首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

2.
Windbreaks are a major component of agroforestry practices and play an important role in agroforestry ecosystems. They can reduce wind velocity and protect shelter crops from wind damage and soil from wind erosion. Porosity is one of the most important structural parameters that affect wind speed and is widely used in the study of wind protection provided by windbreaks. In this paper, a method to estimate porosity using high-resolution satellite imagery is represented. Porosity was difficult to estimate through the direct use of remote sensing data due to the poor relationship with vegetation indices. Thus, two intermediate variables, that is, CL 2 × LAI and CL × LAI × W, which were highly related to porosity, were selected. Leaf area index (LAI) and average tree crown length (CL) were estimated using vegetation indices, and W, which refers to the width of a windbreak, was identified using object-based image analysis. Porosity was estimated using a statistical relationship between porosity and intermediate variables. The average prediction accuracy of the estimated porosity value was 76.104 %. Based on the estimated porosity value, the windbreaks were grouped into three types, and their efficiency of wind protection was evaluated. The evaluation result indicated that the windbreaks have a very good protective structure in the study area and they can effectively shelter crops from wind damage and erosion. This study can provide a useful guide for studying the wind protection provided by windbreaks on spatial and temporal scales using remote sensing.  相似文献   

3.

Key message

A generalized algebraic difference approach (GADA) developed in this study improved the estimation of aboveground biomass dynamics of Cunninghamia lanceolata (Lamb.) Hook and Castanopsis sclerophylla (Lindl.) Schott forests. This could significantly improve the fieldwork efficiency for dynamic biomass estimation without repeated measurements.

Context

The estimation of biomass growth dynamics and stocks is a fundamental requirement for evaluating both the capability and potential of forest carbon sequestration. However, the biomass dynamics of Cunninghamia lanceolata and Castanopsis sclerophylla using the generalized algebraic difference approach (GADA) model has not been made to date.

Aims

This study aimed to quantify aboveground biomass (AGB, including stem, branch and leaf biomass) dynamics and AGB increment in C. lanceolata and C. sclerophylla forests by combining a GADA for diameter prediction with allometric biomass models.

Methods

A total of 12 plots for a C. lanceolata plantation and 11 plots for a C. sclerophylla forest were selected randomly from a 100 m × 100 m systematic grid placed over the study area. GADA model was developed based on tree ring data for each stand.

Results

GADA models performed well for diameter prediction and successfully predicted AGB dynamics for both stands. The mean AGB of the C. lanceolata stand ranged from 69.4 ± 7.7 Mg ha?1 in 2010 to 102.5 ± 11.4 Mg ha?1 in 2013, compared to 136.9 ± 7.0 Mg ha?1 in 2010 to 154.8 ± 8.0 Mg ha?1 in 2013 for C. sclerophylla. The stem was the main component of AGB stocks and production. Significantly higher production efficiency (stem production/leaf area index) and AGB increment was observed for C. lancolata compared to C. sclerophylla.

Conclusion

Dynamic GADA models could overcome the limitations posed by within-stand competition and limited biometric data, can be applied to study AGB dynamics and AGB increment, and contribute to improving our understanding of net primary production and carbon sequestration dynamics in forest ecosystems.
  相似文献   

4.
We investigated the effects of two commercial diatomaceous earth based insecticides (DE), Protect-It® and SilicoSec®, the nano-structured silica product AL06, developed by the section for Urban Plant Ecophysiology at Humboldt University Berlin, and the monoterpenoids, eugenol, and cinnamaldehyde on two stored product pests, Callosobruchus maculatus and Sitophilus oryzae. Protect-It® was more effective than SilicoSec® against C. maculatus while the reverse was true for S. oryzae. Generally C. maculatus was more sensitive towards DE and silica treatment than S. oryzae. Mortality rate of both pest species increased when DE’s were applied to food commodities previously treated with a monoterpenoid. In admixture experiments, the toxicity of SilicoSec® + cinnamaldehyde (LD50 = 42.73 ppm), SilicoSec® + eugenol (LD50 = 24.30 ppm), and Protect-It® + eugenol (LD50 = 2.60 ppm) was increased over DE alone against S. oryzae. Both substances showed a synergistic effect considering their co-toxicity coefficient relative to the LD50-value. In contrast, we could not find any synergistic effects in experiments with C. maculatus. Here only Protect-It® + cinnamaldehyde (LD50 = 20.84 ppm) showed an additive effect while all other combinations of monoterpenoid and DE indicated antagonistic effects. In addition to contact insecticidal effects both monoterpenoids showed a strong fumigant action. The presented results indicate that the natural product DE has great potential to replace synthetic pesticides commonly used in stored product pest management. Efficacy of DE can be improved by adding certain monoterpenoids against certain insect pests.  相似文献   

