首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. The effect of various environments on the degree of desiccation and of residues in King Edward and Majestic potatoes was studied. The higher residues frequently associated with the variety King Edward are ascribed from glasshouse experiments to greater diquat movement; they could not be accounted for by differences in uptake between the two varieties.
In glasshouse experiments, uptake was increased both by high air humidities and reduced light intensities before and after treatment. Since earlier work with cocksfoot and wheat indicated that dry soil conditions markedly increased movement, it is concluded that dull, humid air conditions associated with dry soil would be most conducive to efficient haulm desiccation and also to highest residues in the tubers. Late afternoon or evening treatment often provides thes conditions, and residues were in fact least from morning treatment.
In the field, increases in haulm desiccation were associated with reductions in residues. As they were observed only at light intensities below 5000 lux, they are unlikely to occur in normal dull weather.
Rain falling soon after spraying did not reduce the extent of haulm desiccation or diquat residues.
Influence de I'enviromurtunt sur la destruction des fanes de pomme de terre par le diquat el sur ses  相似文献   

2.
Summary. Necrosis at the stem-end of potato tubers following the application of diquat to the foliage is rare and has occurred mainly in seasons of low rainfall. Damage in the field has been associated with tuber residues of diquat of about ten times the normal level and the extent of damage has shown a linear relationship with the concentration of chemical in the tubers. Normally an increase in the dose of diquat applied causes only a slight increase in amount of chemical in the tubers, but under conditions where damage occurred, tuber residues increased markedly with increase in application rate.
The factors influencing diquat residues in potato tubers were examined in pot experiments. Highest residues were found when plants were subjected to drought and to a period of darkness following spraying at a time when senescence of the foliage had commenced and the tubers were still increasing in fresh weight. Further experiments at a similar stage of growth showed that high residues of diquat caused stem-end rot only when plants were subjected both to a soil moisture stress sufficient to induce wilting before spraying and to reduced light intensity and a high atmospheric humidity after spraying. It is suggested that these conditions promote the rapid downward movement of a high concentration of diquat in the xylem.
In a preliminary experiment with a range of chemical desiccants, only sodium arsenite gave appreciable tuber damage when applied to the foliage.  相似文献   

3.
R. C. BRIAN 《Weed Research》1966,6(4):292-303
Summary. In a number of plant species, the biological activity of diquat and paraquat was increased by an increase in environmental humidity. This improved activity resulted from an increase in both uptake and movement.
High humidity was more effective after treatment than before it, and durations of 8 hr or more were required to produce the maximum effect. When periods of low humidity of up to 16 hr were interposed between treatment and high humidity, there was no significant effect on the activity of diquat in darkened tomato or sugar beet.
The increase in activity occurred both in the dark and in the light, and it is therefore concluded that humidity does not exert its effect by modifying the degree of stomatal opening.
Experiments were carried out with wheat using two air humidities combined with different soil moisture contents, ranging from saturated down to only 30% of water-holding capacity. Greatest movement occurred where high air humidity was combined with low soil moisture, and least where low air humidity was combined with high soil moisture. It is concluded that diquat and paraquat would be most effective in the field when sprayed under dry soil conditions in late afternoon or evening when increased humidity (and darkness) can follow soon after treatment.
Les sels quatemaires de bipyridylium
Effet de l'humidité atmosphérique et de l'humidité du sol sur l'absorption et la migration du diquat et du paraquat dans les plantes  相似文献   

4.
Aim of our study was to exploit the relation between deposit structure at the microscale and the uptake and biological efficacy of herbicides. For this purpose, we analysed the relevance of the deposit structure of diquat dibromide, as affected by surfactants, on the spatially resolved chlorophyll fluorescence (ChlF) and the desiccation of the leaves. The present study is a sequential work to our studies with the systemic compound glyphosate. On that basis, we hypothesized here that larger deposits of diquat are negatively related to the bio-efficacy of the compound. By using selected ethoxylated rapeseed oil adjuvants (RSO 5, RSO 10, RSO 30, RSO 60) we influenced the deposit properties of diquat dibromide droplet residue on the leaves of easy-to-wet Viola arvensis and the difficult-to-wet Chenopodium album species. With the spatially-resolved pulse amplitude modulated (PAM) ChlF technique we demonstrated the effect of diquat on the physiology of the tissue. As shown, the RSO surfactants did not affect the area of diquat residue on the easy-to-wet leaves of V. arvensis; this trend is similar to those observed for ChlF and the herbicide desiccation potential. In contrary, on C. album, decreased deposit area of diquat droplet was associated with increased effect on ChlF parameters and increased desiccation potential of the herbicide, thus explaining its higher foliar uptake.  相似文献   

