首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
樱桃采摘机器人设计——基于PLC高速并联自动化控制   总被引:1,自引:0,他引:1  
为了降低樱桃采摘机器人采摘过程中的樱桃破碎率,提高机器人的工作效率,设计了一款新的基于模糊控制和高速并联自动化控制的机器人。该机器可以利用PC上位机对樱桃图像进行采集,并可以对图像进行二值化、膨胀腐蚀处理,从而成功地识别成熟樱桃;同时,可以使用模糊PLC控制方法对采摘机器人的响应角度误差进行控制。为了验证机器人的性能,使用樱桃采摘试验的方法对樱桃采摘机器人的性能进行了测试。结果表明:高速并联自动化控制的樱桃采摘机器人总体采摘时间有了明显的缩短,工作效率有所提高;通过模糊控制可以使采摘机器人角度的响应平稳地达到指定角度,且没有出现大的超调量,有利于樱桃的采摘,降低了破碎率。  相似文献   

2.
为了提高采摘机器人的自动化程度,实现自主导航和自主采摘作业能力,将基于CMOS图像传感器的嵌入式视觉系统引入到了采摘机器人的设计过程中,有效降低了机器人的设计复杂程度,提高了机器人的设计效率。采用DSP主控芯片构建了嵌入式图像处理系统,可以处理CMOS相机实时采集的图像,并采用模块化设计,构建了包括通讯单元、存储单元及视频输入输出接口的硬件系统,使各模块之间协调工作。为了验证方案的可行性,对一款果实采摘机器人进行了改装,安装了嵌入式视觉系统,并对其性能进行了测试。测试结果表明:采用基于CMOS图像传感器嵌入式视觉系统后,采摘机器人的定位准确率和采摘准率率都较高,满足了自动化采摘作业需求。  相似文献   

3.
结合STM32和MSP430单片机设计了一种新的农业果实采摘机器人激光自动瞄准系统,并在系统设计过程中引入了PID算法,大大提高了果实采摘机器人的定位精度和自动化程度。该系统对果实目标区域采用两组控制系统进行图像采集和运动控制。其中,STM32单片机控制图像采集设备,并对图像信息进行分析处理,数据结果经无线通信送MSP430单片机,控制电机带动激光笔移动瞄准目标位置。系统采用Open CV处理图像,实现了人机交互功能,利用PID控制算法调整瞄准误差,提高了瞄准精度,通过对电机的闭环控制,实现了激光自动瞄准功能。实验结果表明:此系统可以成功锁定目标,达到了较高的精度,为激光瞄准系统在农业自动化和现代化中的应用研究提供了理论依据。  相似文献   

4.
为了提高采摘机器人电气自动化的效率、水平及机器人的智能化程度,在采摘机械手的设计上引入了PLC控制系统,并利用PID控制算法对自动化系统进行了改进,提高了自动定位和采摘动作控制的精度。为了验证方案的可行性,模拟采摘机器人的作业环境,采用MCGS软件设计了采摘机械手作业的监测系统,并对采摘的漏采率和破损率进行了测试。测试结果表明:基于PLC的采摘机械手具有较低的漏采率和破损率,可以满足较高精度的采摘机器人设计需求。  相似文献   

5.
伍坪 《农机化研究》2017,(10):228-232
为了提高采摘机器人的智能化程度,降低设计和制造成本,提高机器人的通信能力,提出了一种基于HPI接口和DSP系统的新型采摘机器人。该机器人将嵌入式DSP系统和ARM控制器利用HPI接口有效地结合起来,利用图像DSP系统对采集图像进行处理,实现目标的定位,从而提高了嵌入式系统的运算能力;利用ARM控制器对执行末端进行控制,实现了机械臂的准确定位和控制;使用滤波器对通信过程的干扰信号进行降噪处理,从而提高了整个系统的稳定性和可靠性。最后,对采摘机器人的通信能力进行了测试,结果表明:IIR滤波器可以有效的滤除干扰信号,通信较为稳定,从而验证了嵌入式DSP系统和HPI通信接口在采摘机器人设计上使用的可行性。  相似文献   