5.
The taiga coniferous forests of the Siberian region are the main carbon sinks in the forest ecosystems. Quantitatively, the size of the carbon accumulation is determined by the photosynthetic productivity, which is strongly influenced by environmental factors. As a result, an assessment of the relationship between environmental factors and photosynthetic productivity makes it possible to calculate and even predict carbon sinks in coniferous forests at the regional level. However, at various stages of the vegetative period, the force of the connection between environmental conditions and the productivity of photosynthesis may change. In this research, correlations between the photosynthetic activity of Scots pine (Pinus sylvestris L.) with the environmental conditions were compared in spring and in autumn. In spring, close positive correlation of the maximum daily net photosynthesis was identified with only one environmental factor. For different years, correlations were for soil temperature (rs = 0.655, p = 0.00315) or available soil water supply (rs = 0.892, p = 0.0068). In autumn within different years, significant correlation was shown with two (temperature of air and soil; rs = 0.789 and 0.896, p = 0.00045 and 0.000006, respectively) and four factors: temperature of air (rs = 0.749, p = 0.00129) and soil (rs = 0.84, p = 0.00000), available soil water supply (rs = 0.846, p = 0.00013) and irradiance (rs = 0.826, p = 0.000001). Photosynthetic activity has a weaker connection with changes in environmental factors in the spring, as compared to autumn. This is explained by the multidirectional influence of environmental conditions on photosynthesis in this period and by the necessity of earlier photosynthesis onset, despite the unfavorable conditions. This data may be useful for predicting the flow of carbon in dependence on environmental factors in this region in spring and in autumn.  相似文献   

6.
Knowledge regarding the interactive effects of elevated [CO2], warming and drought on dry mass production, allocation and water use efficiency (WUE) of tree seedlings is limited, particularly in trees exhibiting different stomatal regulation strategies. Seedlings of Callitris rhomboidea (relatively anisohydric) and Pinus radiata (relatively isohydric) were grown in two [CO2] (Ca (400 μmol mol?1) and Ce (640 μmol mol?1)) and two temperature (Ta (ambient) and Te (ambient?+?4 °C)) treatments in a sun-lit glasshouse under well-watered conditions prior to imposition of the drought. Ce increased mass production in C. rhomboidea (but not in P. radiata), while drought limited mass production in both species. Mass production was greatest in the combination of Ce, Te and well-watered conditions. Pinus radiata allocated relatively more dry mass into roots and had higher plant WUE than C. rhomboidea. Noticeably, mass allocation patterns in C. rhomboidea varied as a function of the treatments, but those of P. radiata were constant. Ce enhanced leaf WUE of both species, but to a greater degree under drought stress than well-watered conditions. Moderate drought stress increased both leaf and plant WUE compared to well-watered conditions. C. rhomboidea exhibited plasticity to variable climate conditions through morphological adjustments, while P. radiata exhibited a highly conservative strategy. Collectively, these findings indicate that the two species have different strategies in resource acquisition and utilisation under changing environmental conditions. Future studies on tree response to climate change need to fully consider the integration of species traits, including stomatal behaviour and hydraulic strategies.  相似文献   