5.
Summary. Using autoradiographic techniques, the long-distance transport of 'ethylene'14C-labelled diquat dibromide was studied. It was confirmed that a period of darkness after diquat application was necessary for reliable systemic action during a subsequent light exposure. Darkness was necessary in the region where the herbicide was applied, and then only to allow adequate penetration of diquat. This was its only role.
Desiccation following death, with the transfer of free water containing diquat to other leaves are the primary forces of long-distance transport; light is essential only for rapid toxic action and not directly for transport. Orthophosphate-32P and urea-14C applied topically with unlabelled diquat were distributed in the same pathway as the herbicide and not in the phloem. These results are discussed.
Nouvelles recherches sur l'influence de la lumière et de l'obscurité sur le transport à longue distance du diquat dans Lycopersicon esculentum Mill .  相似文献   

6.
Invasive knotweeds (Reynoutria spp.) pose an ongoing challenge for weed management programs worldwide, requiring years of persistent treatment. In this study, we tested efficacy of diquat applied as foliar spray early in the growing season for short-term suppression, and for potential to boost long-term control when applied sequentially with a mid-season treatment of imazapyr. We evaluated responses of knotweeds (R. japonica, R. × bohemica, and R. sachelinensis) treated with one of three diquat concentrations (0.25%, 0.50%, or 1.0%, v/v), using multiple metrics to capture changes in aboveground plant density and abundance. Canopy cover and biomass were significantly reduced by all diquat concentrations and resembled pre-treatment conditions at 8WAT, reflecting the shift toward reduced stem heights in treated compared with untreated plots. Stem counts at 8WAT, however, did not differ in response to diquat treatments. Sequentially applied early-season diquat and mid-season imazapyr treatments reduced canopy cover (66%–82%), biomass (65%–91%), and stem density (57%–79%) when evaluated 1 year after treatment; reductions were greatest in plots treated with medium and high diquat concentrations, suggesting that diquat treatments may have an additive effect. Overall, our study establishes rates of diquat to reduce biomass of invasive knotweed, and supports additional testing to assess improvement in long-term control when used sequentially with a systemic herbicide.  相似文献   

7.
Summary. The adsorption of diquat cation was found to be 0.3, 2.0–2.5 and 80–100 mg/g on a sandy loam soil, Grade Hydrite 10 Georgia kaolinite and National Standard Bentonite, respectively. Bentonite (113 lb/surface ac) applied to plastic pools previously treated with 1 ppm paraquat reduced the concentration of paraquat to less than 0–05 ppm within 24 hr of application. Only bentonite appeared to hold either diquat or paraquat in a form unavailable to wheat. Appreciable uptake by wheat from soil treated with diquat or paraquat (16 lb/ac pre-emergence) occurred only in soil or sand in which the herbicide leached below the 05 in. zone. A 12 hr dark period following foliage application did not appear to enhance movement of either herbicide in wheat. Loss of radioactivity was observed when diquat or paraquat was exposed to ultraviolet light (2537 Å).
Facteurs agissant sur la persistence et l'inactivation du diquat et du paraquat  相似文献   