6.
为了提高果树采摘机器人的智能化和自动化水平,提高机器人的实时通信和在线控制能力,实现机器人作业过程的远程控制,在采摘机器人通信系统中引入了OFDM-MIMO模型,并将移动4G技术应用到了机器人的设计中,突破了机器人控制距离限制,实现了机器人的跨区域无线通信。机器人采用视觉传感器和4G网络采集并传输图像,图像数据可以在远程浏览器端实时显示,便于掌握机器人作业信息。当机器人碰撞传感器发出信号时,可以利用OFDM-MIMO信道模型进行图像的高效传输,并将视觉传感器采集的图像信息传送给远程控制端,在采摘出现失误时可以及时地调整机器人的状态,实现果实采摘的在线控制。同时,设计了机器人的实验样机,并对机器人的果实定位能力和通信能力进行了实验和仿真。实验和仿真结果表明:该种机器人可以有效地识别普通果实和套袋果实,并且通信实验测试和仿真测试的结果吻合,从而验证了结果的可靠性及OFDMMIMO模型在采摘机器人通信系统中的可行性。  相似文献   

7.
为了提高采摘机器人自主导航的精度,避免因环境的复杂性引起的视觉导航采集图像的质量问题,将图像融合技术引入到了采摘机器人导航视觉系统的设计上,通过对多实时采集图像的融合处理,提高采集图像的质量。为了验证方案的可行性,模拟草莓采摘机器人作业环境,对多曝光图像进行了融合处理,并利用4种评价指标对融合后的图像质量进行了评价,将评价结果进行了统计。评价结果表明:采用IHS图像融合算法具有明显的优势,将其使用在采摘机器人的导航视觉系统中将发挥重要的作用。  相似文献   

8.
为了提高采摘机器人目标追踪的效率和精度,在机器人视觉系统和控制系统的设计上引入了遗传迭代算法和模糊PID控制器,通过对图像处理过程和机械执行末端动作过程进行优化,可以得到更佳的采摘效果。在视觉系统对采摘图像进行处理时,可以通过遗传迭代算法对高质量图像进行筛选,并提高果实成熟度匹配的效率,果实识别后采用模糊PID控制算法对机器人执行末端进行控制,使其可以以更高的精度追踪到果实,执行采摘任务。  相似文献   

9.
以智能采摘自动识别定位方式为研究对象,对葡萄自动采摘前端的图像采集和分析处理过程进行分析,利用VUE自底向上逐层构建的方式,设计一种能够对目标进行自动识别定位的智能采摘机器人识别定位算法。采用高清相机对采摘目标图像进行采集,将原始图像进行二值化处理,获取图像灰度等级,并采用葡萄图像分割的方式获取葡萄采摘点,最后通过最小角度拟合的方式确定葡萄果梗采摘点。试验结果表明:智能采摘机器人前端识别定位方法平均运行成功率高于90%,平均运行时间0.65s,能够快速准确地进行采摘对象识别定位,可为智能采摘机器人技术的推广提供理论基础。  相似文献   

10.
针对采摘机器人对果蔬的位置定位不够准确、无法准确避障,导致采摘效率较低的问题基于深度双目视觉处理对智能采摘机器人进行了设计。智能采摘机器人的主要组成包括PLC控制器、视觉系统、移动平台、导航系统、机械臂、通信系统和电源。为了对采摘机器人的机械臂进行最优路径规划并避障,通过对采集的图像进行预处理后,利用双目视觉系统对果蔬进行精准定位,然后采用哈夫变换直线检测的方法进行最优路径的设计和选择,最终确定最优采摘路径。对采摘机器人进行运动轨迹精度试验和采摘试验,结果表明:采摘机器人对果蔬的采摘成功率较高,可以满足果农对于采摘机器人的要求。  相似文献   