7.
The extensive use of synthetic insecticides and fumigants for control stored-product insects has led to the development of resistance. Essential oils from aromatic plants may provide proper alternatives to currently used insect control agents. Essential oils from 20 Egyptian plants were obtained by hydrodistillation. The chemical composition of the oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against Sitophilus oryzae. The inhibitory effects of the essential oils on acetylcholinesterase and adenosine triphosphatases activities were examined. The oils were composed of monoterpene hydrocarbons (i.e., limonene, sabinene, β-pinene and γ-terpinene) and oxygenated monoterpenes (i.e., terpinen-4-ol, β–thujone, 4-terpineol, α-citral and 1,8-cineole) with the exception of the oil of Schinus terebinthifolius which was contained sesquiterpenes, and the oil of Vitex agnus-castus which contained similar amounts of monoterpenes and sesquiterpenes. In the fumigation assay, the oils of Origanum vulgare (LC50 = 1.64 mg/L air), Citrus lemon (LC50 = 9.89 mg/L air), Callistemon viminals (LC50 = 16.17 mg/L air), Cupressus sempervirens (LC50 = 17.16 mg/L air), and Citrus sinensis (LC50 = 19.65 mg/L air) showed high toxicity to S. oryzae. In the contact assay, the oils of Artemisia judaica, C. viminals, and O. vulgare caused the highest toxicity to S. oryzae with LC50 values of 0.08, 0.09, and 0.11 mg/cm2, respectively. The oil of A. judaica (I50 = 16.1 mg/L) invoked the highest inhibitory effect on AChE activity, while the oils of C. viminals and O. vulgare were the most potent inhibitors to ATPases activity with I50 values of 4.69 and 6.07 mg/L, respectively. The results indicate that the essential oils of A. Judaica, O. vulgare, C. limon, C. viminals, and C. sempervirens could be applicable to the management of populations of S. oryzae.  相似文献   

8.
Plantations of Eucalyptus species are expanding across South America into regions where drought conditions can reduce growth rate and result in substantial commercial loss. Understanding the mechanisms of drought tolerance in Eucalyptus is essential for the successful production in drought-regions. The main objectives of this study were to evaluate how water availability preceding a long-term drought period affects morphological, physiological and molecular traits of four Eucalyptus clones grown under field conditions. The study areas are located in north-eastern Brazil with an average rainfall of 800 and 1500 mm per year. At each rainfall regime, the following clones were evaluated: 1404 (Eucalyptus urophylla), 1407 (E. urophylla × E. camaldulensis), 1296 and 6500 (E. grandis × E. urophylla). Our results indicate that trees growing in the area with higher annual precipitation were more stressed after long-term drought, compared to those stands previously exposed to mild water-restriction period. The genetic materials showed distinct responses to drought, which allowed their separation in two groups: drought-tolerant (1404 and 1407) and drought sensitive (6500 and 1296). The former group shows some important adaptations to drought, such as decreased leaf area (avoiding excessive transpiration rates), higher antioxidant activity and carotenoid concentration (leading to lower lipid peroxidation). In conclusion, previous exposure to water deficit may provide the benefit of increased defense protection during future water deficit. From all measured variables, the leaf area, antioxidant compounds and changes in 13C and 18O isotope abundance reflect some of the most important morphological and physiological alterations in order to mitigate the water stress damage in drought-tolerant genotypes.  相似文献   

9.
Apparent digestibility and nitrogen (N) balance were evaluated in sheep fed low-quality Cynodon nlemfuensis grass supplemented with different foliages of forage-potential trees. Four male hair sheep were housed in metabolic cages and fed in a Latin Square design with 30 % inclusion of foliage of Erythrina indica (Ei), Moringa oleifera (Mo), or Trichanthera gigantea (Tg) replacing soybean meal. Adaptation and faeces and urine collection periods were 14 and 7 days, respectively. Sheep received 70 g DM/kg/BW0.75 of the diet in order to achieve total consumption of feed. Dry matter, organic matter, and neutral detergent fiber digestibilities were similar (P > 0.05) among the control, Mo, and Ei diets, while the Tg diet resulted in the lowest (P < 0.05) value. The Ei diet showed the highest (P < 0.05) total N intake among the three diets with 30 % of leaf meal, which was similar (P > 0.05) to the control diet. N excreted in faeces was highest (P < 0.05) in the Tg diet when compared to the other leaf meal diets, in which the Mo diet presented the lowest (P < 0.05) value, but was similar (P > 0.05) to that found in the control diet. The Mo and Ei diets had similar (P > 0.05) values for the percent of N absorbed by the animals, which was much higher (P < 0.05) than that of the Tg diet. The forage of M. oleifera and Ei can be used in diets at 30 % incorporation to substitute the use of soybean meal in small ruminant production.  相似文献   

