首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为探寻不同水氮耦合方式对黑土区稻田生态系统碳平衡的影响,于2022年开展田间试验,试验设置常规淹灌(F)和稻作控制灌溉(C)两种灌溉模式,同时设置常规施氮水平(N,110 kg/hm2)、减氮10%水平(N1,99 kg/hm2)、减氮20%水平(N2,88 kg/hm2)3种施氮水平,分析不同水氮耦合方式对水稻各器官干物质量、碳含量、稻田土壤呼吸CO2排放通量和CH4排放通量及两者排放总量的影响,并采用净生态系统碳收支(NECB)评价体系对黑土区稻田生态系统碳源汇效应进行分析。结果表明:不同水氮耦合方式下,各处理水稻穗固碳量与根固碳量分别占其总固碳量的26.61%~40.92%、24.63%~31.95%。相同施氮量下,稻作控制灌溉相较于常规灌溉能提高水稻各器官碳含量、干物质量。在水稻全生育期内,各处理CH4排放通量呈现先增加后减小再增加的变化趋势,均在分蘖期与拔节孕穗期出现峰值;各处理土壤呼吸CO2排放通量呈现单峰变化,在分蘖期出...  相似文献   

2.
为探究调亏灌溉条件下施氮量对辽宁地区花生农田CO2固定排放的影响,于2018、2019年设置测坑裂区试验,研究了不同灌溉模式(全生育期充分灌溉(F)和花针期、饱果期调亏灌溉(D))下施氮量(0 kg/hm2(N0)、50 kg/hm2(N50)、100 kg/hm2(N100)、150 kg/hm2(N150))对花生植株干物质积累量、固碳量及产量等的影响。研究结果表明,与F处理相比,D处理下花生植株干物质积累量、固碳量及产量分别提高了7.59%、15.08%和7.16%(2年平均)。两种灌溉模式下,花生植株干物质积累量、固碳量及产量均随施氮量的增加呈先增加后减小的趋势,在100 kg/hm2施氮水平下达到最大值。从苗期至饱果期,花生农田土壤CO2排放量呈先升高后降低的趋势,在花针期达到最大值。与F处理相比,D处理显著降低了花针期、结荚期及饱果期土壤CO2平均排放量及全生育期CO2累积排放量...  相似文献   

3.
为探究节水灌溉模式下黑土稻田NH3、N2O排放及氮肥吸收利用对减施氮肥的响应规律,以黑龙江省黑土稻田为研究对象,于2021年进行了大田试验,试验设置常规淹灌(F)和控制灌溉(C)2种灌溉模式,全生育期施氮量设置常规施氮水平(N,110 kg/hm2)、减氮10%(N1,99 kg/hm2)和减氮20%(N2,88 kg/hm2) 3个水平,并在F和C灌溉模式下分别设置不施氮肥处理(CK1和CK2)作为对照组,共8个处理。分析了不同灌溉模式下减施氮肥对水稻全生育期NH3挥发速率和N2O排放的影响,计算了氮肥气态损失量和损失率,并基于同位素示踪技术进一步估算了水稻对氮肥的吸收利用量及水稻收获后土壤中的氮肥残留量。结果表明:2种灌溉模式下的氮肥气态损失量及损失率均随着施氮量的减少而降低。控制灌溉模式的应用增加了黑土稻田氮肥气态损失,其各处理的氮肥气态损失量及损失率均高于常规淹灌模式下相同施氮量处理。然而同位素示踪结果表明,采用控制灌溉模式能...  相似文献   

4.
为探明水氮运筹对稻田生态系统碳收支的影响,开展大田试验,设置浅湿干灌溉(D)和淹水灌溉(F)两种灌溉模式,及110kg/hm2(当地施肥标准,N1)、99kg/hm2(减氮10%,N2)和88kg/hm2(减氮20%,N3)3个施肥水平,观测高留残茬稻田水稻收获后不同器官的干物质量及碳含量,同时监测稻田CO2和CH4排放通量,计算水稻净初级生产力(NPP)和稻田净生态系统初级生产力(NECB)。结果表明:水氮运筹会影响稻株各器官干物质及碳含量,所有处理中DN2处理NPP最大(8918.02kg/hm2),浅湿干灌溉模式各处理NPP均大于淹水灌溉模式,分别增加12.13%、36.73%、8.01%;浅湿干灌溉模式增加了稻田土壤呼吸的CO2排放通量,减施氮肥则降低了CO2排放通量,浅湿干灌溉减施氮肥降低了CH4排放通量;两种灌溉模式下各处理CO2和CH4排放总量均随氮肥施用量减少而降低,淹水灌溉模式下各处理CH4排放总量均显著高于浅湿干灌溉模式(P<0.05);各处理稻田生态系碳净收支均为正值,黑土区高留残茬稻田生态系统表现为碳“汇”,其中DN2处理NECB最高,为1950.96kg/hm2。综合来看,浅湿干灌溉模式+减氮10%处理的稻田生态系统碳“汇”最强。研究可为寒地黑土保护提供理论参考和技术支撑。  相似文献   