11.
为提高果实采摘效率,基于PLC技术设计了采摘机器人的作业路径避障系统。系统主要由信息获取系统、工控机主程序及运动执行系统等部件组成,通过PLC技术对路径规划和果实的采摘、运输进行控制,并采用改进的蚁群算法对最优路径进行规划。对采摘机器人在温室环境下进行性能测试,结果表明:采摘机器人可以实现作业路径避障,并完成果实的采摘,工作性能稳定,能够满足农户对采摘机器人的使用和性能要求。  相似文献   

12.
胡彬  王超 《农机化研究》2019,(2):206-210
提高采摘机器人对运动目标的定位能力是提高机器人采摘精度的重要途径,但对于运动果实目标的跟踪和识别需要实时处理大量的图像数据。为有效处理并利用无线传感器实时采集待采摘果实图像,提出了一种基于Hadoop云平台的图像并行处理方案。为了验证方案的可行性,设计了具有运动图像采集和无线传感网络传输功能的采摘机器人,并搭建了基于云存储并行计算的图像抓取平台,利用无线传感器采集的果实图像资源作为原始数据集,对运动待采摘目标进行了图像识别。实验结果表明:采用该方案可以成功地获取运动果实的位置信息,且采摘机器人成功采摘率较高,对于高精度采摘机器人的设计研究具有重要的意义。  相似文献   

13.
采用篮球动作捕捉系统可以实时地对比赛视频进行分析,通过动作捕捉,得到优秀运动员的投篮动作技术特征;但是篮球比赛属于较高强度的对抗性比赛,其移动速度较高,因此捕捉系统需要有较高的精度。将高精度的动作捕捉系统应用在采摘机器人视觉系统设计中,可以有效提高采摘机器人对果实的识别精度,从而提高作业的自动化程度。为了验证方案的可行性,对采摘机器人的视觉系统进行了测试,并以夜间采摘环境为例,对采集的图像进行了平滑和增强处理,成功提取到了果实的边缘特征图像。对采摘机器人视觉系统的目标识别率和定位能力进行了测试,测试结果表明:目标识别率和定位准确率都较高,满足高精度采摘作业的需求。  相似文献   

14.
双闭环控制采摘机器人机械手设计——基于PLC和CAN总线   总被引:1,自引:0,他引:1  
何龙  陈晓龙 《农机化研究》2016,(12):242-246
采用双闭环控制系统,基于PLC运动控制器和CAN总线,提出了一种新的采摘机器人机械手关节分布式控制方案,并采用模块化思想设计了机器人关节电机控制系统、CAN模块及PLC控制器。采摘机器人机械手的关节采用谐波减速器进行调节,利用霍尔传感器和红外线传感器及光电编码器进行图像、转速和障碍物触碰的信号采集,采集信号利用A/D转换器将数据传输给PLC控制器。机械手的执行末端采用CAN总线控制,并利用变频器传递的通信信号,实现了末端执行器的并行控制,使多机械手处于最佳动作状态。最后,在双闭环控制方案的基础上加入了前馈控制环境,利用前馈控制环节可以实现对系统的实时控制,改善了系统的静态性能,实现了机械手对实际采摘位置的有效追踪。实验和仿真模拟表明:位移时间曲线平滑无突变,表明机器人在运行过程中平稳、无振动,机器人工作的可靠性较高,对路径的追踪精度较高。  相似文献   

15.
为对采摘机器人的识别与定位功能进行优化,将排球机器人的运动规划原理与采摘机器人的控制要求相结合进行应用探讨。通过搭建采摘机器人对果实的识别定位理论模型,运用核心图像识别与处理算法,硬件配置动作执行协调及软件系统后台指令控制,实现多功能性传感装置信息数据的合理性采集与传输,达到实时定位目标。进行了采摘机器人的识别与定位试验,结果表明:在排球机器人运动规划与控制机理下,通过目标与定位图像的有效抓取,采摘定位时间可控制在0.6s左右,综合定位准确率保持在93.8%以上,最高定位准确率可达95.7%,满足采摘机器人作业需求,验证了设计理念的可行性,可为类似农业设备定位开发提供思路。  相似文献   