10.
We evaluated the phenology and litterfall dynamics of the mangrove Bruguiera gymnorrhiza(L.)Lamk along the Okukubi River, Okinawa Island, Japan.Over 3 years, this species showed the highest litterfall of leaves and stipules in summer and the lowest litterfall in winter. From Kendall's coefficient of concordance, the monthly changes in leaf, stipule, and branch were strongly and significantly concordant among years. Leaf and stipule litterfall could be governed by monthly maximum wind speed, monthly day length, and monthly mean air temperature. Branch litterfall depended on monthly maximum wind speed and monthly rainfall, and increased exponentially with increasing monthly maximum wind speed. Mean total litterfall was 11.8 Mg ha~(-1)yr~(-1), with the largest component being leaf litterfall(65.8 %). Annual leaf litterfall per plot was almost constant regardless of the tree density of the plot. Mean leaf longevity was 18 months.Flower and mature propagule litterfall might be influenced by monthly mean air temperature, monthly day length and monthly mean air temperature. The average development periods from flower buds to flowers and flower buds to mature propagules were 1 and 8 months, respectively.Except for leaf and branch, all vegetative and reproductive organ litterfall had clear annual cycles. B. gymnorrhiza showed a positive correlation between leaf production and reproductive organ production.  相似文献   

11.
The naturally occurring Verticillium nonalfalfae shows promise for biocontrol of the highly invasive Tree of Heaven (Ailanthus altissima), but might also bear a risk for non-target tree species. In this study, we conducted inoculations on potted seedlings of A. altissima as well as on eight indigenous and two invasive tree species associated with Tree of Heaven in Austria. Although vascular discolourations developed in all inoculated tree species, V. nonalfalfae was reisolated from Ailanthus and eight of the ten non-target-species, whereas typical disease symptoms and mortality only occurred on A. altissima. Results confirmed high susceptibility (S) of A. altissima to V. nonalfalfae but indicated tolerance (T) of Acer campestre, Acer pseudoplatanus and Quercus robur, possible resistance (PR) of Fraxinus excelsior, Populus nigra, Tilia cordata, Ulmus laevis and Ulmus minor and resistance (R) of Fraxinus pennsylvanica and Robinia pseudoacacia to this potential biocontrol agent. Results from seedling inoculations were confirmed by cursory field observations in Ailanthus-inoculated forest stands, where admixed A. campestre, A. pseudoplatanus, F. excelsior, Populus alba, R. pseudoacacia and U. laevis canopy trees remained asymptomatic, while mortality was induced in Ailanthus.  相似文献   

12.
Gardenia jasminoides and Rosa chinensis are economically important horticultural plants in China. Frankliniella occidentalis and Thrips hawaiiensis are serious coexisting pests that previously demonstrated opposite population trends on G. jasminoides and R. chinensis flowers. To further study the different performances between F. occidentalis and T. hawaiiensis, we investigated their population dynamics in the field (for 5 years) and their life history characteristics on the two flowers in the laboratory. In the field, the density of F. occidentalis was lower than that of T. hawaiiensis on G. jasminoides but was higher than that of T. hawaiiensis on R. chinensis. Under laboratory conditions, F. occidentalis showed significantly slower development, and lower survival and fecundity levels than T. hawaiiensis on G. jasminoides, but the opposite was true on R. chinensis. Significant differences in the net reproductive rate (R 0) between F. occidentalis and T. hawaiiensis were observed, with respective values of 38.66 ± 2.85 and 47.91 ± 2.70 on G. jasminoides, and 55.64 ± 2.15 and 32.45 ± 2.16 on R. chinensis. The intrinsic rates of increase (r m ) of F. occidentalis and T. hawaiiensis were 0.156 ± 0.008 and 0.198 ± 0.007, respectively, on G. jasminoides, and 0.172 ± 0.003 and 0.165 ± 0.002, respectively, on R. chinensis. Thus, the performances of both thrips with respect to population size in the laboratory were in accordance with those in the field, suggesting that the innate capacity for insect population increases may directly impact their population dynamics in fields. Thus, the population performance of different thrips species on flowers is species-dependent, which could be exploited in thrips control programs by breeding pest-resistant cultivars.  相似文献   

