首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Dry evergreen forest (DEF) and dry deciduous dipterocarp forest (DDF) are major forest types extensively distributed in northeastern Thailand, exhibiting different nutrient cycling properties. This study aims to improve our understanding on the pattern of mass loss and nitrogen release from two categories of roots (fine, <2 mm and small, 2–5 mm) of Hopea ferrea at DEF and fine roots of mixed trees and dwarf bamboo (Arundinaria pusilla) at DDF sites. Decomposition experiment was performed for more than 12 months using buried litter bag technique. Initial chemistry was significantly different among the four root litters; fine root of H. ferrea exhibited a low ratios of C:N and acid-insoluble:N. The fine root of dwarf bamboo was characterized by high contents of total carbohydrate and ash. Decomposition rate constants (year−1) of ash-free weight remaining were 1.27 and 0.55 for fine and small roots of H. ferrea, and 0.73 and 0.66 for fine root of mixed trees and dwarf bamboo, respectively. At the end of the experiment, the N concentration in fine and small roots of H. ferrea increased to 1.5 times the initial concentration. Whereas, N mass of dwarf bamboo decreased during the experiment. This suggests a different pattern of root decomposition and N release in two forest ecosystems. Generally, the fine root decomposition was faster in the DEF than in the DDF. The role of initial litter chemistry was more pronounced than the climatic seasonality on the belowground decomposition pattern in our study.  相似文献   

2.
Sedimentation in Mangrove Forests   总被引:1,自引:0,他引:1  
The tidal currents in mangrove forests are impeded by the friction caused by the high vegetation density. The tidal currents are also complex comprising eddies, jets and stagnation zones. The sediment particles carried in suspension into the forest during tidal inundation are cohesive, mainly clay and fine silt, and form large flocs. These flocs remain in suspension as a result of the turbulence created by the flow around the vegetation. The intensity of sedimentation is largest for trees forming a complex matrix of roots such as Rhizophora sp. and smallest for single trees such as Ceriops sp. The flocs settle in the forest around slack high tide. At ebb tides the water currents are too small to re-entrain this sediment. Hence the inundation of coastal mangrove forests at tidal frequency works as a pump preferentially transporting fine, cohesive sediment from coastal waters to the mangroves. Mangroves are thus not just opportunistic trees colonising mud banks but actively contribute to the creation of mud banks.  相似文献   

3.
Root respiration may account for as much as 60% of total soil respiration. Therefore, factors that regulate the metabolic activity of roots and associated microbes are an important component of terrestrial carbon budgets. Root systems are often sampled by diameter and depth classes to enable researchers to process samples in a systematic and timely fashion. We recently discovered that small, lateral roots at the distal end of the root system have much greater tissue N concentrations than larger roots, and this led to the hypothesis that the smallest roots have significantly higher rates of respiration than larger roots. This study was designed to determine if root respiration is related to root diameter or the location of roots in the soil profile. We examined relationships among root respiration rates and N concentration in four diameter classes from three soil depths in two sugar maple (Acer saccharum Marsh.) forests in Michigan. Root respiration declined as root diameter increased and was lower at deeper soil depths than at the soil surface. Surface roots (0-10 cm depth) respired at rates up to 40% greater than deeper roots, and respiration rates for roots < 0.5 mm in diameter were 2.4 to 3.4 times higher than those for roots in larger diameter classes. Root N concentration explained 70% of the observed variation in respiration across sites and size and depth classes. Differences in respiration among root diameter classes and soil depths appeared to be consistent with hypothesized effects of variation in root function on metabolic activity. Among roots, very fine roots in zones of high nutrient availability had the highest respiration rates. Large roots and roots from depths of low nutrient availability had low respiration rates consistent with structural and transport functions rather than with active nutrient uptake and assimilation. These results suggest that broadly defined root classes, e.g., fine roots are equivalent to all roots < 2.0 mm in diameter, do not accurately reflect the functional categories typically associated with fine roots. Tissue N concentration or N content (mass x concentration N) may be a better indicator of root function than root diameter.  相似文献   

4.
长白山阔叶红松林群落的细根现存量及养分内循环   总被引:3,自引:0,他引:3  
细根(直径≤2mm)是植物吸收水分和养分的重要器官,细根通过呼吸作用和周转过程向土壤输送有机质(Jackson et al.,1997;王政权等,2008)。细根生物量虽然仅占植物体总生物量的5%左右,但由于细根生长和周转迅速,其生长量可占森林初级生产力的50%~75%(Nadelhoffer et al.,1992),每  相似文献   

