首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小新月菱形藻生长条件及半连续培养条件研究   总被引:1,自引:0,他引:1  
为研究温度、光照和营养盐对小新月菱形藻生长的影响,设计了5个温度,3个光照度,各种营养盐各4个浓度以及6个更新率,进行了小新月菱形藻的培养试验。结果表明:小新月菱形藻的最佳生长温度为15~20℃,最佳光照度为5000 lx,氮、磷、硅、铁的最佳浓度依次为300、15、120、1.575 mg/L;当温度高于30℃或者光照度大于10000 lx时,小新月菱形藻均不能生长。对小新月菱形藻进行半连续培养条件的研究发现,小新月菱形藻在6个不同的更新率(25%、30%、35%、40%、45%和50%)条件下均能完成半连续培养。根据不同更新率下的细胞密度和实际生产中的培养密度,建议采收率在40%~45%。  相似文献   

2.

文章以小新月菱形藻 (Nitzschia closterium f. minutissima)为研究对象,分析比较了小新月菱形藻在负压光生物反应器与开放式桶培养下,藻密度、pH、溶解氧及菌落结构的变化情况。结果表明,在负压光生物反应器培养下的藻密度可达到1.33×107个·mL–1,明显高于开放式培养的藻密度 (8.36×106个·mL–1)。藻液中pH随藻密度增加而升高,两者呈显著正相关 (P<0.01),在负压光生物反应器及开放式培养环境中pH最高值分别为10.3和9.3。溶解氧与pH变化趋势相反,在负压光生物反应器内溶解氧随藻密度增加而降低,最后稳定在6.5 mg·L–1,溶解氧的下降可能与玫瑰杆菌 (Roseobacter)成为优势细菌有关。利用16S rDNA基因的高通量测序技术,分析在培养过程中藻际菌群的结构变化,发现菌落的多样性显著下降 (P<0.05),培养前期主要以变形杆菌 (Proteobacteria)和拟杆菌 (Bacteroidetes)为优势细菌,在负压光生物反应器内培养后期主要以蓝细菌 (Cyanobacteria)与玫瑰杆菌为优势细菌,其菌落结构与开放式桶存在明显差异。

  相似文献   

3.
温度对小新月菱形藻叶绿素荧光特性及生长的影响   总被引:1,自引:0,他引:1  
梁英  刁永芳  陈书秀  荣玲 《水产科学》2011,30(8):435-440
以小新月菱形藻为试验材料,研究了其在一次性培养过程中,不同温度(5~30℃)对其叶绿素荧光参数[光系统Ⅱ的最大光能转化效率(Fv/Fm)、光系统Ⅱ的潜在活性(Fv/Fo)、光系统Ⅱ的实际光能转化效率(ΦPSⅡ)、相对光合电子传递效率(rETR)、光化学淬灭(qP)和非光化学淬灭(NPQ)]、叶绿素相对含量以及细胞密度的影响。单因子方差分析结果表明,在整个培养周期中,温度对小新月菱形藻各叶绿素荧光参数、细胞密度和叶绿素相对含量均有显著影响(P<0.05)。多重比较结果表明,接种后1~2 d,20℃处理组的主要荧光参数(Fv/Fm、Fv/Fo、rETR、ΦPSⅡ)显著高于其他处理组。30℃的处理组的上述荧光参数从第1 d开始均显著低于其他处理组。20℃处理组的细胞密度和叶绿素相对含量均显著高于其他处理组。在本试验条件下,适宜小新月菱形藻生长的温度为10~25℃,最适温度为20℃。相关性分析结果表明,在整个培养周期中,小新月菱形藻的叶绿素相对含量和细胞密度之间存在显著的正相关。  相似文献   

4.
5.
正近年来微藻培养受到越来越多的关注,一方面是因为微藻来源丰富,生长迅速,另一方面是由于微藻具有生产高价值代谢产物的潜能,且能通过改变培养条件以提高细胞内生物活性物质的含量。其中海洋微藻的利用较为成熟,在保健食品、药物、饲料、化妆品、生物农药、废水治理等方面具有较广泛的应用前景。而海洋微藻中种群数量最大的是硅藻,其作为海洋生态系统的生  相似文献   