13.
The codling moth (Cydia pomonella L.) is a significant pest of pome fruit throughout the world. Behavioral and ovicidal activities of five non-host plant extracts (Arctium lappa, Bifora radians, Humulus lupulus, Verbascum songaricum, Xanthium strumarium), synthetic sex pheromone, (E,E)-8,10-dodecadienol (codlemone), and the plant volatile lure, (2E,4Z)-2,4-decadienoate (pear ester) were evaluated against the codling moth, C. pomonella L. Codlemone elicited the greatest electroantennogram (EAG) response (6.2 ± 1.2 mV) of the compounds tested from male C. pomonella while pear ester elicited 1.7 ± 0.1 mV EAG response in female moths. Codlemone attracted 34.5% of male C. pomonella in olfactometer studies, and it was followed by the X. strumarium extract with 24.8%. There was a significant difference between the behavior of unmated and mated females. V. songaricum extract was the most active extract, attracting 25.4% of unmated females. However, mated C. pomonella females exhibited greatest attraction to pear ester. In a wind tunnel bioassay, combining X. strumarium with codlemone significantly increased the response of male upwind flight and source contact as compared with codlemone alone. All plant extracts, except for V. songaricum, significantly reduced the number of eggs laid. The plant extracts exhibited some toxic effects to eggs, and hatching rate of eggs was reduced as compared with the control. Our results indicate that some of the plant extracts tested are potential candidates for practical use after elucidation and characterization of active compound(s).  相似文献   

14.
The study aimed to test the potential anthelmintic activity of Salix babylonica (SB) extract for the control of gastrointestinal and pulmonary parasites in sheep and goats under field conditions. A representative sample of 20 % of all animals reared in 8 sheep and 7 goat farms was used in the study. Animals from each farm were randomly selected for a total number of 93 sheep and 75 goats. Animals suffered a natural gastrointestinal nematode infection and had never been treated with chemical anthelmintic drugs. The SB extract (20 mL) was orally administered weekly before the morning feeding to each animal for 60 days. Fecal eggs or oocysts were counted at 0, 1, 20, 40, and 60 days after starting the extract administration. Differences (P < 0.01) in the fecal oocyst and egg output of Eimeria, Dictyocaulus, and Moniezia were observed between sheep and goats. In addition, the treatment influenced (P < 0.05) egg outputs of Cooperia, Dictyocaulus, and Trichuris. Fecal egg or oocyst counts of Haemonchus contortus, Eimeria, Cooperia, Chabertia, Dictyocaulus, Moniezia, and Ostertagia were time-dependent (P < 0.05). For sheep, administration of SB decreased (P < 0.05) the fecal eggs count of H. contortus, Cooperia, Chabertia, Dictyocaulus, Moniezia, and Trichuris. After 20 days of treatment, H. contortus, Cooperia, or Moniezia were not detected. For goats, SB reduced (P < 0.05) the fecal egg counts of H. contortus, Cooperia, Chabertia, and Moniezia. Moreover, decreases were observed (P < 0.05) for Chabertia, Trichostrongylus, and Ostertagia. Eggs of H. contortus and Moniezia were not present in the feces after 1 day of administration of the extract. It could be concluded that the weekly administration of SB extract at 20 mL per animal can be used to treat gastrointestinal and lung nematodes of small ruminants in organic and traditional farming systems of tropical regions.  相似文献   

