,尿素与DMPP混施可显著抑制NH4+-N向NO3--N转化,提高硝化抑制率,降低表观硝化率,使土壤中保持较高水平的NH4+-N含量,同时还可显著提高叶片净光合速率。不同浓度DMPP处理间有一定的显著差异,从经济效益和应用效果综合考虑,新疆沙砾土中以1%DMPP与尿素配施效果最佳。  相似文献   

9.
水稻根系生长对不同氮形态响应的动态变化   总被引:5,自引:2,他引:3  
赵学强  施卫明 《土壤》2007,39(5):766-771
土壤养分供应变异很大,植物根系生长对这种养分变异的响应非常敏感.为了探索水稻根系生长对N素供应响应的动态变化规律以及这种适应性变化与水稻N效率之间的关系,采用水培方法,以两个苗期不同N效率水稻品种桂单4号和南光为研究材料,比较了不同铵硝比、不同浓度NH4、不同浓度NO3-和不同浓度NH4NO3对水稻根系构型参数的影响.结果表明:NH4 和NH4NO3供应显著降低了总根长、总根表面积和总根体积,且有增加平均根直径的趋势;而NO3-供应在0~1 mmol/L浓度范围内,增加了总根长、总根表面积和总根体积,降低了平均根直径,但当NO3-供应超过1 mmo1/L后,NO3-却有降低总根长、总根表面积和总根体积的趋势,对平均根直径没有明显影响.苗期N高效基因型桂单4号总根长和总根表面积在各种N素营养条件下均显著高于N低效基因型南光.上述结果表明,NH4 和NH4NO3都抑制了水稻根系生长,而NO3-为低浓度诱导、高浓度抑制根系生长,根长和根表面积,对提高水稻N效率贡献较大.  相似文献   

10.
土壤-作物-大气系统水热碳氮过程耦合模型构建   总被引:16,自引:11,他引:5  
定量描述农田生态系统中土壤水分动态、碳氮循环过程和作物生长发育规律,对水氮资源高效利用、作物生产决策和环境保护具有十分重要的意义。该文在总结前人研究成果的基础上,引用了联合国粮食及农业组织的气象模块、荷兰的PS123作物模型和丹麦的Daisy模型的碳氮循环模块;借鉴了RZWQM和Hydrus-1D的水分溶质运移模块的相关理论,并在其基础上进行了修改与完善,构建了土壤-作物-大气系统水热碳氮耦合模拟模型WHCNS(soil water heat carbon and nitrogen simulation)。该模型以天为步长,考虑了气象条件、作物生物学特性和田间管理驱动。土壤水分入渗和再分布过程分别采用Green-Ampt模型和Richards方程来描述。土壤氮素运移使用对流-弥散方程来描述,源汇项中考虑碳氮循环的各个过程(有机质矿化、生物固持、尿素水解、氨挥发、硝化、反硝化和作物吸收等),在根系吸水吸氮源汇项中引入了补偿性吸收机制。有机质模块完全来自Daisy模型,将有机质库划分为3个快库和3个慢库。利用改进的荷兰PS123模型实现了作物生长发育进程、干物质生产、干物质分配及作物产量的模拟,通过水氮胁迫校准因子来实现水氮限制下作物产量的模拟。最后应用华北地区(山东泰安)冬小麦-夏玉米轮作体系2 a的田间观测数据对该模型进行了校验。结果表明,剖面土壤水分和硝态氮浓度、叶面积指数、作物产量与实测值均吻合良好,模拟误差均在合理范围之内,特别是对产量的模拟较好,均方根误差为206~319 kg/hm2,相关系数为0.90,模型效率值均大于0.75,一致性指数值均大于0.9。WHCNS模型能够较好地模拟土壤水分动态、氮素运移及去向、作物生长发育等过程,表明该模型适用于中国华北地区高度集约化的农田生产系统。  相似文献   