5.
Fine roots play an important role in above- and belowground carbon (C) allocation in forest ecosystems. However, few studies have focused on the seasonal dynamics of fine roots with different branching orders. The objective of this study is to provide insight to the seasonal heterogeneity in roots of different orders within root hierarchies of poplar trees under different soil conditions. Three plots were established in high (plantation A) and low (plantation B) soil nutrient conditions. Fine roots were sampled in each of four seasons throughout one year. All sampled roots were classified into one to five groups depending on their branching order, and the dry biomass of living roots and the concentrations of C, nitrogen (N) and total non-structural carbohydrate (TNC) were examined. Low order (first- to second-order) roots demonstrated more significant seasonal dynamics than high order roots, and the biomass of first-order fine roots was positively influenced by soil temperature and moisture while the biomass of second-order fine roots was negatively affected by soil nutrient conditions. The different responses of fine roots to environmental fluctuations implied a high division of root function, even within low order roots. The C and N chemistry of poplar fine roots also differed significantly with branching order; element concentrations were lower in low order roots. Principal component analysis indicated that root order explained 98.2% of the variation in fine root chemistry. Moreover, the first-order roots in plantation A had greater C but less TNC concentrations than those in plantation B, suggesting that C allocation in low order roots may be more responsive to soil nutrient conditions. The allocation of C and N also exhibited significant seasonal dynamics (p < 0.05); the TNC concentration was highest in winter, whereas C:N ratios were significantly lower in the summer and fall in each order of fine roots (p < 0.05). All these results suggest that branching order may be related to root growth and photoassimilate allocation, which should receive greater attention in future studies on C and N fluxes in forest ecosystems.  相似文献   

6.
Red wood ants (Formica rufa group, RWAs) are common insects in boreal forests in Fennoscandia, and they build large, long-lived mounds as their nests. RWA mounds are enriched with carbon and nutrients, but little information is available about how they affect root distribution and the nutrient uptake of trees. In this study, we investigated the biomass, biomass density, nutrient concentrations, and amounts of fine (<2 mm) and coarse (>2 mm) roots in RWA mounds, and compared them with those of surrounding forest soil in mixed coniferous stands of different age classes in Finland. Neither fine nor coarse root biomasses differed significantly between the aboveground parts of the mounds and the organic layer of the soil. Root biomass density was lower in mounds than in the organic layer. However, fine root biomass and biomass density were higher in the belowground parts of mounds than in the surrounding mineral soil. Macroelement (N, Ca, K, P, S, Mg) and Zn and Cu concentrations in roots in the mounds were significantly higher than those in the organic layer. Root biomass and biomass density did not differ between stands of different age classes. The results of this study indicate that RWA mounds increase heterogeneity in root distribution in forest ecosystems, and also increase the availability of nutrients for plants that extend their roots inside RWA mounds.  相似文献   

7.
The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (<2mm) was much higher and more variable than those of larger diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.  相似文献   

8.
Nitrogen (N) deposition to alpine forest ecosystems is increasing gradually, yet previous studies have seldom reported the effects of N inputs on soil CO2 flux in these ecosystems. Evaluating the effects of soil respiration on N addition is of great significance for understanding soil carbon (C) budgets along N gradients in forest ecosystems. In this study, four levels of N (0, 50, 100, 150 kg N ha^-1 a^-1) were added to soil in a Picea baifouriana and an Abies georgei natural forest on the Tibetan Plateau to investigate the effect of the N inputs on soil respiration. N addition stimulated total soil respiration (Rt) and its components including heterotrophic respiration (Rh) and autotrophic respiration (Ra);however, the promoted effects declined with an increase in N application in two coniferous forests. Soil respiration rate was a little greater in the spruce forest (1.05 μmol CO2 m^-2 s^-1) than that in the fir forest (0.97 μmol CO2 m^-2 s^-1). A repeated measures ANOVA indicated that N fertilization had significant effects on Rt and its components in the spruce forest and Rt in the fir forest, but had no obvious effect on Rh or Ra in the fir forest. Rt and its components had significant exponential relationships with soil temperature in both forests. N addition also increased temperature sensitivity (Q10) of Rt and its components in the two coniferous forests, but the promotion declined as N in put increased. Important, soil moisture had great effects on Rt and its components in the spruce forest (P<0.05), but no obvious impacts were observed in the fir forest (P>0.05). Following N fertilization, Ra was significantly and positively related to fine root biomass, while Rh was related to soil enzymatic activities in both forests. The mechanisms underlying the effect of simulated N deposition on soil respiration and its components in this study may help in forecasting C cycling in alpine forests under future levels of reactive N deposition.  相似文献   

