首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
毛敏 《农业工程》2021,11(2):56-58
为了实时监测土壤湿度,通过Wi-Fi技术、土壤湿度传感器、Arduino Uno微处理器和Web服务器设计出基于物联网技术的智能灌溉系统,搭建了以土壤湿度传感器和Arduino Uno微处理器为核心的硬件体系,并通过Java语言编写JSP程序完成软件设计.通过试验,该系统可实时监测土壤水分,当测量数据小于设定的阈值时,...  相似文献   

2.
设计一种土壤墒情智能监测控制系统来实现对土壤墒情的实时监测,并通过灌溉等方式智能改变土壤墒情。通过在多点放置土壤湿度传感器与ZIGBEE无线通信设备组成自组网络,ZIGBEE协调器与所有子节点通信将所有点的土壤湿度信息汇总并且传送给单片机分析处理。单片机控制液晶显示器将土壤湿度平均值显示出来,并根据设置的土壤湿度上下限值进行调控,当土壤湿度平均值低于下限值时,控制水泵浇水,高于上限值时,控制水泵停止浇水。通过实验测试证明,本土壤墒情智能监测控制系统能够实现土壤湿度的监测和控制。  相似文献   

3.
农田灌溉对于提高农作物产量具有重要作用,灌溉管网漏损实时在线监测对提升农田用水效率具有积极的现实意义。本文设计基于嵌入式的农田灌溉管网漏损智能监测系统,通过压电加速度传感器、压力变送器和超声波流量计等传感器信号采集,获取农田灌溉管网的振动噪声、水压和流量等数据,通过嵌入式单片机自适应滤波处理后,应用4G无线数据通信模块,将传感器采集的数据传输到云平台,云平台应用管理软件系统对灌溉管网监测数据进行实时处理和分析,从而准确确定灌溉管网漏损情况。试验结果表明,在非灌溉时间测试管网漏损状态,系统能够有效采集噪声、水压和流量等传感器数据,噪声数值超过预警值80 dB并进行报警。数据在无线网络中传输稳定高效,数据无线传输延时小于1.8 s。云平台应用管理软件系统功能正常,数据查询平均响应时间小于1.2 s。系统部署实施快捷,可广泛应用于农田灌溉管网运行状态实时监测,有效提高农田灌溉用水效率进而实现用水精细化管理。  相似文献   

4.
为提高温室种植作物的产量,使温室收益更有保障,本文提出了一种基于光伏供电的温室智能控制系统的设计[1]。本设计以STC89C51单片机为主控单元模块,电源模块、数据采集模块、人机交互模块及执行模块作为补充辅助模块共同组成。各个模块相互协调,共同作用,实现对温室内的二氧化碳浓度、空气温湿度、土壤湿度等温室环境参数的实时监测和自动调控。用proteus对系统进行了软件仿真测试,仿真测试结果表明如果温度超过上限则自动启动降温模块,低于则启动加热模块来提高温度,其他参数模块同样可实现各自预期调控目标;并用STC89C51单片机开发板和多个传感器搭建了实物仿真模型进行了性能测试,测试结果表明,本设计可对温室空气温湿度、土壤湿度、光照强度及二氧化碳浓度进行实时监测和自动调控,具有一定的可行性。  相似文献   

5.
设计出了一套太阳能滴灌系统,由太阳能电池和蓄电池供电。A/D转换电路、STC系列单片机和相应的检测、继电器控制电路组成的单片机采集控制模块是整个测控系统的核心。通过土壤湿度检测模块实时采集土壤水分含量,与设定的土壤湿度数据进行对比,然后输出信号使继电器控制电路控制电磁阀门的开关,进行对农田作物实时滴灌。另外,采用太阳能追踪系统,实时调整电池板的角度,以最大限度地利用太阳的能量。系统兼有水位监测功能,水箱内水量不足时,水泵将水源送往水箱,以补充水源。本系统与计算机通信,可扩展串口,利用电脑远程控制,实时采集系统状态。  相似文献   

6.
为解决目前农田灌溉技术中存在的过度灌溉、浪费水资源等问题,以实现根据土壤水分灌溉,结合无线传感器网络技术,设计开发了一种基于UWP技术的智能节水灌溉系统,利用土壤湿度的控制方式实现实时适量的灌溉,可以实施到多种平台上运行。系统由信息管理、灌区模块、历史数据和视频监控等组成,对土壤氮磷钾和土壤水分及状态参数实时监测反馈。该系统设置了参数设定、主参数显示和视频监控等界面,系统具有操作方便灵活,易于扩展升级和成本低、节能等特点。  相似文献   