11.
土壤水氮动态及作物生长耦合EPIC-Nitrogen2D模型   总被引:2,自引:1,他引:1  
为计算农业区不同作物生长条件下土壤水氮迁移转化过程,该文基于Erosion/Productivity Impact Calculator(EPIC)作物模型建立了作物根系生长子模块,将其进行有限元数值离散,与土壤氮素迁移转化模型Nitrogen2D耦合,使模型能计算作物生长条件下土壤水氮迁移转化过程。该作物生长模块可计算多种胁迫下作物根系对土壤水分和氮素的动态吸收速率,及作物收获时的生物量和吸氮量。采用武汉大学灌溉排水试验场冬小麦生长条件下土壤水氮试验数据对模型进行了率定,并用于土壤水氮分布和作物生物量预测,土壤含水率、氮素的模拟值与实测值的一致性系数分别为0.86~0.97、0.52~0.98,Nash效率系数为0.59~0.90(含水率)、0.44~0.93(土壤氮素),说明模拟结果与实测值吻合度较高。同时,分别采用该文的作物生长模块和简单根系吸收模块计算根系吸氮过程,结果显示,简单根系吸收模型会显著高估作物吸氮量,而作物生长模型则由于考虑了根系生长和各环境因子的胁迫作用,计算结果更符合作物实际吸氮过程,计算的根系吸氮量相对均方根误差为3.4%~46%。  相似文献   

12.
试论碳酸氢铵的农业化学性质   总被引:5,自引:0,他引:5       下载免费PDF全文
氮肥入土后与土壤各组分相互作用过程中所表现的性质,如被土壤吸附,经受淋失,挥发,硝化和反硝化等,都是它的农业化学性质。碳酸氢铵虽然易于分解挥发,贮运施用不便,但室内模拟试验证实,碳铵与硫铵及尿素相比,易被土壤吸附,不易遭受淋失,入土后挥发锐减,硝化速率则相似。故只要因势利导,采用深施方法,碳铵的田间肥效可相似于其他氮肥。碳铵、硫铵和尿素在不同土壤上的挥发历程可用乘方回归方程y=Axb模拟,初始挥发量(毫克N/小时)和回归常数A的相关达显著平准;在不同土壤上的硝化历程,可用指数回归方程y=AcBx模拟,三种氮肥在同一土壤上的初始硝化%和回归常数A,B值均极近似,但在不同土壤上的差异较大,说明氮肥入土后的硝化速率主要取决于土壤性质。  相似文献   

13.
为了提高蓄水坑灌条件下土壤氮素的利用率,建立了蓄水单坑土壤氮素迁移转化的数学模型,利用有限体积法进行了求解,并利用室内蓄水单坑灌施尿素条件下土壤水分和氮素运移转化实测数据进行了验证。结果表明,蓄水单坑灌施尿素1 700 mg/L条件下,土壤铵态氮主要分布在20~70 cm深度范围内,1~3 d内土壤铵态氮含量明显增大,7 d后开始减小;土壤硝态氮主要分布在湿润锋附近,1~7 d内硝化作用逐渐增强,20~70 cm范围内硝态氮浓度不断增大。土壤含水率、湿润锋、铵态氮、硝态氮含量计算值与实测值吻合较好,说明所建立的蓄水单坑土壤氮素迁移转化的数学模型是正确的,采用有限体积法求解是可行的。该模型可较好地模拟蓄水坑灌单坑土壤氮素迁移转化的动态变化。  相似文献   

14.
通过室外模拟田间培养试验,研究不同硝化抑制剂及其复配后的硝化抑制效果。结果表明:不同硝化抑制剂,明显抑制了NH4+-N向NO3--N的转化。硝化抑制剂1-甲胺酰基-3,5-二甲基吡唑(CMP)有明显的抑制效果,优于4氨基-1,2,4-三唑盐酸盐(ATC)、双氰胺(DCD);硝化抑制剂CMP与DCD复配的抑制效果显著,硝化抑制率为35.6%。为了结合生产实际获得最优性价比,在硝化抑制剂复配比率方面尚需进一步研究。  相似文献   