9.
通过对杉木、观光木混交林和杉木纯林细根的养分现存量动态进行研究 ,结果表明 ,混交林细根N、P养分现存量分别是纯林的 1.3和 1.2倍 ;年归还量分别是纯林的 1.2 3倍和 1.14倍 ,且分别占混交林凋落物N、P养分年归还量的 38.3%和 6 7.4 % ;年分解量分别是纯林的 1.2 6和 1.2 3倍 ,而年累积量分别是纯林的 1.2 3和 1.14倍 ,可见混交林细根具有比纯林更高的养分累积和周转能力。混交林和纯林群落中林下植被细根在群落细根N、P养分循环中占有重要地位 ,而杉木和观光木 <0 .5mm径级细根则是其细根养分循环功能的主体。混交林和纯林杉木活细根N养分现存量动态变化呈单峰型 ,P则呈双峰型 ;死细根N、P养分现存量动态变化均呈倒“S”型。混交林中观光木细根的N、P养分现存量动态变化与杉木的较相似 ,但其活细根P养分现存量动态变化呈单峰型。混交林与纯林中林下植被活细根N、P养分现存量动态变化均呈双峰型 ,而死细根的动态变化则呈单谷型  相似文献   

10.
Coarse and fine root respiration rates of aspen (Populus tremuloides Michx.) were measured at 5, 15 and 25 degrees C. Coarse roots ranged from 0.65 to 4.45 cm in diameter, whereas fine roots were less than 5 mm in diameter. To discriminate between maintenance and growth respiration, root respiration rates were measured during aboveground growing periods and dormant periods. An additional measurement of coarse root respiration was made during spring leaf flush, to evaluate the effect of mobilization of resources for leaf expansion on root respiration. Fine roots respired at much higher rates than coarse roots, with a mean rate at 15 degrees C of 1290 micromol CO2 m-3 s-1 during the growing period, and 660 micromol CO2 m-3 s-1 during the dormant period. The temperature response of fine root respiration rate was nonlinear: mean Q10 was 3.90 for measurements made at 5-15 degrees C and 2.19 for measurements made at 15-25 degrees C. Coarse root respiration rates measured at 15 degrees C in late fall (dormant season) were higher (370 micromol CO2 m-3 s-1) than rates from roots collected at leaf flush and early summer (200 micromol CO2 m-3 s-1). The higher respiration rates in late fall, which were accompanied by decreased total nonstructural carbohydrate (TNC) concentrations, suggest that respiration rates in late fall included growth expenditures, reflecting recent radial growth. Neither bud flush nor shoot growth of the trees caused an increase in coarse root respiration or a decrease in TNC concentrations, suggesting a limited role of coarse roots as reserve storage organs for spring shoot growth, and a lack of synchronization between above- and belowground growth. Pooling the data from the coarse and fine roots showed a positive correlation between nitrogen concentration and respiration rate.  相似文献   

