首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Genistein, daidzein, and glycitein, as primary isoflavones in soybeans, are reported to have beneficial effects on atherosclerosis, chronic inflammatory diseases, and cancers that are conducted by nitric oxide (NO) injury. The objectives of this study were to investigate the effects and mechanisms of these soy isoflavones on the inducible nitric oxide synthase (iNOS) system in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Genistein, daidzein, and glycitein dose-dependently suppress NO production (IC(50) = 50 microM) in supernatants of LPS-activated macrophages as measured on the basis of nitrite accumulation. In addition, direct inhibition of iNOS activity, determined by means of the conversion of L-[(3)H]arginine to L-[(3)H]citrulline, and markedly reduced iNOS protein and mRNA levels, evaluated by means of Western blot and RT-PCR, respectively, were found in homogenates of LPS-activated cells treated with each isoflavone. Moreover, genistein was found to have a greater inhibitory effect on NO production but no significant effect on iNOS activity or protein and gene expression to daidzein and glycitein. These observations reveal that the suppression of NO production by genistein, daidzein, and glycitein might be due to the inhibition of both the activity and expression of iNOS in LPS-activated macrophages. The result suggests that soy isoflavones might attenuate excessive NO generation at inflammatory sites.  相似文献   

2.
Flavonoids have been reported to lower oxidative stress and possess beneficial effects on cardiovascular diseases and chronic inflammatory diseases associated with nitric oxide (NO). Common phenolic compounds, including phenolic acids, flavonols, isoflavones, and anthocyanins, present in fruits were investigated for their effects on NO production in LPS/IFN-gamma-activated RAW 264.7 macrophages. Phenolic compounds at the range of 16-500 microM that inhibited NO production by > 50% without showing cytotoxicity were the flavonols quercetin and myricetin, the isoflavone daidzein, and the anthocyanins/anthocyanidins pelargonidin, cyanidin, delphinidin, peonidin, malvidin, malvidin 3-glucoside, and malvidin 3,5-diglucosides. Anthocyanins had strong inhibitory effects on NO production. Anthocyanin-rich crude extracts and concentrates of selected berries were also assayed, and their inhibitory effects on NO production were significantly correlated with total phenolic and anthocyanin contents. This is the first study to report the inhibitory effects of anthocyanins and berry phenolic compounds on NO production.  相似文献   

3.
Diallyl trisulfide (DATS), diallyl sulfide (DAS), and diallyl disulfide (DADS) are the three major organosulfur compounds (OSCs) in garlic oil. In contrast to DADS and DATS, evidence of an anti-inflammatory effect of DATS is limited. In this study compares the efficacy of DATS with those of DAS and DADS on lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in RAW 264.7 macrophages. The NO production in LPS-activated RAW 264.7 macrophages was suppressed by both DADS and DATS in a dose-dependent manner. At 100 muM, the nitrite levels of DADS- and DATS-treated cells were 57 and 34%, respectively, of cells treated with LPS alone. DAS, however, had no influence on NO production even at a concentration of 1 mM. Western blot and Northern blot assays showed that DADS and DATS but not DAS dose-dependently suppressed LPS-induced iNOS protein and mRNA expression in a pattern similar to that noted for NO production. LPS-induced cellular peroxide production was significantly inhibited by DADS and DATS (P < 0.05) but not by DAS. Electrophoresis mobility shift assays further indicated that DADS and DATS effectively inhibited the activation of NF-kappaB induced by LPS. Taken together, these results indicate that the differential efficacy of three major OSCs of garlic oil on suppression of iNOS expression and NO production is related to the number of sulfur atoms and is in the order DATS > DADS > DAS. The inhibitory effect of DATS on LPS-induced iNOS expression is likely attributed to its antioxidant potential to inhibit NF-kappaB activation.  相似文献   