15.
Berberis species are endangered, high-value medicinal plants in Pakistan with important eco-cultural, commercial and livelihood roles in mountain communities. To assess the geographical distribution of Berberis species across the Karakoram Mountain Ranges in Pakistan, we used IUCN Red List Categories and Criteria (2001) to calculate the extent of occurrence (EOO, <100 km2) and the area of occupancy (AOO, <10 km2) of Berberis pseudumbellata subsp. pseudumbellata and B. pseudumbellata subsp. gilgitica. Overgrazing and habitat loss were key population-limiting factors. The two subspecies had contrasting responses to temperature, elevation, precipitation and insect susceptibility. B. pseudumbellata subsp. gilgitica is endemic to Gilgit-Baltistan and grows in single-cropping zone (areas > 200 m a.s.l.). Status evaluation revealed that both subspecies meet the criteria set for critically endangered species. Prolonged disregard of its declining population trend might lead to its extinction; therefore, integrated conservation efforts are necessary.  相似文献   

16.
Where there is limited availability of conventional fertilizers, the use of organic materials is considered a viable alternative to increase the productive capacity of soils. Many potential plant residues remain underutilized due to limited research on their use as a nutrient source. In this study, the nitrogen supplying capabilities of ten rarely-used leaf biomass sources (Acacia auriculiformis, Baphia nitida, Albizia zygia, Azadirachta indica, Senna siamea, Senna spectabilis, Tithonia diversifolia, Gliricidia sepium, Leucaena leucocephala and Zea mays) were tested based on their nutrient content, N mineralization patterns and effect on maize yield (in comparison with inorganic fertilizer). N mineralization was studied in the laboratory using an incubation experiment. Field trials were also established using a randomized complete block design. Plant residues were applied at 5 t dry matter ha?1 a week before planting maize while fertilizer was split-applied at 90 kg N ha?1 on designated plots. From the results on plant residue chemistry, most of the plant residues recorded relatively high N concentration (≥24.9 g kg?1) and low C/N ratio (≤20.1) although neither N content nor C/N ratio significantly (p > 0.05) affected their N mineralization patterns. Leaf biomass application of B. nitida, A. auriculiformis, A. zygia and maize stover resulted in an initial net N immobilization that lasted for 14 days. Application of all plant materials significantly increased the biological yield and N uptake of maize with G. sepium and T. diversifolia producing the greatest impact especially in the major rainy season. Relative to the control, total grain yield after four cropping seasons was comparable between inorganic fertilizer (9.2 t ha?1), G. sepium (8.8 t ha?1) and T. diversifolia (9.4 t ha?1) treatments. The results on maize biological yield were significantly correlated with the effects of the treatments on N uptake. The findings suggest that in locations where inorganic fertilizers are limited, leaf biomass from G. sepium and T. diversifolia could offer the most suitable option in comparison with the other species used in this study.  相似文献   

17.
Taxus chinensis and T. wallichiana in have been threatened in their distribution areas in recent decades because of their over-exploitation and reduction and destruction of native habitats. Determining the genetic diversity in populations of the two species will provide guidelines for their protection and preservation. Two hundred and fifteen trees from six populations of T. chinensis and 150 sampled trees of T. wallichiana were sampled. Six microsatellite primer pairs selected from 16 primer pairs were used to investigate genetic variation at the population and species levels. Five yielded polymorphic alleles, and among the 13 putative alleles amplified, 11 were polymorphic (accounting for 76.33 %).Shannon’s information index (I) and percentage of polymorphic bands (PPB) (I = 0.202 and PPB = 67.22 % for T. chinensis; I = 0.217 and PPB = 65.03 % for T. wallichiana). Both species had low levels of genetic diversity (mean H o = 0.107, H e = 0.121 for T. chinensis; H o = 0.095, H e = 0.109 for T. wallichiana). Genetic differentiation among populations was higher (F ST = 0.189) for T. chinensis and lower (0.156) for T. wallichiana, indicating limited gene flow (Nm) among populations for T. chinensis (0.68) and T. wallichiana (0.65). Variation among individuals of T. chinensis was 63.59 and 73.12 % for T. wallichiana. Thus, the threatened status of the two conifers is related to a lack of genetic diversity. All populations are isolated in small forest remnants. An ex situ conservation site should be established with a new population for these species that comprises all the genetic groups for the best chance to improve their fitness under environmental stresses.  相似文献   

