共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
肉鸽行为表现与鸽舍环境舒适度和肉鸽健康状况密切相关。为实现肉鸽行为精准检测、及时掌握肉鸽健康状况,提出了基于改进YOLO v4模型的肉鸽行为检测方法。由于肉鸽社交等行为特征相似性程度高,为了在复杂环境下准确识别肉鸽行为,本文采用自适应空间特征融合(Adaptively spatial feature fusion, ASFF)模块改进YOLO v4模型,在特征金字塔网络中增加ASFF模块,根据特征权值自适应融合多层特征,充分利用不同尺度特征信息,并且ASFF模块能有效过滤空间冲突信息、抑制反向梯度不一致问题、改善特征比例不变性以及降低推理开销。基于多时段的肉鸽清洁和社交行为数据集,自制5类肉鸽行为图像数据库,采用OpenCV工具进行模糊、亮度、水雾和噪声等处理扩充图像数据集(共10 320幅图像),增加数据多样性和模拟不同识别场景,提升模型泛化能力。本文按照比例8∶2划分训练集和验证集,训练总共迭代300个周期,对不同时段、角度、尺寸的肉鸽数据集进行检测。检测结果表明,在阈值0.50和0.75时YOLO v4-ASFF检测精度比YOLO v4的mAP50和mAP<... 相似文献
3.
引入BRISK算法思想,提出改进的BRRB算法(BRISK and ORB)。首先采用ORB算法中的特征检测算法oFAST检测到图像中的特征点,用改进的Harris角点响应函数对特征点加入尺度信息;最后用BRISK算法对特征点进行均匀采样,并生成具有尺度不变性的二进制特征描述符。将采集到的200张害虫样本数据划分为50组,分别进行图像配准实验。实验结果表明,BRRB算法的平均匹配精准度达到了约95%,比原算法提升了约73%;平均计算速度约为47.8 ms;在综合性能实验中,改进后算法的平均匹配精度比传统算法高出了0.6个百分点,在光照不变性上比传统算法高出了1.9个百分点。改进后算法有效的解决了ORB不具备尺度不变性的缺陷,并且保留了原算法在计算速度上的高效性和对旋转、光照的不变性,使害虫图像的匹配工作更加精准,为农作物害虫识别和防治工作提供技术支持。 相似文献
4.
5.
基于改进YOLOv3-tiny的田间行人与农机障碍物检测 总被引:1,自引:0,他引:1
为实现农机自主作业中的避障需求,本文针对室外田间自然场景中因植被遮挡、背景干扰而导致障碍物难以检测的问题,基于嵌入式平台应用设备,提出了农机田间作业时行人和农机障碍物检测的改进模型,更好地平衡了模型的检测速度与检测精度。该改进模型以You only look once version 3 tiny(YOLOv3-tiny)为基础框架,融合其浅层特征与第2 YOLO预测层特征作为第3预测层,通过更小的预选框增加小目标表征能力;在网络关键位置的特征图中混合使用注意力机制中的挤压激励注意模块(Squeeze and excitation attention module,SEAM) 与卷积块注意模块(Convolutional block attention module,CBAM),通过强化检测目标关注以提高抗背景干扰能力。建立了室外环境下含农机与行人的共9405幅图像的原始数据集。其中训练集7054幅,测试集2351幅。测试表明本文模型的内存约为YOLOv3与单次多重检测器(Single shot multibox detector,SSD)模型内存的1/3和2/3;与YOLOv3-tiny相比,本文模型平均准确率(Mean average precision,mAP)提高11个百分点,小目标召回率(Recall)提高14百分点。在Jetson TX2嵌入式平台上本文模型的平均检测帧耗时122ms,满足实时检测要求。 相似文献
6.