7.
基于FDR原理的土壤湿度实时监控灌溉系统   总被引:2,自引:0,他引:2  
介绍了土壤湿度测量原理,着重阐述了系统的软硬件设计。MSP430单片机采集由土壤湿度传感器监测的信号,并根据输出信号的高低控制电磁阀的通断,以决定是否给土壤灌溉,从而实现对土壤湿度的控制以达到智能节水灌溉的目的。本设计可以根据农作物的不同生长期对水分的需求量调控土壤湿度,实现实时监测湿度大小,定点存储湿度值,并且可以通过U盘将存储的数据传送到PC机或其他带USB接口的上位机。  相似文献   

8.
针对农田灌溉中管理粗放、信息化和智能化程度低、灌溉水利用效率不高的问题,研究设计一个基于ZigBee无线网络的智能节水灌溉系统。系统采用CC2530无线收发模块,将土壤含水量经LPC932单片机处理后传送到PC终端,用户可查看并根据所监测土壤含水量与灌溉临界值判别的结果决定是否自动打开和关闭电磁阀实施实时灌溉。该系统具有采集数据准确、组网快、成本低、功耗低等特点,成功实现农田智能节水灌溉。  相似文献   

9.
作物需水信息的快速获取和实时传输是实现智能诊断和精量灌溉的前提。为此,设计了一种实时采集影响作物需水多环境参数的多通道数据采集系统。该系统以超低功耗单片机MSP430F149为核心处理模块、西门子MC39i为无线传输模块,以计算作物需水量的彭曼—蒙特斯公式中的主要气象要素(温度、湿度、日照时数、风速、辐射)和土壤湿度作为采集对象,根据各传感器输出信号设计了数据采集通道数量及类型。设计选用了系统的实时时钟电路、数据存储模块、LCD液晶显示以及控制键盘等电路,开发了系统各模块的控制软件,实现了通道选择、数据采集、数据处理、液晶显示及无线数据传输等功能。经电位器模拟输出电压测试,系统能实现数据采集和实时显示的功能,可以应用于灌溉决策系统中作物需水信息的实时监测。  相似文献   

10.
基于移动端的温室环境监控系统设计   总被引:3,自引:0,他引:3  
针对温室中的光照强度、土壤湿度、空气温湿度等环境参数的监控问题,设计了一种基于移动终端和WiFi无线通信的温室大棚在线环境监控系统。系统采用单片机和传感器完成光照强度等数据的采集,然后通过无线WiFi模块将温室现场的环境参数传输给移动客户端,并在手机APP监控界面上显示实时数据。试验表明:该系统具有操作界面简洁、扩展性强等特点,可以对温室环境参数进行有效的监控。  相似文献   

11.
郭润坤 《南方农机》2022,(22):118-121+125
为了提高植物灌溉效率、节省人工时间,笔者设计了一种自动浇花器,其设计关键是用AT89C51单片机设计作为系统,YL-69作为土壤湿度传感器控制模块,光敏传感器作为光照量传感器控制模块,LCD1602作为表明数据库的控制模块,功能键用于设置标值。仿真结果表明,该自动浇花器有以下三种运行方式:一是可以用YL-69湿度控制器进行土壤湿度的收集,再利用AT89C51单片机设计对信息内容进行修复,导出控制信号,控制信号再通过控制开关操纵离心水泵电源开关,进而进行全自动浇水。二是利用单片机设计进行精准操纵,在设置时间内执行浇水动作。三是在系统里加入一个光敏传感器,当检验到有光照时,即白天情况下系统检测出土壤湿度小于预设值的时候进行浇水;当检测出无光照即夜晚时,检测出土壤湿度小于预设值系统不会运作。  相似文献   

12.
针对中大型电机在温度监测过程中存在的传输距离近及抗干扰能力弱的问题,提出了一种基于LoRa无线通信和虚拟仪器的电机温度在线监测系统。系统将温度传感器实时采集的数据通过温度信号调理电路转化为下位机可以处理的电压信号,下位机对采集的一组电压信号模数转换后进行滤波处理及异或校验处理,通过LoRa模块将处理后的数据打包发送给上位机,上位机软件LabVIEW实现电机在运行过程中各路温度参数的在线监测、数据的保存与查询、温度补偿、上限阈值报警等。结果表明,基于LoRa和单片机的电机温度在线监测系统具有测量精度高、实时性强、传输距离远及抗干扰能力强的优点。  相似文献   

13.
以农田灌溉系统数据传输过程为研究对象,基于无线网络通信传输的方式,搭建灌溉系统数据交互系统。利用温湿度传感器对农田区域内的土壤湿度进行监测,监测数据经通讯网络发送至上位机,与设定阈值比对后生成灌溉控制指令。运行试验数据表明:系统运行过程稳定高效,数据传输安全,在农田灌溉过程中具有较高的实用性。  相似文献   