11.
We measured respiration of 20-year-old Pinus radiata D. Don trees growing in control (C), irrigated (I), and irrigated + fertilized (IL) stands in the Biology of Forest Growth experimental plantation near Canberra, Australia. Respiration was measured on fully expanded foliage, live branches, boles, and fine and coarse roots to determine the relationship between CO(2) efflux, tissue temperature, and biomass or nitrogen (N) content of individual tissues. Efflux of CO(2) from foliage (dark respiration at night) and fine roots was linearly related to biomass and N content, but N was a better predictor of CO(2) efflux than biomass. Respiration (assumed to be maintenance) per unit N at 15 degrees C and a CO(2) concentration of 400 micro mol mol(-1) was 1.71 micro mol s(-1) mol(-1) N for foliage and 11.2 micro mol s(-1) mol(-1) N for fine roots. Efflux of CO(2) from stems, coarse roots and branches was linearly related to sapwood volume (stems) or total volume (branches + coarse roots) and growth, with rates for maintenance respiration at 15 degrees C ranging from 18 to 104 micro mol m(-3) s(-1). Among woody components, branches in the upper canopy and small diameter coarse roots had the highest respiration rates. Stem maintenance respiration per unit sapwood volume did not differ among treatments. Annual C flux was estimated by summing (1) dry matter production and respiration of aboveground components, (2) annual soil CO(2) efflux minus aboveground litterfall, and (3) the annual increment in coarse root biomass. Annual C flux was 24.4, 25.3 and 34.4 Mg ha(-1) year(-1) for the C, I and IL treatments, respectively. Total belowground C allocation, estimated as the sum of (2) and (3) above, was equal to the sum of root respiration and estimated root production in the IL treatment, whereas in the nutrient-limited C and I treatments, total belowground C allocation was greater than the sum of root respiration and estimated root production, suggesting higher fine root turnover or increased allocation to mycorrhizae and root exudation. Carbon use efficiency, the ratio of net primary production to assimilation, was similar among treatments for aboveground tissues (0.43-0.50). Therefore, the proportion of assimilation used for construction and maintenance respiration on an annual basis was also similar among treatments.  相似文献   

12.
Much uncertainty exists about the magnitude of woody tissue respiration and its environmental control in highly diverse tropical moist forests. In a tropical mountain rain forest in southern Ecuador, we measured the apparent diurnal gas exchange of stems and coarse roots (diameter 1-4 cm) of trees from representative families along an elevational transect with plots at 1050, 1890 and 3050 m a.s.l. Mean air temperatures were 20.8, 17.2 and 10.6 degrees C, respectively. Stem and root CO(2) efflux of 13 to 21 trees per stand from dominant families were investigated with an open gas exchange system while stand microclimate was continuously monitored. Substantial variation in respiratory activity among and within species was found at all sites. Mean daily CO(2) release rates from stems declined 6.6-fold from 1.38 micromol m(-2) s(-1) at 1050 m to 0.21 micromol m(-2) s(-1) at 3050 m. Mean daily CO(2) release from coarse roots decreased from 0.35 to 0.20 micromol m(-2) s(-1) with altitude, but the differences were not significant. There was, thus, a remarkable shift from a high ratio of stem to coarse root respiration rates at the lowest elevation to an apparent equivalence of stem and coarse root CO(2) efflux rates at the highest elevation. We conclude that stem respiration, but not root respiration, greatly decreases with elevation in this transect, coinciding with a substantial decrease in relative stem diameter increment and a large increase in fine and coarse root biomass production with elevation.  相似文献   

13.
Carbon (C), nitrogen (N), and phosphorous (P) levels and their stoichiometry in plant components (leaves, branch trunks, roots) of trees in a karst forest and non-karst forest are compared. The results show that the C contents, C:N and C:P ratios of dominant species in the karst forest were lower than those in the non-karst forest, but the N and P and the N:P ratio were higher;C:N:P ratios in plant organs of trees in the karst forest were in the order of trunks>roots>branches>leaves. However, C:N:P ratio in the non-karst forest trees were trunks>branches>roots>leaves. Moreover, ratio of C:N:P in trunks was highest and lowest in leaves in both forests. In non-karst forest trees, N:P was in the order of leaves> roots>branches>trunks. There were no significant differences in the ratio of N:P in different plant components of trees in the karst forest. However, in karst and non-karst forest trees, the ratio of N:P in leaves was highest;positive correlations between N and P contents, and N and N:P ratios were observed in both karst and non-karst forests (p<0.001). Negative correlations between P and N:P ratios (p<0.05) were observed in karst forest trees, while positive correlations were observed in non-karst forest trees.  相似文献   

14.
The mixed plantation of poplar (Populus spp.) and black locust (Robinia pseudoacacia) is one of the typical mixed stands with nitrogen-fixing and non-nitrogen-fixing species. Interaction between the two species in the mixed stand is harmonious and productivity is high, making this kind of mixed plantation a very successful pattern on poor sandy sites in north China. In this study, the fine root decomposition of the two species was investigated in the mixed plantation of 27-year-old Canadian poplar (P. canadansis) and 22-year-old black locust on sandy sites along the Chaobai River in Beijing. Mechanism of harmonious interaction between the two species was observed in the view of the nutrient cycle of fine roots. Results showed that: (1) the fine root decomposition of Canadian poplar and black locust trees was different. Concentrations of N, Ca and Mg gradually increased and those of P and K gradually decreased in the fine roots of poplar during the period of decomposition. Concentrations of N, P and K gradually decreased in the fine roots of black locust during decomposition. The speed of nutrient decomposition in mixed fine roots of the two species fell between the speed of the two pure samples. (2) During decomposition, the annual return amount of N, K and Mg in fine roots of black locust was highest, followed by the mixed fine roots of the two species, and then the fine roots of poplar. (3) The increased return amount of N in mixed fine roots could improve the N nutrient condition of poplar trees. The return amount of P in poplar fine roots was greater than that of black locust, which could improve the P nutrient of black locust trees. The interaction of mutual supplements of N and P nutrient cycle of fine roots between these two species formed. Translated from Scientia Silvae Sinicae, 2004, 4(4) (in Chinese)  相似文献   