8.
水分处理对榆树幼苗不同器官非结构性碳水化合物的影响   总被引:1,自引:0,他引:1  
设置正常供水、轻度、中度和重度干旱处理,分析两年生榆树幼苗不同器官的可溶性糖、淀粉及非结构性碳水化合物(NSC)随处理时间延长(15、30、45 d和60 d)的变化特征。结果表明:水分处理15 d时,随着干旱程度增加,叶片和细根可溶性糖含量呈下降趋势,叶片淀粉含量在中度和重度干旱处理最低,为(18.35±0.06)mg·g^-1,茎和粗根可溶性糖含量在重度干旱处理显著低于其他处理。处理30 d时,叶片淀粉和NSC含量随干旱程度增加呈上升趋势,且叶片淀粉含量在重度干旱处理最高,为(47.83±0.27)mg·g^-1,茎和粗根淀粉及NSC含量在轻度干旱处理下显著低于适宜水分处理。处理45 d时,随干旱程度增加,细根可溶性糖/淀粉呈下降趋势,叶片可溶性糖含量、可溶性糖/淀粉和茎淀粉含量在重度干旱处理显著高于其他处理。处理60 d时,随着干旱程度增加,叶片和细根可溶性糖/淀粉逐渐增加,粗根可溶性糖、淀粉和NSC含量在重度干旱处理显著高于其他处理,并且NSC含量达到最大值(68.88±1.01)mg·g^-1。以上结果表明,榆树幼苗各器官可溶性糖、淀粉及NSC含量随着处理时间延长做出不同的响应,各器官NSC下降,并在粗根中积累。这为科尔沁沙地榆树防护林的水分管理提供依据。  相似文献   

9.
对水培20 d的苗期向日葵进行浓度为0、50、100 mmol·L-1以及时间为10、20、30 h的盐胁迫处理,运用酶联免疫吸附法(ELISA)分别测定了各组向日葵的根部、茎秆和叶片中内源激素的浓度变化。结果表明:随着盐浓度的增加以及胁迫时间的延长,向日葵根、茎、叶中四种激素呈现不同的变化趋势。IAA,ABA和ZR三种激素总体表现为先增后降的趋势,盐浓度越大,植物激素上升或下降的幅度越大,变化速度也越快。GA没有显著变化且波动在±2.0 ng·g-1范围内。而根、茎、叶中IAA/ABA,GA/ABA,(ZR+IAA+GA)/ABA的比值总体呈下降趋势,表明了盐胁迫对生长的抑制。盐胁迫下向日葵叶片和茎秆中这几种激素的变化更为明显,而根部的变化则较为缓慢。  相似文献   

10.
In this study, we evaluated the release of diclofop-methyl and triasulfuron from the roots of foliar-treated ryegrass and wheat. The study with 14C-diclofop-methyl indicated a basipetal translocation of foliar-applied herbicide in wheat and ryegrass. No root exudation from 14C-diclofop-methyl-treated wheat plants was observed, while 20 days after treatment (DAT) 0.2–0.9% of radioactivity absorbed by ryegrass was found exuded in the growing medium. Root exudation was stimulated three to six times by the presence of untreated wheat or ryegrass sharing the growing medium with diclofop-methyl-treated ryegrass. No subsequent uptake of exuded radiolabel by untreated plants (ryegrass or wheat) in the same pot with 14C-diclofop-methyl-treated ryegrass was observed. The study with 14C-triasulfuron indicated a basipetal translocation of foliar-applied herbicide in wheat and ryegrass and also into the growing medium. By 20 DAT, 0.5–4.2% of radioactivity absorbed by wheat or ryegrass was found exuded in the growing medium. The presence of untreated plants (wheat or ryegrass) in the same pot as triasulfuron-treated ryegrass or wheat induced exudation seven to 32 times more. The study also revealed a subsequent uptake of exuded compounds by untreated wheat or ryegrass sharing the medium of 14C-triasulfuron-treated plants. This study has demonstrated for the first time that the root exudation of exogenous compounds can be related to plant arrangement in pots. The implication is that herbicide root exudation and transfer, a form of allelopathy, could be significant in the field. A precise estimation of environmental fate, unexpected ecological side effects and residual activity of herbicides may require quantification of such exudation.  相似文献   