15.
不同氮肥对侵蚀坡面土壤氮素流失的影响   总被引:1,自引:0,他引:1  
在模拟降雨条件下研究等氮量和相同施肥方式下不同氮肥品种的氮素流失特征。结果表明:不同氮肥品种对氮素流失量有显著影响,施用碳酸氢铵、普通尿素的小区全氮、铵态氮和硝态氮的流失量较大,而施用包膜控释尿素则可以显著降低氮素流失量。不同施肥处理的小区径流液中全氮、NH4+-N及流失泥沙中全氮的流失规律表现为碳酸氢铵>尿素>硫包膜控释尿素>树脂包膜控释尿素>对照;径流液中NO3--N的流失量表现为尿素>碳酸氢铵>硫包膜控释尿素>树脂包膜控释尿素>对照。  相似文献   

16.
不同保水剂对土壤水分和氮素保持的比较研究   总被引:16,自引:0,他引:16  
保水剂应用对土壤水肥利用效率具有重要影响。本文采用土柱模拟试验方法,以不施保水剂处理为对照,比较3种保水剂——聚丙烯酸盐类保水剂(A)、有机–无机复合保水剂(B)、腐植酸型多功能保水剂(C)对土壤水分和两种氮肥(尿素、硝酸铵)的保持效应,筛选保水剂与氮肥的合理施用配合。8次土壤淋溶结果表明:3种保水剂对土壤水分和两种氮肥都有保持作用,但差异明显。在保水方面,A、B保水剂土壤水分保持效果较好且保水效果相近,C保水剂相对较差;随浇水次数增加,3种保水剂的保水效果均有所降低。在保肥方面,C保水剂对两种氮素的保持效果显著优于对照,且对硝酸铵保持效果优于对尿素的保持效果;A保水剂对尿素的保持效果明显,但对硝酸铵的保持效果很小,淋溶8次后,甚至对氮素淋溶有促进作用;B保水剂对尿素的保持效果8次淋溶后与C保水剂相近,对硝酸铵的保持效果介于其他两种保水剂之间。此外,保水剂对土壤脲酶活性有一定影响,其变化与氮素转化有关;施用尿素的土壤中,保水剂对土壤脲酶活性的影响为B保水剂C保水剂A保水剂,而施用硝酸铵的土壤中为A保水剂B保水剂C保水剂。  相似文献   

17.
黑土-春小麦中三种化学氮肥的去向   总被引:12,自引:3,他引:9  
金翔  韩晓增  蔡贵信 《土壤学报》1999,36(4):448-453
用^15N田间微区试验研究了黑土-春小麦中作基肥施用的尿素、碳 和硝酸钾三种氮肥的氮素去向。试验设在黑龙江省海伦市郊区,氮肥用量为纯N75kg/hm^2,施肥深度为10cm。结果表明,硝酸钾和尿素的氮素利用率相当,分别为58.4%和55.9%,显著高于碳铵(42.6%)。硝酸钾的土壤中的残留率(28.7%)显著低于碳铵(38.8%)和尿素(38.2%),氮素总损失在5.8% ̄18.6%之间,碳铵的  相似文献   

18.
根据氮肥施入土壤后的转化特性进行氮肥的高效调控和管理是提高氮肥利用效率、缓解氮肥污染的重要措施。为探究不同氮肥在石灰性潮土中的转化特性差异及硫代硫酸铵(ammonium thiosulfate,ATS)作为氮肥调控剂对尿素氮转化的影响,该研究采用室内土壤培养(土壤水分含量为田间持水量的60%,温度25 ℃)试验方法,以尿素、硫酸铵、氯化铵和ATS作为供试肥料,比较4种氮肥施入石灰性潮土后的转化特性差异,并以ATS作为氮素调控剂,以单施尿素作为对照,探究尿素配施不同用量ATS对尿素氮转化的影响。结果表明,4种供试氮肥在石灰性潮土中的转化过程明显不同。尿素在石灰性潮土中的水解速率最快,硝化作用强度也最高,硫酸铵其次;氯化铵由于Cl-的硝化抑制作用,土壤表观硝化率在7~21 d显著低于尿素和硫酸铵(P<0.05);ATS施入土壤后,NH4+-N转化为NO2--N的速率最高,而NO2--N转化为NO3--N的速率最低,NH4+-N在土壤中的存留时间最长,出现峰值之后也一直保持最高的含量,表观硝化率最低。将ATS作为氮素调控剂与尿素配合施用,当其用量在60 mg/kg(含S量)以上时,既表现出了明显的抑制尿素水解的作用效果,也表现出了显著的硝化抑制作用( P <0.05),且随着ATS用量的增加,抑制效应明显增强。这对于减少氮素损失,提高氮肥利用效率具有积极意义。但供试4种氮肥施入土壤后均出现了亚硝酸盐的累积,其中ATS处理的累积量显著高于尿素、硫酸铵和氯化铵(P<0.05),累积持续时间也最长。ATS作为氮素调控剂调控氮素转化,也出现了类似的结果,且随着ATS用量增加,亚硝酸盐在土壤中存留时间明显延长,含量和峰值明显提高,出现峰值的时间也明显延后。  相似文献   