16.
随着网络和远程控制技术的发展,基于移动互联网的智能机器人成为未来机器人的发展方向。到目前为止,采摘机器人还很少采用移动互联网进行远程监控,如果将移动互联网应用到果园采摘机器人的设计上,将会大幅度地提高采摘机器人的实时在线控制水平,提高多机器人编队控制能力。为此,提出了一种基于OFDM信道估计和远程监控网络的果园采摘机器人设计方法,并结合果实图像的分割、归一化、细化和增强技术,提高机器人果实图像的识别能力。通过夜间对采摘机器人平台的测试发现:机器人在加入信噪比的干扰信号情况下,采用OFDM传输系统的机器人信号发送端和接收端的信号吻合程度很高,误码率很低,为新式智能远程控制采摘机器人的研究提供了较有价值的参考。  相似文献   

17.
在采摘机器人自动化系统的设计过程中,为了提高采摘机器人的控制效率,引入了基于交互式视音频英语学习原理的采摘机器人交流交互系统,基于WiFi网络,采摘机器人可以将实时作业情况以视频的形式传输给远程端,远程端根据采摘机器人的实时作业情况,对采摘机器人发出语音指令,机器人识别语音指令后完成相关动作,实现远程端和采摘执行端的交流交互。为了验证方案的可行性,设计了采摘机器人机器和远程端自动化控制系统,并对WiFi网络的传输性能以及语音指令的准确识别率进行了测试,结果表明:WiFi网络的通信性能较好,采摘机器人可以准确的识别语音指令,实现自动化控制。  相似文献   

18.
王甦 《南方农机》2022,(20):11-12+18
本课题组设计的采摘机器人主要用于采摘及搬运果蔬,其采用液压缸和电机进行驱动、PLC进行控制,实现对果蔬的抓取及搬运。果蔬采摘机器人涉及操作机构的设计和操作动作的PLC控制。设计重点为果蔬采摘机器人主要部件的结构设计及尺寸计算和主要技术参数的确定,根据果蔬采摘机器人用途,设计PLC梯形图,并绘制相关的零件设计图、CAD装配图和PLC相关程序。仿真结果表明,该果蔬采摘机器人实现了自动识别与自动采摘,应用前景广阔。  相似文献   

19.
由于采摘机器人的移动非常频繁,因此其速度控制是影响工作效率的主要因素,在机器人的移动过程中会产生较大的惯性和时延,在控制信号的输出和电机响应过程中也会有一定的延迟,采摘机器人的惯性会使采摘机器人不能很好地在预定的果实采摘位置停下。为了解决这个问题,提高机器人的采摘效率,设计了一种新的机器人调速系统。该系统速度由传感器进行采集,通过电机的变频调节实现移动速度的控制。为了使机器人的控制平稳,以STC89C52单片机为控制核心,设计了采摘机器人的闭环控制系统。最后,对采摘机器人的性能进行了测试,通过测试发现:采摘机器人可以准确地识别成熟果实,控制算法运行良好,可靠性高,实现了采摘机器人的自动调速功能。  相似文献   

20.
针对传统的猕猴桃采摘后人工分级费时费力、效率较低的问题,基于S7-300 PLC控制器、MATLAB图像处理以及组态软件实时监控等技术,设计基于面积的猕猴桃大小分级控制系统。系统采用USB摄像头对输送带上的猕猴桃进行图像采集,在PC端用MATLAB对采集的猕猴桃图像实时处理,并通过OPC将处理结果传送给组态王开发的上位机监控系统中,上位机通过PLC控制分级执行系统。经试验测试,该分级控制系统执行效率高,平均分级速率可达2.5 s/个,正确率可达100%,能够满足猕猴桃果实分级要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号