11.
Xiao CL  Subbarao KV 《Phytopathology》1998,88(10):1108-1115
ABSTRACT Microplot and field experiments were conducted to evaluate the effects of inoculum density on Verticillium wilt and cauliflower growth. Soil containing Verticillium dahliae microsclerotia was mixed with various proportions of fumigated soil to establish different inoculum densities (fumigated soil was used as the noninfested control). Seven inoculum density treatments replicated four times were established, and the treatments were arranged in a randomized complete block design. Soil was collected from each microplot immediately after soil infestation for V. dahliae assay by plating onto sodium polypectate agar (NP-10) selective medium using the Anderson sampler technique. Five-week-old cauliflower was transplanted into two beds within each 1.2- by 1.2-m microplot. At the same time, several extra plants were also transplanted at the edge of each bed for destructive sampling to examine the disease onset (vascular discoloration) after planting. Cauliflower plants were monitored for Verticillium wilt development. Stomatal resistance in two visually healthy upper and two lower, diseased leaves in each microplot was measured three times at weekly intervals after initial wilt symptoms occurred. At maturity, all plants were uprooted, washed free of soil, and wilt incidence and severity, plant height, number of leaves, and dry weights of leaves and roots were determined. The higher the inoculum density, the earlier was disease onset. A density of 4 microsclerotia per g of dry soil caused 16% wilt incidence, but about 10 microsclerotia per g of soil caused 50% wilt incidence. Both wilt incidence and severity increased with increasing inoculum density up to about 20 microsclerotia per g of soil, and additional inoculum did not result in significantly higher disease incidence and severity. A negative exponential model described the disease relationships to inoculum levels under both microplot and field conditions. Stomatal resistance of diseased leaves was significantly higher at higher inoculum densities; in healthy leaves, however, no treatment differences occurred. The height, number of leaves, and dry weights of leaves and roots of plants in the fumigated control were significantly higher than in infested treatments, but the effects of inoculum density treatments were variable between years. Timing of cauliflower infection, crop physiological processes related to hydraulic conductance, and wilt intensity (incidence and severity) were thus affected by the inoculum density. Verticillium wilt management methods used in cauliflower should reduce inoculum density to less than four micro-sclerotia per g of soil to produce crops with the fewest number of infected plants.  相似文献   

12.
Summary. Picloram is decarboxylated to a negligible extent in roots of skeleton weed: applied to leaves it kills roots better than 2,4-D; it penetrates leaves better than 2,4-D and disrupts the translocation system more, does not leak considerably into the soil from roots by the time of appropriate harvests, yet is not as well translocated as 2,4-D. Under such conditions its ability to kill roots to a greater depth is attributable to its greater intrinsic toxicity.
There is some evidence that under certain field conditions useful movement or uptake of picloram may occur via the soil.
Recherches sur Chondrilla juncea L . avee le plclorame et le 2,4-D.  相似文献   

13.
Influence of picloram on Cirsium arvense (L.) Scop, control with glyphosate   总被引:1,自引:0,他引:1  
Low rates of picloram in mixture with glyphosate provided a rapid enhancement of the onset of injury to the shoots of Cirsium arvense (Canada thistle or creeping thistle) under field (0.07+1.0 and 0.07+1.5 kg ha?1) and greenhouse (0.035+0.42 and 0.07+0.84 kg ha?1) conditions. Picloram slightly reduced the amount of 14C-glyphosate absorbed at 24 and 48 but not 72 h after treatment. Movement of 14C-glyphosate from the treated leaves to the shoot apex, remainder of the shoot and roots was reduced in the presence of picloram. Necrosis of the treated leaves above the treated spots was evident, presumably indicating acropetal movement of either or both herbicides. With the picloram + glyphosate mixtures there was increased shoot regrowth over glyphosate alone at 1 year after treatment under field, and with certain mixtures at 18 days and 4 weeks after treatment under greenhouse conditions. Following application of the mixtures, accumulation of glyphosate in the shoots may be responsible for the enhanced onset of shoot injury while failure of enough glyphosate to translocate to, and cause death of, the roots may be responsible for the increased shoot regrowth over glyphosate alone.  相似文献   

14.
Benzothiadiazole (BTH), as Bion WG50, and acetylsalicylic acid (ASA) treatments of potato foliage of field- and glasshouse-grown potato plants were compared for control of two foliar diseases, early blight ( Alternaria solani ) and powdery mildew ( Erysiphe cichoracearum ). The effect of these treatments on harvested tubers wound-inoculated with the dry rot fungus ( Fusarium semitectum ) was also evaluated. BTH (50 mg a.i. L−1) gave almost complete control of both foliar pathogens on inoculated glasshouse-grown plants and reduced the severity of leaf spotting diseases (mainly early blight) in the field. BTH (100 mg a.i. L−1) and ASA (400 mg a.i. L−1) reduced the severity of dry rot in field-grown tubers in some post-harvest wound-inoculated treatments but not others and a similar reduction occurred with tubers inoculated post-harvest from BTH-treated plants grown under glasshouse conditions. BTH treatment increased β-1,3-glucanase activity in leaves > stem > tubers > stolons but not in roots. Increased enzyme activity was recorded for up to 45 days post-treatment.  相似文献   