5.
水氮耦合对黑土稻田土壤呼吸与碳平衡的影响   总被引:3,自引:0,他引:3  
为探明不同水氮耦合方式对东北黑土区稻田碳循环的影响,以黑龙江省黑土稻田为研究对象,于2018年进行大田试验,试验设置常规灌溉(F)与控制灌溉(C)两种灌水方式,全生育期施氮量设置0、85、110、135 kg/hm~24个水平(N0、N1、N2、N3),测定了8种不同水氮耦合方式下水稻不同生育期平均土壤呼吸速率、微生物呼吸速率和根呼吸速率的变化以及水稻收获后各器官的固碳量。结果表明,水稻植株总固碳量为446. 49~716. 92 g/m~2,各处理水稻收获后各器官固碳量从大到小依次为穗、茎、叶、根,分别占植株总固碳量的53. 69%~59. 44%、27. 42%~30. 12%、7. 24%~8. 96%、4. 71%~8. 35%。控制灌溉模式能提高水稻植株固碳量,其中CN2处理的总固碳量最大。相同施氮量、控制灌溉模式下,茎、叶、根固碳量均大于常规灌溉模式,除CN0处理穗固碳量低于FN0处理外,其余相同施氮量、控制灌溉模式下的穗固碳量均大于常规灌溉模式。不同水氮耦合方式下,水稻从返青期至乳熟期各生育期平均土壤呼吸速率、微生物呼吸速率、根呼吸速率均呈先升高、后降低的趋势,且均在分蘖期达到峰值。除返青期外,与不施肥处理相比,施肥后各生育期平均土壤呼吸速率、微生物呼吸速率和根呼吸速率均增大,且随着施氮量的增加而增大。控制灌溉模式下各施氮量处理水稻各生育期(除返青期外)平均土壤呼吸速率、微生物呼吸速率和根呼吸速率均高于常规灌溉模式下相同施氮量处理。8种不同水氮耦合方式下黑土稻田均表现为较强的碳"汇",控制灌溉模式能够增加碳"汇"强度,其中CN2处理碳"汇"强度最大。本研究结果可为提高黑土稻田固碳减排潜力提供理论基础,为估算区域乃至全球碳平衡提供数据支撑。  相似文献   

6.
水氮管理模式下水稻碳氮吸收、土壤呼吸与产量效应   总被引:1,自引:0,他引:1  
在大田试验下,设置控制灌溉和全面淹灌2种水分管理模式,并设置6个施氮水平(0、60、85、110、135、160 kg/hm2),研究不同水氮管理模式对水稻不同器官的碳、氮含量和土壤呼吸速率的影响,同时测定不同处理的水稻产量。研究结果表明:水稻不同器官的碳、氮含量和土壤呼吸速率在控制灌溉条件下均大于全面淹灌。不同器官含碳量变化相类似但不完全一致,随着施氮量的增加,各处理之间与对照相比,升降幅度不显著(P0.05)。随着施氮量的增加,不同器官含氮量递增,施氮量在135、160 kg/hm2处理与对照相比,增加幅度较其他处理显著(P0.05),而同一处理随着生育期的进行,含氮量呈下降趋势。但就不同器官碳氮比而言,135、160 kg/hm2处理明显小于其他处理(P0.05)。综合说明氮肥的高投入并不利于水稻植株的碳氮积累代谢与分配。通过对不同处理土壤呼吸速率分析可知,110 kg/hm2处理在2种水分处理条件下的土壤呼吸速率均大于其他施氮量处理。在综合考虑产量的前提下,C110处理为最佳的水肥耦合模式。该研究可为黑龙江冷凉区水稻节水增产、氮素减排提供技术依据。  相似文献   