6.
为了优化光生物反应器培养微藻的条件, 研究了在充空气的基础补充CO2 对光生物反应器培养新月菱形藻(N itz schiaceae clos terium )生长和光合作用的影响。实验表明, 补充CO2 (含1 000LL /L CO2 的空气)促进新月菱形藻的生长, 藻细胞密度和生物量显著高于对照组( CO2含量350LL /L) (P < 0. 05)。补充CO2 也能够提高藻细胞叶绿素a和类胡萝卜素的含量(P < 0.05),但是对叶绿素b没有显著影响(P > 0. 05) 。补充CO2 能够显著提高指数生长期的最大光合速率( Pm )、光合作用效率( A) 和光合作用饱和光强( Ik ) (P < 0. 05)。结果表明, CO2是光生物反应器培养微藻的限制因子之一, 补充CO2 能够提高微藻的生物量。  相似文献   

7.
补充CO2对光生物反应器培养新月菱形藻的影响   总被引:1,自引:0,他引:1  
为了优化光生物反应器培养微藻的条件,研究了在充空气的基础补充CO2对光生物反应器培养新月菱形藻(Nitzschiaceae closterium)生长和光合作用的影响.实验表明,补充CO2(含1 000μL/L CO2的空气)促进新月菱形藻的生长,藻细胞密度和生物量显著高于对照组(CO2含量350μL/L)(P<0.05).补充CO2也能够提高藻细胞叶绿素a和类胡萝卜素的含量(P<0.05),但是对叶绿素b没有显著影响(P>0.05).补充CO2能够显著提高指数生长期的最大光合速率(Pm)、光合作用效率(α)和光合作用饱和光强(Ik)(P<0.05).结果表明,CO2是光生物反应器培养微藻的限制因子之一,补充CO2能够提高微藻的生物量.  相似文献   

8.
研究了小新月菱形藻(Nitzschiaclosteriumf.minutissima)(MACC/B228)和等鞭金藻8701(IsochrysisgalbanaParke8701)(MACC/H060)在4种光照条件下的生长情况,以及不同光强下、不同时期收获的藻细胞中总脂和碳水化合物含量的变化。结果表明,小新月菱形藻在光强70μmol·s-1·m-2时细胞分裂频率(μ)最大,最适光强70~140μmol·s-1·m-2;260μmol·s-1·m-2光强能导致细胞分裂频率变慢,指数期缩短。等鞭金藻8701在光强140μmol·s-1·m-2时μ值最大,260μmol·s-1·m-2下略有降低。2种藻均在低光下脂肪含量多,小新月和等鞭金藻脂肪含量分别占干重的25.5%~35.3%和28.3%~37.5%;而碳水化合物含量少,分别占干重的5.5%~18.2%、3.9%~11.4%;在高光强下相反。不考虑光照条件的影响,2种藻细胞内碳水化合物的含量均在静止期达到最大,分别占干重的18.98%和23.32%。小新月菱形藻在70μmol·s-1·m-2光强下的指数期细胞有最大的脂肪含量,等鞭金藻的最高脂肪含量出现于光强20μmol·s-1·m-2下指数末期的细胞中。二者在光强140μmol·s-1·m-2下生长且进入静止期时均可获得较大生物量,同时细胞的脂肪和碳水化合物的含量也处于较高水平。  相似文献   

9.
利用平板式光生物反应器对新月菱形藻进行半连续培养,探讨更新率、更新周期对新月菱形藻生长、细胞采收量、生化成分及细胞生物量产率的影响.结果显示,随更新率的增大,新月菱形藻的生长速率增大,藻液中氮磷的平均含量上升,而平均细胞密度及产率呈下降趋势;总采收量与更新率呈抛物线关系,细胞生物量、胞内多糖和蛋白的最大采收量分别收获于33%、25.2% 和34.7%的更新率下,其最大值分别为2.11×1012 cell、3623 mg 和2347 mg.更新周期的延长导致新月菱形藻平均生长速率减小,藻液中氮磷的平均含量下降,而采收的平均细胞密度与产率增大,胞内代谢物蛋白质和多糖的含量增加;总细胞采收量随着更新周期的延长减小,当更新周期为1 d时采收量最大,为3.12×1012 cell.综合考虑,更新率为33%、更新周期为1 d,是收获生物量的最佳条件.  相似文献   