15.
以14C标记碳酸钡(Ba14CO3)为起始物,采用4步反应合成14C-1,2,4-三唑,总强度为5.813 1 mci,比强为15.53 μci/mg, 纯度大于99%,放化收率84.21%。在此基础上,参照文献报道的有关腈菌唑合成的方法,以4-氯苯乙腈为原料,经取代、缩合等3步反应合成了14C-腈菌唑,其总强度为0.556 6 mci,比强为2.53 μci/mg,纯度大于96%,放化收率85.4%。应用同位素示踪技术研究了14C-腈菌唑在2~3叶期小麦幼苗上的吸收、分布和传导。结果表明,根部给药后6~120 h,小麦根部放射性物质分布比例由59.88%下降为 24.87%;在幼苗茎基部和叶片中,放射性物质分布比例分别由14.18%、1.19%上升为 19.47%和33.75%;14C-腈菌唑被小麦幼苗吸收后向顶传导的速度很快,在叶片中的分布和积累与根部给药时间呈正相关,放射强度由2.94×10-6 μci上升为322.72×10-6 μci。放射性自显影表明,根部给药后120 h,14C-腈菌唑可以内吸传导到整个小麦植株。  相似文献   

16.
Dymron [1‐(α,α‐dimethybenzyl)‐3‐(p‐tolyl)urea] and fenclorim (4,6‐dichloro‐2‐phenylpyrimidine) were found to exhibit a safening activity on the growth of rice (Oryza sativa L.) seedlings against pretilachlor [2‐chloro‐2′,6′diethyl‐N‐(2‐propoxyethyl)acetanilide] injury. By pretilachlor treatment at 10–6 and 10–5 mol L–1, the elongation of the third leaves of rice seedlings was reduced by approximately 20 and 40%, and that of the fourth leaves was reduced by approximately 40 and 80%, respectively. Upon the treatment of dymron at 3 × 10–6 and 10–5 mol L–1 in combination with pretilachlor, the growth inhibition was half alleviated in the third leaves, and the length of the fourth leaves was almost recovered from 10–6 mol L‐1 pretilachlor injury, and was 20–25% recovered from 10–5 mol L–1 pretilachlor injury. Upon the treatment of fenclorim at 3 × 10–6 and 10–5 mol L–1 in combination with pretilachlor, the growth inhibition of rice seedlings was almost alleviated in both the third and the fourth leaves. This result indicated that dymron and fenclorim showed almost the same safening effect on the fourth leaf growth against 10–6 mol L‐1 pretilachlor injury, although fenclorim showed higher effects at higher concentrations of pretilachlor. Glutathione S‐transferase (GST) activities in rice seedlings were investigated after being treated with a herbicide and safener. By pretilachlor treatment at 10–6 and 10–5 mol L–1, the GST activity was approximately 32 and 72% increased in roots, respectively, and a little increased (7–13%) in shoots of two‐leaf‐stage rice seedlings. By dymron treatment at 3 × 10–6?10–5 mol L–1, the GST activity was 2–30% increased in roots, but was not increased in shoots. By their combination treatment, the GST activity was almost the same or less than that by treatment with pretilachlor alone. In contrast, by fenclorim treatment alone, the GST activity was 43–52 and 33–45% increased in roots and shoots of rice seedlings, respectively. By the combination treatment of pretilachlor and fenclorim, the GST activity was increased 73–126% in shoots and 101–139% in roots, and was much more increased in both shoots and roots compared with treatment of pretilachlor or fenclorim alone. It was found that dymron showed less effect in increasing the GST activity than fenclorim. It is also suggested that dymron did not increase the GST activity in shoots but did increase it slightly in roots, and showed almost no effect on GST increase by pretilachlor in shoots, or rather reduced the increase in roots. From the above results, fenclorim and dymron may have different mechanisms of safening effects on the protection of rice seedlings against pretilachlor injury.  相似文献   