水稻叶病防治在提高水稻产量中具有重要作用,针对水稻叶病人工检查速度慢、主观性高的问题,提出一种基于改进Yolov5s的水稻叶病目标检测方法。采用K-means聚类算法得到先验框尺寸,增强检测模型对水稻叶病的适应性;将轻量级空间注意力与通道注意力融合,对高层语义特征信息增强,增强模型对病害信息的感知度;并结合特征金字塔网络,融合多尺度感受野获取目标上下文信息,有效地增强模型对目标周围特征的提取,提高目标检测的准确度。试验结果表明:改进后的Yolov5s算法平均检测精度(IOU=0.5)提高4.3%,F1值提高5.3%,帧率FPS为58.7 f/s。有效提升Yolov5s算法对水稻叶病的检测精度,达到实时检测的需求。 相似文献
7.
图像边缘信息在物体识别方法中具有重要作用,采用多尺度特征检测能同时检测出细微和粗糙特征.基于曲率尺度空间(CSS)技术,文章提出了一种改进的多尺度边缘检测方法,该方法首次利用自适应局部曲率阈值代替了原有CSS方法中的单一全局阈值,另外,为了消除虚假边缘点,候选边缘点的角度被检测在一组动态范围内.实验结果表明,该方法能有效解决多尺度特征的图像检测问题. 相似文献
8.
针对茶叶病害检测面临的病害尺度多变、病害密集与遮挡等诸多问题,提出了一种多尺度自注意力茶叶病害检测方法(Multi-scale guided self-attention network, MSGSN)。该方法首先采用基于VGG16的多尺度特征提取模块,以获取茶叶病害图像在不同尺度下的局部细节特征,例如纹理和边缘等,从而有效表达多尺度的局部特征。其次,通过自注意力模块捕获茶叶图像中像素之间的全局依赖关系,实现病害图像全局信息与局部特征之间的有效交互。最后,采用通道注意力机制对多尺度特征进行加权融合,提升了模型对病害多尺度特征的表征能力,使其更加关注关键特征,从而提高了病害检测的准确性。实验结果表明,融合多尺度自注意力的茶叶病害检测方法在背景复杂、病害尺度多变等场景下具有更好的检测效果,平均精度均值达到92.15%。该方法可为茶叶病害的智能诊断提供参考依据。 相似文献
9.
基于多尺度融合模块和特征增强的杂草检测方法 总被引:1,自引:0,他引:1
针对单步多框检测器(Single shot multibox detector, SSD)网络模型参数多、小目标检测效果差、作物与杂草检测精度低等问题,提出一种基于多尺度融合模块和特征增强的杂草检测方法。首先将轻量网络MobileNet作为SSD模型的特征提取网络,并设计了一种多尺度融合模块,将浅层特征图先通过通道注意力机制增强图像中的关键信息,再将特征图经过不同膨胀系数的扩张卷积扩大感受野,最后将两条分支进行特征融合,对于检测小目标的浅层特征图,在包含较多小目标细节信息的同时,还包含丰富的语义信息。在此基础上对输出的6个特征图经过通道注意力机制进行特征增强。实验结果表明,本文提出的基于多尺度融合模块和特征增强的杂草检测模型,在自然环境下甜菜与杂草图像数据集中,平均检测精度可达88.84%,较标准SSD模型提高了3.23个百分点,参数量减少57.09%,检测速度提高88.44%,同时模型对小目标作物与杂草以及叶片交叠情况的检测能力均有提高。 相似文献
10.
11.
为实时准确地检测到自然环境下背景复杂的荔枝病虫害,本研究构建荔枝病虫害图像数据集并提出荔枝病虫害检测模型以提供诊断防治。以YOLO v4为基础,使用更轻、更快的轻量化网络GhostNet作为主干网络提取特征,并结合GhostNet中的核心设计引入更低成本的卷积Ghost Module代替颈部结构中的传统卷积,得到轻量化后的YOLO v4-G模型。在此基础上使用新特征融合方法和注意力机制CBAM对YOLO v4-G进行改进,在不失检测速度和模型轻量化程度的情况下提高检测精度,提出YOLO v4-GCF荔枝病虫害检测模型。构建的数据集包含荔枝病虫害图像3725幅,其中病害种类包括煤烟病、炭疽病和藻斑病3种,虫害种类包括毛毡病和叶瘿蚊2种。试验结果表明,基于YOLO v4-GCF的荔枝病虫害检测模型,对于5种病虫害目标在训练集、验证集和测试集上的平均精度分别为95.31%、90.42%和89.76%,单幅图像检测用时0.1671s,模型内存占用量为39.574MB,相比改进前的YOLO v4模型缩小84%,检测速度提升38%,在测试集中检测平均精度提升4.13个百分点,同时平均精度比常用模型YOLO v4-tiny、EfficientDet-d2和Faster R-CNN分别高17.67、12.78、25.94个百分点。所提出的YOLO v4-GCF荔枝病虫害检测模型能够有效抑制复杂背景的干扰,准确且快速检测图像中荔枝病虫害目标,可为自然环境下复杂、非结构背景的农作物病虫害实时检测研究提供参考。 相似文献
12.