7.
【目的】揭示南方平原区水肥调控下的水稻节水减排效应。【方法】基于田间试验,设置传统淹灌(W0)和间歇灌溉(W1)2种灌溉模式,不施氮(N0)、减量施氮(N1,135 kg/hm2)及常规施氮(N2,180 kg/hm2)3种施氮水平,分析不同水肥调控方案下的水稻节水、增产、控污和减排效应。【结果】灌溉模式影响水稻灌水量、渗漏量和排水量,W1模式相比W0模式下的水稻灌水量减少18.12%~28.37%,渗漏量减少13.68%~22.85%,平均节水28.77%。在N1、N2施氮水平下,W1处理相比W0处理的水稻平均增产分别达到16.57%与29.94%。与W0模式相比,W1模式下的TN排放负荷量平均减少25.67%。同一灌溉模式下,TN排放负荷量随着施氮量的增加而增加。施氮水平对氨挥发总量有显著影响,而灌溉模式和水肥交互作用对氨挥发总量的影响不显著。【结论】最优的水肥交互模式为W1N1处理,相对于当地传统模式可使水稻增产9.82%,节水27.54%,控污25.67%,减排11.90%。  相似文献   

8.
【目的】提高水氮亏缺下夏玉米籽粒产量并促进水氮耦合效应,实现夏玉米节水增产。【方法】采用田间小区试验,设定4个生物炭施用水平(0、5、10、15t/hm2,分别记为C0、C1、C2、C3)、2种灌溉方式(正常灌溉I1、亏缺灌溉I2)和2个施氮水平(常规施氮N1、亏缺施氮N2),正常、亏缺灌溉灌水量分别为100%和50%作物需水量,常规、亏缺施氮量分别为200 kg/hm2和100 kg/hm2,探究了不同水氮条件下生物炭对砂壤土持水保肥效果以及夏玉米水氮耦合效应的影响。【结果】添加5 t/hm2和10 t/hm2生物炭处理明显提高了土壤总孔隙度和持水能力,并减少了土壤铵态氮和硝态氮的淋洗,10 t/hm2下效果最佳。同时,5 t/hm2和10 t/hm2生物炭可促进夏玉米根系生长,提高籽粒产量及水氮利用效率,在10 t/hm2下产量,水分利用效率和氮素偏生产力显著增加(P<0.05),...  相似文献   

9.
为探讨水肥耦合配施改性生物炭对大豆根际土壤理化性质、酶活性及其产量品质等的影响,设置3因素(灌溉量、施氮量和施炭量)3水平正交试验。结果表明:施炭量对土壤理化性质影响最为显著,其次是灌溉量;轻度或中度亏缺灌溉可以显著提高土壤微生物量碳、氮含量;对于土壤酶活性,灌溉量对土壤过氧化氢酶和磷酸酶影响最为显著,轻度亏缺灌溉条件下活性最高;相同灌溉量下,除N-乙酰基-β-D-葡萄糖苷酶外,酶活性都随着施氮量和施炭量的增加而增加;灌溉量对蛋白质和大豆籽粒含油量影响最显著,其他品质指标受水氮炭的影响不显著;基于正交试验的大豆最优产量水氮炭组合试验结果分析,3个因素主次顺序为灌溉量、施炭量和施氮量,大豆产量的最优组合为W1N1B1(即中度亏缺灌溉、氮肥施用量为75 kg/hm2、生物炭施用量为15 t/hm2)。研究为认识水氮炭耦合关系、指导云南季节性干旱区大豆优质节水高产高效种植提供理论依据与技术支撑。  相似文献   