17.
Leakage of electrolytes from leaf discs of treated Phaseolus Vulgaris L. plants was the main criterion used to study the effect of several chemicals on the permeability of leaf-cell membranes. Paraquat, diquat, dinoseb and oxyfluorfen (2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(Trifluoromethyl) benzene) increased leaf-cell membrane permeability after exposure for 12 h or less. An‘aromatic’oil caused a large increase in permeability at 2–5 min after treatment. Increases in electrolyte release were also correlated with release of soluble amino acids from the leaf discs but the former method was the more sensitive. Increase in cell membrane permeability was always associated with injury symptoms such as appearance of necrotic areas in leaves. Chlorpropham, linuron, sodium azide, glyphosate and 2,4-D at 10?3M, as well as 1% X-77 surfactant and a non-phytotoxic isoparaffinic oil did not alter leaf-cell permeability at 12 h after treatment. Light was necessary for paraquat and oxyfluorfen to alter leaf cell permeability. Paraquat and oxyfluorfen caused a greater increase in leaf-cell permeability of a soybean mutant with yellow leaves as compared with the normal green leaves. With oxyfluorfen this difference in permeability was greater than with paraquat, and was associated with the appearance of severe necrotic injury symptoms in the yellow mutant; paraquat caused no injury symptoms.  相似文献   

18.
氟唑磺隆在野燕麦中的内吸传导特性   总被引:1,自引:1,他引:0  
新型除草剂氟唑磺隆是磺酰脲类小麦田除草剂,为明确其在野燕麦植株中的内吸传导特性以及为合理使用氟唑磺隆防除杂草策略的制定提供科学依据,分别采用水培法和涂药法研究了氟唑磺隆在野燕麦Avena fatua植株中的传导特性。结果显示:采用水培法以50 mg/L的氟唑磺隆处理野燕麦根部,药后24 h野燕麦根、叶鞘和下部成熟叶中氟唑磺隆含量的占比分别为22%、74%和4%,心叶中未检测出;药后48 h野燕麦根、叶鞘、下部成熟叶和心叶中氟唑磺隆含量的占比分别为23%、58%、8%和11%。采用涂药法以50 mg/L氟唑磺隆处理野燕麦成熟叶片,药后24 h野燕麦下部成熟叶和心叶中氟唑磺隆的含量占比分别为57%和43%,根和叶鞘未检测出;药后48 h野燕麦根、叶鞘、下部成熟叶和心叶中氟唑磺隆的含量占比分别为1%、1%、68%和30%。结果表明,氟唑磺隆能被野燕麦的根吸收,具有优异的自下而上的内吸传导特性;同时氟唑磺隆能被野燕麦的叶片吸收,并可在叶间传导和向根传导。表明氟唑磺隆在野燕麦中具有双向传导的能力。  相似文献   

19.
ABSTRACT Severity of Sclerotinia stem rot of soybean after treatment with lactofen (Cobra) and other herbicides was assessed in field experiments conducted in Michigan from 1995 to 1997. At sites where disease pressure was high, disease severity was reduced 40 to 60% compared with controls when lactofen was applied at the V3 (1995 and 1996) or R1 (1997) growth stages. Corresponding seed yields were unchanged or up to 20% greater when lactofen was applied at the R1 stage in 1997. Disease severity was not reduced by lactofen treatments in years and at sites where disease pressure was low to medium, and corresponding yields often were reduced by 10%. High levels of glyceollin accumulated in lactofen-injured leaves collected from field plots in 1996 and 1997. High glyceollin content in lactofen-treated leaves was associated with significant reductions in lesion size when leaves were challenge-inoculated with Sclerotinia sclerotiorum.  相似文献   

20.
不同诱抗剂防治豌豆白粉病的效果及对防御酶的影响   总被引:1,自引:0,他引:1  
本文研究了4种诱抗剂防治豌豆白粉病的效果及其诱导豌豆叶片防御酶活性变化。结果表明,用不同诱抗剂进行诱导处理后第7天,对豌豆白粉病防效为16.25%~52.18%,效果最好的处理为0.1%S-诱抗素,平均防效为52.18%,处理后第10天,防效上升到20.59%~56.43%,效果最好的仍为0.1%S-诱抗素;喷施诱抗剂后增产效果明显,不同处理平均增产幅度在0.77%~12.54%之间;诱导后显著提高了抗性相关防御酶POD活性,其中0.1%S-诱抗素处理POD酶活性最高,但却降低了CAT酶活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号