4.
5-(1H-吲哚-3-基甲基)-3-甲基-2-硫酮-4-咪唑烷酮(Necrostatin-1,Nec-1)是一种能够特异的、有效抑制细胞程序性凋亡的小分子物质.为了探讨Nec-1对卡介苗(Bacillus Calmette-Guérin,BCG)诱导的小鼠(Mus musculus)巨噬细胞RAW264.7凋亡的调控作用,本研究采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide,MTT)比色法检测细胞存活率,Annexin V和碘化丙啶(propidine iodide,PI)双染法检测细胞凋亡率,JC-1染色法检测细胞线粒体膜电位水平,采用分光光度法检测细胞内Caspase-3的酶活性,qRT-PCR和Westemblot法检测凋亡相关基因的mRNA和蛋白表达水平.结果表明,Nec-1可提高被BCG感染巨噬细胞的存活率,降低其凋亡率,通过降低线粒体膜电位水平、上调抑凋亡基因Bcl-2的表达同时下调RIP1、RIP3和BAX基因的表达水平,从而有效降低了Caspase-3的蛋白表达量及酶活性.本研究表明Nec-1可通过提高线粒体膜电位水平、并下调促凋亡蛋白的表达量,从而抑制被BCG感染后巨噬细胞的凋亡,这将有助于进一步研究结核分枝杆菌(Mycobacterium tuberculosis)与巨噬细胞间的相互作用,对于揭示结核病的致病机理具有重要意义.  相似文献   

5.
Flavonoids have been reported to demonstrate their benefits in lowering oxidative stress and beneficial effects on cardiovascular and chronic inflammatory diseases. Common phenolic compounds, including phenolic acids, flavonols, isoflavones, and anthocyanins, present in fruits, vegetables, and grains were investigated for their effects on the production of tumor necrosis factor alpha (TNF-alpha) in LPS/IFN-gamma-activated RAW 264.7 macrophages. Gallic acid and (+)-catechin showed small but significant effects, whereas chlorogenic acid had no effect on TNF-alpha production. The flavonol quercetin inhibited TNF-alpha production, but kaempferol and myricetin induced the secretion of TNF-alpha. The isoflavone genistein was an inhibitor of TNF-alpha, whereas daidzein induced TNF-alpha production. Glycosylation of genistein changed its inhibitory effects to TNF-alpha induction, and glycosylation of daidzein had no effect on its activity. Anthocyanidins/anthocyanins and anthocyanin-rich extracts induced TNF-alpha production and acted as modulators of the immune response in activated macrophages. This is the first study to report the effects of anthocyanins and berry extracts on TNF-alpha production.  相似文献   

6.
The anti-inflammatory effect of miyabenol A, a stilbene isolated from Vitis thunbergii, on lipopolysaccaride (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages was studied. Miyabenol A inhibited NO production (EC 50: 2.7 muM) and iNOS protein and mRNA expression in a parallel concentration-dependent manner. LPS-evoked NF-kappaB nuclear translocation and associated IkappaB degradation were abrogated by miyabenol A treatment. Phosphorylations of IKKalpha/beta, ERK1/2, JNK p38 MAPK, and Akt were observed in LPS-stimulated cells; nevertheless, miyabenol A selectively blocked IKKalpha/beta, p38, and Akt phosphorylation. Furthermore, LPS-stimulated IKKalpha/beta and Akt phosphorylation was abolished by p38 inhibitor SB203580. Wortmannin (a PI3K inhibitor) also attenuated LPS-induced IKKalpha/beta phosphorylation, although to a less extent than SB203580, but failed to affect p38 phosphorylation. These observations suggested that PI3K/Akt might lie downstream of p38 MAPK to coregulate LPS-induced IKKalpha/beta phosphorylation. Taken together, miyabenol A acted via interfering with p38 MAPK-related signal pathways to down-regulate IKK/IkappaB activation and NO production.  相似文献   

7.
Three known coumarins have been isolated from Citrus hystrix DC as inhibitors of both lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma)-induced nitric oxide (NO) generation in RAW 264.7 cells. The inhibitory activity of bergamottin (IC(50) = 14 microM) was comparable to that of N-(iminoethyl)-L-ornithine (L-NIO) (IC(50) = 7. 9 microM), whereas oxypeucedanin and 5-[(6',7'-dihydroxy-3', 7'-dimethyl-2-octenyl)oxy]psoralen, structurally different from bergamottin only in their side-chain moieties, were notably less active. Using 21 coumarins, we structurally classified various types of coumarins into groups A-C: (A) bearing an isoprenyl (IP) or a geranyl (GR) group, highly active; (B) bearing an IP group cyclized to a coumarin ring, moderately active; (C) bearing an IP group modified with hydroxyl group(s) and/or having other functional groups except for the IP, completely inactive. Cellular uptake studies suggested that coumarins in group C are inactive because of poor permeability to the cell membrane.  相似文献   