10.
为阐明黑土稻作碳氮磷吸收累积分配对水氮耦合模式的响应机制并解析氮磷养分限制状况,设置常规淹灌(F)、浅湿灌溉(S)和控制灌溉(C)3种灌溉模式,0、85、110、135kg/hm2(N0、N1、N2、N3)4个施氮量水平,共计12个处理,研究不同水氮耦合模式对水稻各生育期植株碳氮磷含量、累积量、分配比例、化学计量比以及氮磷养分限制状况的影响。结果表明:不同水氮耦合处理下,生育期内茎鞘碳氮磷含量分别为35.87%~39.43%、0.44%~2.19%、0.14%~0.32%,叶碳氮磷含量分别为36.34%~40.83%、0.76%~3.70%、0.14%~0.36%,穗碳氮磷含量分别为37.05%~41.72%、0.82%~1.63%、0.24%~0.39%。控制灌溉可提高拔节孕穗期至成熟期碳氮累积量,常规淹灌生育期内磷累积量始终高于浅湿灌溉和控制灌溉。3种灌溉模式下,成熟期N1、N2、N3处理较N0处理碳累积量分别提高31.46%、52.55%、57.37%,氮累积量分别提高52.98%、117.63%、144.88%,磷累积量分别提高50.28%、79.85%、93.89%。水稻茎鞘碳氮磷分配比例先增后减,叶碳氮磷分配比例持续减小,穗碳氮磷比例持续增加。与常规淹灌和浅湿灌溉相比,控制灌溉模式对水稻植株碳含量影响较小,但能提升水稻植株生长中后期氮含量,并降低植株磷含量,从而降低水稻植株C/N,提高水稻植株C/P和N/P。施氮处理显著提高水稻植株氮含量,小幅提升水稻植株磷含量,对水稻植株碳含量影响相对较小,进而降低水稻植株C/N、C/P,提高水稻植株N/P。常规淹灌和浅湿灌溉模式下,水稻地上部植株从磷限制过渡到氮磷共同限制再到氮限制状态,控制灌溉模式下,水稻地上部植株仅从磷限制过渡到氮磷共同限制状态。总体上,控制灌溉可促进氮素吸收并提升水稻产量,综合考虑CN2为最佳水氮耦合模式。  相似文献   

11.
水炭运筹对寒地黑土区稻田土壤肥料氮素残留的影响   总被引:1,自引:0,他引:1  
为揭示水炭运筹下肥料氮素在稻田土壤中的残留情况,采用田间小区试验与微区试验相结合的方法,应用15N示踪技术,以传统淹水灌溉作为对比,研究水分管理模式和生物炭施用量二因素全面试验构成的不同水炭运筹模式下水稻收获后基肥、蘖肥、穗肥和肥料整体在稻田土壤中的残留情况,以及各阶段施用的肥料氮素残留在不同深度土层的分布规律。试验结果表明,稻作浅湿干灌溉模式不同生物炭施用水平下施用的氮肥在稻田土壤中的总残留率为28.16%~34.42%,其中基肥、蘖肥和穗肥氮素的残留率分别为27.53%~41.35%、34.32%~43.50%和11.58%~25.67%。当生物炭施加量在0~12.5 t/hm^2时,水稻收获后两种灌溉模式下基肥和蘖肥氮素在土壤中的残留量均随着生物炭施入量的增加而增大,而穗肥氮素在土壤中的残留量随生物炭施入量的增加而减小,相同生物炭施用水平下稻作浅湿干灌溉模式各阶段肥料氮素在土壤中的残留率显著高于传统淹水灌溉(P<0.05),且两种灌溉模式肥料氮素在相同土层深度中的残留量差异显著(P<0.05),不同生物炭施用水平下稻作浅湿干灌溉模式各阶段施用的氮肥在稻田0~20 cm土层中的残留量均高于传统淹水灌溉,而在40~60 cm土层的残留量均低于传统淹水灌溉;施加25 t/hm^2生物炭时,对稻作浅湿干灌溉模式的基肥、蘖肥和穗肥氮素在稻田土壤中的残留产生负效应。合理的水炭运筹模式能够增加耕层土壤(0~20 cm)肥料氮素残留量,减少肥料氮素损失,抑制肥料氮素向深层土壤运移,降低残留在土壤中的肥料氮素对稻田生态环境造成污染的风险。  相似文献   

12.
为揭示水炭运筹管理模式下水稻对不同阶段施用氮肥的吸收利用情况,采用田间小区试验与微区结合的方法,应用15N示踪技术分别标记施用的基肥、蘖肥和穗肥,以常规淹灌作为对比,研究两种灌溉模式不同水炭运筹下水稻对基肥、蘖肥、穗肥的吸收利用、积累和转运,以及水稻成熟期不同阶段施用的氮肥在植株各器官的分配情况。试验结果表明:合理的水炭运筹能够显著提高水稻成熟期地上部的氮素总积累量、氮肥吸收利用率和产量;不同水炭运筹下肥料对氮素总积累量的贡献率为17.81%~20.60%,两种灌溉模式之间的差异不显著(P>0.05);水稻对基肥、蘖肥和穗肥的吸收利用率分别为15.55%~23.31%、31.68%~44.91%、48.82%~71.18%,施加适量的生物炭能够显著提高基肥、蘖肥和穗肥的吸收利用率,浅湿干灌溉模式下水稻植株除对基肥的吸收利用率较低外,对蘖肥和穗肥的吸收利用率均优于常规淹灌;水稻蘖肥和穗肥吸收利用率与肥料总氮素吸收利用率呈极显著正相关(P<0.01),基肥、蘖肥和穗肥氮素转运对籽粒的贡献率与相应的吸收利用率呈极显著正相关(P<0.01)。合理的水炭运筹能够提高肥料氮素转运对籽粒的贡献率和氮肥吸收利用率,降低氮肥在土壤中的残留。  相似文献   