18.
Thiamethoxam (ACTARA® 25WG) was evaluated for its insecticidal activities against the bamboo powder post beetle Dinoderus minutus Fabricius (Coleoptera: Bostrichidae). The study showed that thiamethoxam had contact toxicity against D. minutus. Based on dose-mortality responses, LC50 values for thiamethoxam against D. minutus ranged from 1.74 to 7.94 μg ml?1. Laboratory and field exposure tests showed that thiamethoxam at concentration of atleast 10 μg ml?1 may have anti-oviposition or anti-feeding effects on D. minutus and can protect post harvest Bambusa vulgaris Schrad. culms against the infestation of this bamboo boring beetle.  相似文献   

19.
Understanding the variation of mating patterns in disturbed habitats provide insight into the evolutionary potential of plant species and how they persist over time. However, this phenomenon is poorly understood in tropical dryland tree species. In the present study, we investigated how Acacia senegal reproduces in two different environmental contexts in Kenya. Open-pollinated progeny arrays of 10 maternal trees from each environmental context were genotyped using 12 nuclear microsatellite markers. Overall, A. senegal displayed a predominantly allogamous mating pattern. However, higher multilocus outcrossing rate (tm) was found in Lake Bogoria (tm = 1.00) than in Kampi ya Moto population (tm = 0.949). Higher biparental inbreeding (t m  ? t s  = 0.116) and correlation of outcrossed paternity (rp = 0.329) was found in Kampi ya Moto than in Lake Bogoria population (t m  ? t s  = 0.074, rp = 0.055), showing the occurrence of mating among relatives. Coefficient of coancestry (Θ = 0.208) showed that full-sibs constitute about 21% of the offspring in Kampi ya Moto population compared to about 14% (Θ = 0.136) in Lake Bogoria population. The results demonstrate that low adult tree density of A. senegal may be promoting seed production through consanguineous mating and suggest that man-made disturbance can affect mating patterns of the species. Despite these mating differences, trees from both populations can contribute as seed source for conservational plans, and to support effective genetic conservation and artificial regeneration programs of A. senegal. We suggest collection of seeds from at least 42 and 63 trees in Lake Bogoria and Kampi ya Moto populations, respectively, to retain a progeny array with a total effective population size of 150.  相似文献   

20.
Plant-based products, namely essential oils (EOs), are environmentally friendly alternatives for the control of disease vectors, hosts and/or parasites. Here, we studied the general toxicity and biopesticidal potential of EOs and phenylpropanoids from Foeniculum vulgare var. vulgare (bitter fennel), a perennial plant well adapted to temperate climates. EO/compound toxicity was tested against a freshwater snail and potential intermediate host of Fasciola hepatica (Radix peregra), a mosquito and former European malaria vector (Anopheles atroparvus) and one of the most damaging plant-parasitic nematodes, the root-knot nematode (Meloidogyne javanica). Lethal concentrations (LC50; LC90) of EOs (infrutescences/stems with leaves) and compounds were calculated by probit analysis. All displayed noteworthy activity against R. peregra adults (LC50 21–39 µg ml?1) and A. atroparvus larvae (LC50 16–56 µg ml?1). trans-Anethole revealed acute nematicidal activity after 24 and 48 h (LC50 310 and 249 µg ml?1, respectively), and estragole (1,000 µg ml?1) showed some effectiveness against M. javanica hatching and juveniles after 15 days. Plant and EO yields were determined to evaluate the bitter fennel productivity. The chemical composition of the EOs was analyzed by gas chromatography coupled to mass spectrometry. EOs extracted from whole plants, infrutescences and stems with leaves were characterized by estragole-dominant profiles (28–65 %), considerable amounts of phellandrene (10–34 %) and fenchone (6–16 %), and minor trans-anethole contents (1–4 %). Although additional toxicological studies against nontarget organisms are required, our study demonstrates that bitter fennel is a productive source of molluscicides and larvicides, and thus a potential sustainable biological agent to control particular host species, namely freshwater snails and mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号