8.
Sargassum hemiphyllum , a kind of brown seaweed generally found along coastlines in East Asia, has long served as a traditional Chinese medicine. S. hemiphyllum has shown an anti-inflammatory effect; however, its mechanism has not been elucidated clearly. This study explored S. hemiphyllum for its biomedical effects. S. hemiphyllum sulfated polysaccharide extract (SHSP) was first prepared; the mouse macrophage cell line (RAW 264.7) activated by lipopolysaccharide (LPS) was used as a model system. The secretion profiles of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α, and NO, were found significantly to be reduced in 1-5 mg/mL dose ranges of SHSP treatments. RT-PCR analysis suggested SHSP inhibits the LPS-induced mRNA expressions of IL-β, iNOS, and COX-2 in a dose-dependent manner. At protein levels, Western blot analysis demonstrated a similar result for NF-κB (p65) in cytosol/nuclear. Taken together, the anti-inflammatory properties of SHSP may be attributed to the down-regulation of NF-κB in nucleus.  相似文献   

9.
Hypericum perforatum (Hp) is commonly known for its antiviral, antidepressant, and cytotoxic properties, but traditionally Hp was also used to treat inflammation. In this study, the anti-inflammatory activity and cytotoxicity of different Hp extractions and accessions and constituents present within Hp extracts were characterized. In contrast to the antiviral activity of Hp, the anti-inflammatory activity observed with all Hp extracts was light-independent. When pure constituents were tested, the flavonoids, amentoflavone, hyperforin, and light-activated pseudohypericin, displayed anti-inflammatory activity, albeit at concentrations generally higher than the amount present in the Hp extracts. Constituents that were present in the Hp extracts at concentrations that inhibited the production of prostaglandin E(2) (PGE(2)) were pseudohypericin and hyperforin, suggesting that they are the primary anti-inflammatory constituents along with the flavonoids, and perhaps the interactions of these constituents and other unidentified compounds are important for the anti-inflammatory activity of the Hp extracts.  相似文献   

10.
The inhibition of branched-chain amino acid (BCAA) biosynthesis was evaluated in pea plants in relation to the ability for induction of fermentative metabolism under aerobic conditions. Chlorsulfuron and imazethapyr (inhibitors of acetolactate synthase, ALS, EC 4.1.3.18) produced a strong induction of pyruvate decarboxylase (PDC, EC 4.1.1.1) and alcohol dehydrogenase (ADH, EC 1.1.1.1) activities and a lesser induction of lactate dehydrogenase (LDH, EC 1.1.1.27) and alanine aminotransferase (AlaAT, EC 2.6.1.2) activities in roots. Inhibition of the second enzyme of the BCAA biosynthesis (ketol-acid reductoisomerase, KARI, EC 1.1.1.86) by Hoe 704 (2-dimethylphosphinoyl-2-hydroxyacetic acid) and CPCA (1,1-cyclopropanedicarboxylic acid) enhanced fermentative enzyme activities including PDC, ADH, and AlaAT. Fermentative metabolism induction occurring with ALS- and KARI-inhibitors was related to a higher expression of PDC. In the case of KARI inhibition, it is proposed that fermentation induction is due to an inhibition of ALS activity resulted from an increase in acetolactate concentration. Fermentative metabolism induction in roots, or at least ethanolic fermentation, appeared to be a general physiological response to the BCAA biosynthesis inhibition.  相似文献   

11.
Natural perylenequinonoid pigments (PQPs) have long been known as excellent photosensitizers. Here it is reported that PQPs, when dispersed into a micellar system, are unexpectedly very effective in inhibiting the growth of various fungi in the dark and that light can enhance the activity further. In both cases, reactive oxygen species (ROS) play a crucial role. The unique ROS-based antifungal mechanism and the excellent physicochemical properties of PQPs promise the advent of a new generation of wide-spectrum agrofungicides.  相似文献   

12.
A model system was used to study the effect of nonheme iron on myoglobin oxidation at pH 5.6 and pH 7.2 at 23 degrees C. The addition of ferrous iron significantly (p < 0.05) increased the rate of myoglobin oxidation in the absence of lipid, demonstrating that iron promoted myoglobin oxidation independent of the effect of lipid oxidation. The addition of the type II, iron chelating antioxidants sodium tripolyphosphate (at pH 7.2) or milk mineral (at pH 5.6) negated the effect of added iron, slowing oxidation of myoglobin. A clear concentration dependence was seen for iron-stimulated myoglobin oxidation, based on both spectral and visual evidence. Further investigation is needed to determine the possible role for nonheme ferrous iron on myoglobin oxidation in vivo or in meat.  相似文献   