13.
农田管理措施对滨海盐渍化土壤碳平衡的影响   总被引:1,自引:0,他引:1  
为研究不同农田管理措施对滨海盐渍土壤碳平衡的影响,通过玉米-小麦轮作试验,研究农田土壤碳收支情况。试验共设6个处理:(1)常规对照(CK),(2)有机肥常量(OF),(3)氮肥增施(NF),(4)秸秆还田(S),(5)有机肥加秸秆(OF+S),(6)免耕(NT)。结果表明,秸秆还田和施用有机肥提高了土壤呼吸的强度,而NT处理的CO_2平均释放量最低,不同处理下土壤呼吸表现为OF+S处理S处理OM处理NF处理CKNT处理。各处理土壤有机碳量随着作物种植年份的增加而逐渐升高,其中OF与NT处理增加最多,而NF处理并没有显著提高土壤的有机碳量。在两季作物收获后,各处理的碳输入均高于碳输出,表现为碳净输入,呈现较强的碳汇特征。S处理和OF处理的碳净输入均显著高于CK,可有效减缓土壤CO_2排放,增加其有机碳的输入。  相似文献   

14.
【目的】探讨不同灌水下限设施土壤CO2排放特征及其影响因素,为调控设施土壤水分和碳排放提供理论依据。【方法】在番茄生育期内采用LI-8100A土壤碳通量自动测定仪观测不同灌水下限[20 kPa(D20)、30 kPa(D30)、40 kPa(D40)]下的土壤CO2排放速率,并分析其影响因素。【结果】在番茄生育期内,不同灌水下限设施土壤CO2排放速率变化趋势基本一致,D20处理最高,平均速率为2.759μmol/(m2·s),其次是D30处理,为2.601μmol/(m2·s),D40处理最低,为2.559μmol/(m2·s)。在土壤CO2累积排放量方面,D20处理显著高于其他2个处理,而D30和D40处理之间无显著差异。就单因素模型而言,不同灌水下限处理的土壤CO2排放速率与15 cm土壤温度呈指数回归关系,且均达显著水平(P<0.05);不同灌水下限处理的土壤CO2排放速率与15 cm土壤含水率均呈显著二次回归关系(P<0.05);与单因素模型相比,土壤温度和土壤含水率的双因素复合模型(68.5%~83.8%)可以更好地解释土壤CO2排放的变化。土壤温度敏感系数Q10值在1.442~1.498之间,其中D20处理最敏感,D40处理最不敏感。相关分析结果表明,土壤CO2累积排放量与0~20 cm土层土壤有机质量、pH值、全氮量、速效磷量、速效钾量、碱解氮量和微生物量碳呈显著相关关系。采用PCA分析提取出的2个主成分累积贡献率为85.79%。【结论】灌水下限影响设施土壤CO2的排放,其中D20处理促进了设施土壤CO2的排放。  相似文献   

15.
为揭示寒地黑土稻田痕量温室气体的排放规律,以及稻田痕量温室气体排放与水分利用效率(WUE)及氮肥吸收利用率(NUE)间的关系,设置干湿交替灌溉和传统淹水灌溉2种水分管理模式,以及4个生物质炭施用量水平(0、2.5、12.5、25t/hm2),以传统淹水灌溉作为对比,应用15N示踪技术,研究水炭运筹下寒地黑土稻田甲烷和氧化亚氮排放的季节变化规律,明确稻作水氮利用与甲烷和氧化亚氮排放的关系,并计算温室气体的全球增温潜势(GWP)和排放强度(GHGI)。结果表明:生物质炭施用量相同时,传统淹水灌溉模式的甲烷排放通量显著高于干湿交替灌溉模式(P<0.05),而氧化亚氮排放通量均低于干湿交替灌溉模式。干湿交替灌溉模式的甲烷总排放量显著低于传统淹水灌溉模式(P<0.05),而氧化亚氮总排放量高于传统淹水灌溉模式,施加生物质炭对稻田甲烷、氧化亚氮减排效果显著;干湿交替灌溉模式下稻田痕量温室气体的GWP、GHGI显著低于传统淹水灌溉模式(P<0.05),施加生物质炭可以降低稻田痕量温室气体的GWP、GHGI。干湿交替灌溉模式的WUE显著高于传统淹水灌溉模式(P<0.05),适量施入生物质炭可以增加WUE和氮肥整体、基肥、蘖肥、穗肥的NUE。两种灌溉模式稻田痕量温室气体的GWP和GHGI与WUE均呈显著负相关(P<0.05);两种灌溉模式稻田痕量温室气体的GWP、GHGI与氮肥整体、基肥、蘖肥、穗肥的NUE均呈显著或极显著负相关。  相似文献   