19.
改性尿素硝酸铵溶液调控氮素挥发和淋溶的研究   总被引:1,自引:0,他引:1  
为了提高肥料的利用率,以尿素硝酸铵溶液为原料、聚氨酸为保护剂,复合抑制剂NBPT(N-丁基硫代磷酰三胺)和DMPP(3,4-二甲基吡唑磷酸盐)为材料,开发出改性尿素硝酸铵溶液(YUL1和YUL2),研究其对华北平原夏玉米追肥过程中的氨挥发和淋溶损失的调控效果。田间试验设置6个处理:不施氮肥(CK)、农民习惯追施尿素(CN)、优化追施尿素(CNU)、优化追施尿素硝酸铵溶液(UAN)、优化追施改性尿素硝酸铵溶液(YUL1)和优化追施改性尿素硝酸铵溶液(YUL2)。采用扫描电镜和能谱仪分析相关指标变化,在夏玉米喇叭口期追施氮肥后15d内进行田间原位连续动态观测氨挥发和土壤铵态氮和硝态氮变化,并在玉米成熟期测定产量,计算经济效益。结果表明,改性尿素硝酸铵溶液清澈无杂质,流延后成膜表面光滑、致密,抑制剂在膜表面分布均匀;能谱测试膜层表面磷硫含量增高,证明复合抑制剂与尿素硝酸铵溶液达到有效融合。在同等优化施氮量下:与CNU相比, YUL1氨挥发总量显著降低19.3%, YUL2增加9.6%;与UAN相比, YUL1、YUL2分别显著降低57.3%和42.0%。与其他施氮处理相比, YUL1和YUL2夏玉米季生长中后期0~20 cm土层依然保持相对较高的氮素含量水平,夏玉米收获后土壤硝态氮含量分别比CNU高46.0%和43.4%,比UAN高45.6%和44.7%;180~200cm土层硝态氮含量显著低于其他处理。在保证产量和净收益的同时,改性尿素硝酸铵肥料显著降低了氮素的氨挥发和淋溶损失浓度,尿酶抑制剂含量相对较高的YUL1抑制氨挥发的效果更好,硝化抑制剂含量相对高的YUL2硝态氮向下淋失的风险更小。  相似文献   

20.
Abstract

Volatilization of ammonia derived from nitrogen (N) fertilizers and its possible reabsorption by crops depend on specific soil, climate, and atmospheric conditions, as well as the method of fertilizer application and plant architecture. In an experiment carried out in Piracicaba, State of São Paulo, Brazil, the volatilization of ammonia derived from urea, ammonium sulfate, and natural soil were quantified using static semi‐open N‐ammonia (NH3) collectors. Fertilizers were top‐dressed under the plant canopy on top of dead leaf mulch. In another experiment, the reabsorption of the volatilized ammonia by plants was quantified using 15N‐labeled urea. Results showed, as expected, that volatilization derived from urea was seven times more intense in relation to ammonium sulfate, whose volatilization was very low, and slightly more than the natural volatilization from soil at pH 5.3. The loss of ammonia from the ammonium sulfate was very low, little more than twice of that of the natural soil. Through isotopic labeling, it was verified that 43% of the volatilized N‐NH3 was reabsorbed by coffee plants, which gives evidence that volatilization losses are greatly reversed through this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号