水稻虫害信息快速检测方法实验研究-基于电子鼻系统 总被引:2,自引:0,他引:2
植物在受到昆虫侵害时会产生挥发性物质。因此,利用电子鼻与计算机组成水稻虫害快速检测系统,通过检测水稻挥发物气味,根据气味信息的分类,选用主成分分析法可快速判断水稻是否有虫害及每株水稻上有多少害虫。研究发现,利用电子鼻检测水稻虫害的最好时机是在水稻受侵害的15~36h内。实验结果证明,利用电子鼻检测水稻是否发生虫害及发生虫害后每株水稻上害虫的数量是可行的。 相似文献
13.
基于改进ShuffleNetV2模型的荔枝病虫害识别方法 总被引:1,自引:0,他引:1
为更好地助力荔枝病虫害防治工作,推进荔枝产业健康发展,本文以所收集的荔枝病虫害图像数据集为研究对象,基于轻量型卷积神经网络ShuffleNetV2模型,提出一个高精度、稳定且适用于荔枝病虫害的识别模型SHTNet。首先,在ShuffleNetV2模型中引入注意力机制SimAM,不额外增加网络参数的同时,增强重要特征的有效提取,强化荔枝病虫害特征并抑制背景特征。其次,在保证模型识别精度的同时,采用激活函数Hardswish减少网络模型参数量,使网络更加轻量化。最后,在改进模型上采用迁移学习方法,将源数据(Mini-ImageNet数据集)学习到的知识迁移到目标数据(数据增强后的荔枝病虫害图像数据集),增强模型识别不同的荔枝病虫害种类的适应性。实验结果表明,与原始ShuffleNetV2模型相比,本文提出的荔枝病虫害识别模型SHTNet的准确率达到84.9%,提高8.8个百分点;精确率达到78.1%,提高9个百分点;召回率达到73.2%,提高8.8个百分点;F1值达到75.8%,提高10.2个百分点;且综合性能明显优于ResNet34、ResNeXt50和MobileNetV3-large模型。本文提出的荔枝病虫害识别模型具有较高的识别精度和较强的泛化能力,为荔枝病虫害实时在线识别奠定了技术基础。 相似文献
14.
为了解决植保无人机作业时,传统田间障碍物识别方法依赖人工提取特征,计算耗时较长,难以实现在非结构化田间环境下实时作业识别的问题,提出一种优化的Mask R-CNN模型的非结构化农田障碍物实例分割方法。以ResNet-50残差网络为基础,将空间注意力(Spatial attention, SA)引入残差结构,聚焦跟踪目标的显著性表观特征并主动抑制噪声等无用特征的影响;引入可变形卷积(Deformable convolution, DCN),通过加入偏移量,增大感受野,提高模型的鲁棒性。构建包含农田典型障碍物的数据集,通过对比试验研究在ResNet残差网络结构中的不同阶段中加入空间注意力和可变形卷积时的模型性能差异。结果表明,与Mask R-CNN原型网络相比,在ResNet的阶段2、阶段3、阶段5加入空间注意力和可变形卷积后,改进Mask R-CNN的边界框(Bbox)和掩膜(Mask)的平均精度均值(mAP)分别从64.5%、56.9%提高到71.3%、62.3%。本文提出的改进Mask R-CNN可以很好地实现农田障碍物检测,可为植保无人机在非结构化农田环境下安全高效工作提供技术支撑。 相似文献
15.