16.
【目的】进一步揭示寒地黑土区稻作节水灌溉模式下水稻对基肥氮素的吸收分配情况,以明确不同水氮管理模式下水稻对基肥氮素的吸收利用率。【方法】在田间小区中原位设置15N示踪微区,并施用带有15N标记的基肥,对比分析了淹水灌溉模式和控制灌溉模式下水稻对基肥氮素的吸收及分配以及被水稻吸收的基肥氮素在水稻地上部各器官的累积情况。【结果】与淹水灌溉相比,虽然稻作控制灌溉模式可以有效提高水稻地上部干物质及氮素积累量,但水稻内对基肥氮素的吸收利用量较低。控制灌溉模式下,水稻分蘖期基肥回收率为0.86%~2.60%;拔节孕穗期基肥回收率为1.17%~3.27%;抽穗开花期基肥回收率为15.18%~33.50%;成熟期基肥回收率为10.91%~24.39%,除水稻抽穗开花期和成熟期施氮量为85 kg/hm~2处理外,不同施氮量下控制灌溉模式水稻生育期内地上部植株的基肥氮素积累量和回收率均低于淹水灌溉,基肥氮素的损失量较大。不同施氮量下控制灌溉水稻成熟期时地上部植株吸收的基肥氮素总量的63.99%~72.95%存在于水稻穗部,高于淹水灌溉模式。【结论】稻作控制灌溉模式可以有效提高水稻吸收的基肥氮素,向水稻穗部的运移量,保证了基肥氮素的高效利用。  相似文献   

17.
为揭示水炭运筹下稻田N2O排放规律,以及各阶段施入氮肥的利用和损失对N2O排放的影响,设置两种水分管理模式(浅湿干灌溉、常规淹灌)和4个秸秆生物炭施用量水平(0、2.5、12.5、25t/hm2),采用田间小区和15N示踪微区结合的方法,研究不同水炭运筹下稻田N2O排放规律,以及基肥、蘖肥和穗肥的吸收利用率和损失率,并分析了N2O排放量与各阶段施入氮肥的利用率和损失率之间的关系。结果表明:两种灌溉模式水稻本田生长期N2O排放规律不同,浅湿干灌溉模式N2O累积排放量显著高于常规淹灌模式(P<0.05),施加生物炭能够有效地减少水稻本田生长期N2O排放总量。两种灌溉模式在分蘖期和拔节孕穗期N2O累积排放量较大,浅湿干灌溉模式的各生育期N2O累积排放量均高于常规淹灌,施加生物炭降低了N2O各生育期累积排放量。浅湿干灌溉模式水稻植株对基肥的吸收利用率低于常规淹灌模式,而对蘖肥和穗肥的吸收利用率显著高于常规淹灌(P<0.05),施加适量的生物炭能够增加各阶段施入氮肥的吸收利用率。相关性分析表明,浅湿干灌溉模式下N2O排放总量与蘖肥、穗肥吸收利用率呈显著负相关(P<0.05),与基肥吸收利用率呈极显著负相关(P<0.01),常规淹灌模式下N2O排放总量与基肥、蘖肥和穗肥吸收利用率均呈极显著负相关(P<0.01);两种灌溉模式N2O排放总量与基肥和蘖肥损失率均达到显著正相关(P<0.05)。  相似文献   

18.
设置浅水勤灌(FSI)、浅湿灌溉(WSI)、控制灌溉(CI)和蓄水控灌(RC-CI)4种灌排模式,于2017-2018年进行了桶栽观测试验,利用作物水足迹计算方法量化蓝、绿、灰水足迹,分析灌排模式对水稻水足迹及其组成的影响.结果表明:在不同灌排模式下,水稻作物水足迹、组成及其效率均存在差异.所有处理水足迹的范围为846...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号