15.
Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash(Fraxinus mandshurica) and a Larch(Larix olgensis) plantation in northeastern China. Nutrient retranslocation in the fine roots was investigated using three methods, specifically, nutrient concentration, the ratio of Ca to other elements(Ca/other elements ratio) and nutrient content. The method based on nutrient content proved most suitable when investigating nutrient retranslocation from fine roots of the two species. The nutrient-content-based method showed that there were retranslocations of N, P, K and Mg from the fine roots of Manchurian Ash, with retranslocation efficiencies of 13,25, 65, and 38 %, respectively, whereas there were no Ca retranslocations. There were retranslocations of N, P, K, Ca and Mg from the fine roots of Larch, with retranslocation efficiencies of 31, 40, 52, 23 and 25 %, respectively.  相似文献   

16.
We examined fine-root (< 2.0 mm diameter) respiration throughout one growing season in four northern hardwood stands dominated by sugar maple (Acer saccharum Marsh.), located along soil temperature and nitrogen (N) availability gradients. In each stand, we fertilized three 50 x 50 m plots with 30 kg NO(3) (-)-N ha(-1) year(-1) and an additional three plots received no N and served as controls. We predicted that root respiration rates would increase with increasing soil temperature and N availability. We reasoned that respiration would be greater for trees using NO(3) (-) as an N source than for trees using NH(4) (+) as an N source because of the greater carbon (C) costs associated with NO(3) (-) versus NH(4) (+) uptake and assimilation. Within stands, seasonal patterns of fine-root respiration rates followed temporal changes in soil temperature, ranging from a low of 2.1 micro mol O(2) kg(-1) s(-1) at 6 degrees C to a high of 7.0 micro mol O(2) kg(-1) s(-1) at 18 degrees C. Differences in respiration rates among stands at a given soil temperature were related to variability in total net N mineralized (48-90 micro g N g(-1)) throughout the growing season and associated changes in mean root tissue N concentration (1.18-1.36 mol N kg(-1)). The hypothesized increases in respiration in response to NO(3) (-) fertilization were not observed. The best-fit model describing patterns within and among stands had root respiration rates increasing exponentially with soil temperature and increasing linearly with increasing tissue N concentration: R = 1.347Ne(0.072T) (r(2) = 0.63, P < 0.01), where R is root respiration rate ( micro mol O(2) kg(-1) s(-1)), N is root tissue N concentration (mol N kg(-1)), and T is soil temperature ( degrees C). We conclude that, in northern hardwood forests dominated by sugar maple, root respiration is responsive to changes in both soil temperature and N availability, and that both factors should be considered in models of forest C dynamics.  相似文献   

17.
三峡库区马尾松根和叶片的生态化学计量特征   总被引:3,自引:0,他引:3       下载免费PDF全文
[目的]对马尾松根系和叶片养分(C、N、P、K、Ca、Mg)进行研究,探讨生长季和非生长季根系和叶片的化学计量学特征和养分分配特征,以及根和叶片养分的相关性。[方法]本研究分别在2014年7月和11月,利用土柱法采集根样和高枝剪采集枝条第二节上的健康叶样,然后再进行室内测试分析。[结果]表明:(1)非生长季与生长季相比,根C养分含量、C:N和N:P比值均下降,N、P、K、Ca、Mg养分含量含量均增加。(2)根C养分含量随直径增大而增加,N、P、K、Ca、Mg养分含量随直径增大而减小。(3)径级、取样时间以及两者交互作用对根系C、N、P、K、Ca、Mg养分含量和C、N、P养分化学计量比存在极显著影响(P0.01),同时取样时间对粗根C、N养分含量以及C:N比无显著影响。(4)细根(2 mm)C和N元素含量存在极显著的负相关关系,N和P元素含量存在极显著的正相关关系,同时C:N比值和N:P比值变异分别由各自两元素含量共同决定;粗根(2 3 mm)C、N计量比值和N:P比值变异分别主要由N元素含量和P元素含量决定;(5)从地上叶到地下根,C、N、P、K养分含量呈减少趋势,Ca、Mg养分含量呈增加趋势。同时,根和叶片养分含量相关性较弱,除C、K养分之外。[结论]马尾松根系养分含量与叶片养分的关系较弱,且分别对各养分的相对需求量不同;与生长季相比,非生长季马尾松根系N、P、K、Ca、Mg含量显著增加;C、N元素和N、P元素的耦合关系只出现在细根中。  相似文献   