农作物病虫害对农业产量和品质影响巨大。数字图像处理技术在农作物病虫害识别中发挥重要作用。深度学习在该领域取得显著突破,效果优于传统方法。深度学习方法的特征提取能力更强,能准确捕捉细微特征,提高检测精度和可靠性。深度学习为农业提供了有力支持。本研究综述了基于深度学习的农作物病虫害检测研究,从分类网络、检测网络和分割网络3方面进行了概述,并对每种方法的优缺点进行了总结,同时比较了现有研究的性能。在此基础上,进一步探讨了基于深度学习的农作物病虫害检测算法在实际应用中面临的难题,并提出了相应的解决方案和研究思路。最后,对基于深度学习的农作物病虫害检测技术的未来趋势进行了分析和展望。 相似文献
16.
含杂率是小麦机械化收获重要指标之一,但现阶段我国小麦收获过程含杂率在线检测难以实现。为了实现小麦机械化收获过程含杂率在线检测,本文提出基于结合注意力的改进U-Net模型的小麦机收含杂率在线检测方法。以机收小麦样本图像为基础,采用Labelme手工标注图像,并通过随机旋转、缩放、剪切、水平镜像对图像进行增强,构建基础图像数据集;设计了结合注意力的改进U-Net模型分类识别模型,并在torch 1.2.0深度学习框架下实现模型的离线训练;将最优的离线模型移植到Nvidia jetson tx2开发套件上,设计了基于图像信息的含杂率量化模型,从而实现小麦机械化收获含杂率在线检测。试验结果表明:针对不同模型的训练结果,结合注意力的改进U-Net模型籽粒和杂质分割识别F1值分别为76.64%和85.70%,比标准U-Net高10.33个百分点和2.86个百分点,比DeepLabV3提高10.22个百分点和11.62个百分点,比PSPNet提高18.40个百分点和14.67个百分点,结合注意力的改进U-Net模型对小麦籽粒和杂质的识别效果最好;在台架试验和田间试验中,装置在线检测含杂率均值分别为1... 相似文献
17.
基于改进残差网络的园林害虫图像识别 总被引:6,自引:0,他引:6
针对北方园林害虫识别问题,提出了一种基于改进残差网络的害虫图像识别方法。首先,采用富边缘检测算法,将中值滤波、Sobel算子和Canny算子相结合,对害虫图像进行边缘检测;然后,改进残差网络中的残差块,通过添加卷积层和增加通道数提取更多的害虫图像特征,并将贝叶斯方法运用于改进后的网络中,优化超参数;最后,将预处理的害虫图像输入神经网络中,利用分块共轭算法优化网络权重。对38种北方园林害虫进行了识别,试验结果表明,在相同数据集下,与3种传统害虫识别方法相比,本文方法的平均识别准确率平均提高9. 6个百分点,加权平均分数分别提高16. 3、10. 8、4. 5个百分点。 相似文献
18.
为使巡检机器人能够对体积小且密集、形态多变、数量多且分布不均的害虫进行高效精准识别,提出了一种基于改进YOLO v7的害虫识别方法。该方法将CSP Bottleneck与基于移位窗口Transformer(Swin Transformer)自注意力机制相结合,提高了模型获取密集害虫目标位置信息的能力;在路径聚合部分增加第4检测支路,提高模型对小目标的检测性能;将卷积注意力模块(CBAM)集成到YOLO v7模型中,使模型更加关注害虫区域,抑制背景等一般特征信息,提高被遮挡害虫的识别精确率;使用Focal EIoU Loss损失函数减少正负样本不平衡对检测结果的影响,提高识别精度。采用基于实际农田环境建立的数据集的实验结果表明,改进后算法的精确率、召回率及平均精度均值分别为91.6%、82.9%和88.2%,较原模型提升2.5、1.2、3个百分点。与其它主流模型的对比实验结果表明,本文方法对害虫的实际检测效果更优,对解决农田复杂环境下害虫的精准识别问题具有参考价值。 相似文献