14.
在传统农业生产活动中,农民浇水灌溉、施肥、打药等全凭积累的经验,这样落后的生产方式已经渐渐不能满足人类的需求。随着农业现代化的发展,温室大棚、无土栽培等生产方式渐渐出现,然而,普通的农民难以应用这些先进的生产技术。文章设计了一款经济易操作的智能农业监测系统,主要应用于温室大棚。该系统基于嵌入式系统设计方法,采用Arduino UNO微处理器作为系统的主控芯片,使用温湿度传感器DHT11、光照传感器BH1750FVI和土壤湿度传感器作为外界环境监测模块,使用网络模块W5100将数据传送到用PC机搭建的Web服务器平台,程序对数据进行分析处理后,通过JSP页面实时显示温湿度、光照强度、土壤湿度数值。用户可以通过电脑或手机浏览器随时查看现场数据,对农业系统进行实时监测。该监测系统简单易操作、成本低、智能化程度高,十分适用于普通的农民大众。  相似文献   

15.
基于单片机与DGUS显示的精密播种机监测系统研究   总被引:2,自引:0,他引:2  
针对当前玉米播种机作业过程存在工况失检、警示不够直接等问题,开发了基于单片机控制和DGUS屏显示的智能检测系统。该系统主要由MSP430单片机、DGUS显示器,以及种箱存量监测模块、播量监控模块、作业面积统计模块等组成,可以实时监视种箱内种子的余量、实时监测并显示播种量和播种面积,且具有出现漏播及时报警等功能。试验结果表明:该智能检测系统可以完成排种器播量与作业面积的在线统计及种箱种子余量的影像监测,且随着作业距离的增加,播种量与作业面积的监测误差趋于减少,满足现有播种机作业的技术要求,基本能实现对漏播现象的稳定可靠报警。  相似文献   

16.
针对当前农村电网剩余电流故障难以定位的问题,文中提出了一种综合Zig Bee技术和GPRS网络技术的农网剩余电流在线监测系统,通过传感器、Zigbee自组网技术和GPRS技术,系统实现了对农村用户剩余电流、电压的实时监测。使用剩余电流互感器、IPC单片机、CC2530芯片设计了采集器,使用CC2530、ATM芯片和GPRS模块设计了集中器。通过Zig Bee组成的Mesh网络实现采集器和集中器的通信,通过GPRS技术实现集中器与Web服务器的通信。该系统能够有效地对农网剩余电流进行远程无线监测。  相似文献   

17.
为了快速获取土壤墒情,满足农田土壤信息监测的需要,设计了一种以太阳能供电的低功耗远程墒情监测系统。系统终端以C8051F040单片机和SIM900A模块为基础进行设计,采集4层深度土壤温度、4层深度土壤湿度以及多种气象信息,利用GPRS网络和短信方式进行墒情数据的自动监测和无线传输。该系统结构简单、使用方便、功耗低,经计算在无光照条件下能够工作14d,实现了农田墒情的低功耗远程实时监测,为农业生产和气象预测提供一定的数据基础。  相似文献   

18.
设计采用功耗低、响应快的数字土壤湿度传感器SM2801B进行湿度信号的采集,由STC12C5A为核心的节点进行土壤湿度数据筛选处理,通过TTL转485模块将数据上传至以STM3为核心的主控制器,记录主控开关状态并将数据上传至上位机。上位机结合虚拟仪器技术的设计思想,利用LabVIEW开发环境,开发了包括串口匹配、数据处理、校验、显示、报警、存储及历史数据查询等模块在内的农田土壤湿度采集系统,实现虚拟仪器开发环境下土壤湿度的实时检测的农田智能灌溉系统。  相似文献   

19.
育苗过程对育苗棚的环境要求很高,尤其是基础环境因素中的温湿度变化对秧苗的萌芽和生长影响很大,甚至能起到决定性的作用。针对人工监控存在的精度低成本高的问题,文章设计了无线智能育苗棚基础环境监控系统,选用SHT10采集基础环境中的温湿度信息,通过ZigBee模块网络将数据进行无线传输,以单片机为控制核心,结合模糊算法,实现对棚内基础环境数据的实时采集,并能在超过设置阈值时自动采取对应的喷雾和排风操作。  相似文献   

20.
为了获取轮式拖拉机行进过程中的实时滑移率,设计了基于LabVIEW和单片机的轮式拖拉机实时滑移率监测系统。系统以LabVIEW和单片机为数据处理核心,包括霍尔传感器模块、单片机测速模块、LCD1602A液晶显示模块、下位机和上位机通信模块、LabVIEW上位机处理数据显示实时滑移率模块。下位机系统主要负责采集拖拉机驱动轮速度和机身速度数据,上位机系统主要负责计算实时滑移率,同时系统将拖拉机工作过程中的驱动轮速度、机身速度及实时滑移率数据在上位机显示并储存到数据库中。不同路面工况下的试验结果表明:监测系统上位机与下位机运行稳定性可靠,测速误差率平均值为1. 61%,能够满足轮式拖拉机行驶时的实时性要求。该研究可为轮式拖拉机农耕作业陷车安全预警系统设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号