13.
The effect of curing agents (salt, glucose, nitrate, nitrite, and ascorbic acid) on the binding of skeletal peptides (carnosine and anserine) and a sarcoplasmic protein (myoglobin) with key flavor compounds (hexanal, octanal, 2-pentanone, 2-methylbutanal, and 3-methylbutanal) has been studied by solid-phase microextraction (SPME). Curing agents had an effect on the interaction process between carnosine and volatile compounds, which was higher than the interactions observed with anserine and myoglobin. Sodium chloride decreased the interaction of volatiles with carnosine except for octanal, which was increased, and 2-pentanone, which was unaltered. Ascorbic acid exerted the highest effect by decreasing the interaction of carnosine with all of the volatile compounds except for octanal and 2-pentanone. The interaction with anserine was affected by sodium chloride, nitrate, and nitrite, producing a decrease in the interaction with hexanal, octanal, and methional. Finally, sodium chloride, glucose, and nitrite increased the interaction of myoglobin with hexanal, octanal, and methional. The effect of simulated stages of the curing process on the binding was also studied. A combined effect of the curing agents resulted in a change in the relative proportions of volatile compounds that can lead to different flavor perceptions of dry-cured meat products.  相似文献   

14.
Tumor-associated fatty acid synthase (FAS) is implicated in tumorigenesis and connected to HER2 (human epidermal growth factor receptor 2) by systemic analyses. Suppression of FAS in cancer cells may lead to growth inhibition and cell apoptosis. Our previous study demonstrated that (-)-epigallocatechin 3-gallate (EGCG), the green tea catechin, could down-regulate FAS expression by suppressing EGFR (epidermal growth factor receptor) signaling and downstream phosphatidylinositol 3-kinase (PI3K)/Akt activation in the MCF-7 breast cancer cell line. Herein, we examined the effects of EGCG on FAS expression modulated by another member of the erbB family, that is, HER2 or HER3. We identified that heregulin-beta1 (HRG-beta1), a HER3 ligand, stimulated dose-dependent FAS expression in breast cancer cell lines MCF-7 and AU565, but not MDA-MB-453. The time-dependent increase in FAS expression after HRG-beta1 stimulation was also observed in MCF-7 cells, and this up-regulation was de novo RNA synthesis dependent. Treatment of MCF-7 cells with EGCG markedly inhibited HRG-beta1-dependent induction of mRNA and protein of FAS. EGCG also decreased the phosphorylation of Akt and extracellular signal-regulated kinase 1/2 that were demonstrated as selected downstream HRG-beta1-responsive kinases required for FAS expression using dominant-negative Akt, PI3K inhibitors (LY294002 and wortmannin), or MEK inhibitor (PD98059). FAS induction by HRG-beta1 was also blocked by AG825, a selective HER2 inhibitor, and by genistein, a selective tyrosine kinase inhibitor, indicating the formation of a heterodimer between HER2 and HER3, and their tyrosine kinase activities are essential for HRG-beta1-mediated elevation of FAS. Additionally, growth inhibition of HRG-beta1-treated cells was parallel to suppression of FAS by EGCG. Taken together, these findings extend our previous study to indicate that EGCG may be useful in the chemoprevention of breast carcinoma in which FAS overexpression results from HER2 or/and HER3 signaling.  相似文献   

15.
The anhydrofructose pathway describes the degradation of glycogen and starch to 1,5-anhydro-D-fructose (1,5AnFru) and its further conversion to the enolone ascopyrone P (APP) via the transit intermediate ascopyrone M. The two products, 1,5AnFru and APP, were examined in this study for their effects in controlling the browning of selected fruits, vegetables, and beverages. The results showed that 1,5AnFru had an antibrowning effect in green tea and was able to slow turbidity development in black currant wine. APP proved to be an antibrowning agent comparable to kojic acid. It showed an antibrowning effect in a range of agricultural products, such as various cultivars of apple, pear, potato, lettuce, and varieties of green tea in an efficacy concentration range from 300 to 500 ppm. Mechanism studies indicated that, like kojic acid, APP showed inhibition toward plant polyphenol oxidase and was able to decolor quinones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号