18.
Root respiration is closely related to root morphology, yet it is unclear precisely how to distinguish respiration-related root physiological functions within the branching fine root system. Root respiration and tissue N concentration were examined for different N fertilization treatments, sampling dates, branch orders and temperatures of larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) using the excised roots method. The results showed that N fertilization enhanced both root respiration and tissue N concentration for all five branch orders. The greatest increases in average root respiration for N fertilization treatment were 13.30% in larch and 18.25% in ash at 6°C. However, N fertilization did not change the seasonal dynamics of root respiration. Both root respiration and root tissue N concentration decreased with increase in root branch order. First-order (finest) roots exhibited the highest respiration rates and tissue N concentrations out of the five root branch orders examined. There was a highly significant linear relationship between fine root N concentration and root respiration rate. Root N concentration explained >60% of the variation in respiration rate at any given combination of root order and temperature. Root respiration showed a classical exponential relationship with temperature, with the Q(10) for root respiration in roots of different branching orders ranging from 1.62 to 2.20. The variation in root respiration by order illustrates that first-order roots are more metabolically active, suggesting that roots at different branch order positions have different physiological functions. The highly significant relationship between root respiration at different branch orders and root tissue N concentration suggests that root tissue N concentration may be used as a surrogate for root respiration, simplifying future research into the C dynamics of rooting systems.  相似文献   

19.
Tree roots in a changing world   总被引:1,自引:0,他引:1  
Globally, forests cover 4 billion hectares or 30% of the Earth's land surface, and 20%–40% of the forest biomass is made up of roots. Roots play a key role for trees: they take up water and nutrients from the soil, store carbon (C) compounds, and provide physical stabilization. Estimations from temperate forests of Central Europe reveal that C storage in trees accounts for about 110 t C ha−1, of which 26 t C ha−1 is in coarse roots and 1.2 t C ha−1 is in fine roots. Compared with soil C, which is about 65 t C ha−1 (without roots), the contribution of the root C to the total belowground C pool is about 42%. Flux of C into soils by plant litter (stemwood excluded) compared with the total soil C pool, however, is relatively small (4.4 t C ha−1 year−1) with the coarse and fine roots each contributing about 20%. Elevated CO2 concentrations and N depositions lead to increased plant biomass, including that of roots. Recent analysis in experiments with elevated CO2 concentrations have shown increases of the forest net primary productivity by about 23%, and, in the case of poplars, an increase of the standing root biomass by about 62%. The turnover of fine roots is also positively influenced by elevated CO2 concentrations and can be increased in poplars by 25%–45%. A recently established international platform for scientists working on woody root processes, COST action E38, allows the exchange of information, ideas, and personnel, and it has the aim to identify knowledge gaps and initiate future collaborations and research activities.  相似文献   

20.
Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash (Fraxinus mandshurica) and a Larch (Larix olgensis) plantation in northeastern China. Nutrient retranslocation in the fine roots was investigated using three methods, specifically, nutrient concentration, the ratio of Ca to other elements (Ca/other elements ratio) and nutrient content. The method based on nutrient content proved most suitable when investigating nutrient retranslocation from fine roots of the two species. The nutrient-content-based method showed that there were retranslocations of N, P, K and Mg from the fine roots of Manchurian Ash, with retranslocation efficiencies of 13, 25, 65, and 38 %, respectively, whereas there were no Ca retranslocations. There were retranslocations of N, P, K, Ca and Mg from the fine roots of Larch, with retranslocation efficiencies of 31, 40, 52, 23 and 25 %, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号