10.
本文介绍了河蟹育苗生产过程中,对于不具备单细胞藻类培养车间的育苗室,利用河蟹育苗池大规模培养新月菱形藻的方法。  相似文献   

11.
通过分析喹烯酮对小新月菱形藻(Nitzschia closterium f.minutissima)和等鞭金藻(Isochrysis galbana Parke 3011)的生长抑制、叶绿素a含量、总超氧岐化酶(T-SOD)活性以及丙二醛(MDA)含量的影响,研究了喹烯酮对两种微藻的毒性效应。实验结果如下:1)喹烯酮对微藻的生长抑制作用随浓度的增大而增大。喹烯酮对小新月菱形藻的24 h-EC_(50)为1.85 mg/L。喹烯酮对等鞭金藻3011的24 h-EC_(50)为0.41 mg/L,表明喹烯酮对等鞭金藻3011的生长抑制作用较小新月菱形藻更敏感。2)暴露24 h后,随着喹烯酮浓度的增大,小新月菱形藻叶绿素a含量下降;而等鞭金藻3011叶绿素a的含量基本不受影响。3)暴露24 h后,两种海洋微藻的总超氧化物歧化酶(T-SOD)活性随着喹烯酮浓度的升高均显著增加(P0.05),各实验组丙二醛(MDA)含量也高于对照组,其中等鞭金藻3011对喹烯酮更敏感,说明喹烯酮对两种微藻均能造成氧化胁迫,对细胞造成氧化损伤。研究表明,喹烯酮对两种微藻均具有显著急性毒性效应,对两种微藻而言,喹烯酮属于高毒物质,等鞭金藻3011对喹烯酮更敏感。本研究可为正确评价兽药喹烯酮的使用安全性提供基础数据。  相似文献   

12.
张胜利 《水产科学》1994,13(4):15-17
本文对新月菱形藻不同培养规模,周期,生态条件下,不同培养密度与增殖速度进行了实验测试及归纳总结,得出如下结论:在培养规模,周期及生态条件相同情况下,在一定密度范围内,新月菱形藻的增殖速度-相对生长常数值随培养密度的提高面降低,即呈负相关性。  相似文献   

13.
作为虾、蟹、贝幼体以及海水仔鱼的生物饵料,新月菱形藻和铲状菱形藻提供的必需脂肪酸主要是20∶5(n-3),杷夫藻提供的主要是22∶6(n-3),在本试验条件下既能使微藻快速生长,又能合成较多脂肪以及(n-3)高度不饱和脂肪酸的最适温度因藻种而异,新月菱形藻为20℃、铲状菱形藻为15℃、杷夫藻为20℃。  相似文献   

14.
15.
通过考察乙酰甲喹对小新月菱形藻(Nitzschia closterium f.minutissima)、等鞭金藻(Isochrysis galbana Parke3011)的生长抑制和对叶绿素a、总超氧岐化酶(T-SOD)活性以及丙二醛(MDA)浓度的影响,研究了乙酰甲喹对2种微藻的毒性效应,为评价兽药乙酰甲喹的使用安全性和保护养殖环境提供基础数据。结果表明,乙酰甲喹对2种微藻的生长抑制作用随质量浓度的增加而增大,乙酰甲喹对小新月菱形藻的24 h-EC50(半数有效浓度)为4.73 mg·L~(-1)、对等鞭金藻3011的24 h-EC50为2.14 mg·L~(-1),乙酰甲喹对2种微藻均属于高毒物质,等鞭金藻3011更敏感。暴露24 h后,随着乙酰甲喹质量浓度的升高,小新月菱形藻叶绿素a浓度下降而等鞭金藻3011叶绿素a浓度基本不受影响;2种微藻的T-SOD活性随着乙酰甲喹质量浓度的升高均显著增加,各实验组MDA浓度也高于对照组,等鞭金藻3011更敏感,说明乙酰甲喹对2种微藻均能造成氧化胁迫,对细胞造成氧化损伤。  相似文献   

16.
<正> 目前大多数种类的水产经济动物的人工育苗在缺乏控温的条件下,都具有一定的季节性,其幼体的饵料——单细胞藻类在人工控制的条件下,却可以周年生产,以满足水产动物不同时期育苗阶段的需求量。为了提高单细胞藻类培养设备的利用率,充分满足水产经济动物苗种生产的需要,解决一些研究项目(如海参、河蟹、扇贝等)人工育苗期间饵料供应不足的问题,于1981年10月——1982年3月,进行了小新月菱形藻(Nitzschia clostertum)的冬季室内培养、浓缩后储存的小型试验。  相似文献   

17.
以浮游硅藻小新月菱形藻为实验材料,研究其在不同盐度下的生长、胞外碳酸酐酶活性、光合速率和叶绿素a荧光参数的变化。结果显示,与正常海水培养相比,最高盐度(70)培养的细胞比生长速率下降了59.2%;同时,胞外碳酸酐酶活性、叶绿素a、c含量分别降低了66.3%、50.0%和45.7%。高盐度培养下,最大光合速率(Pm)、光合效率(α)、最大光化学效率(Fv/Fm)、实际光化学效率(Yield)和光化学淬灭系数(qP)下降,但非光化学淬灭系数(qN)升高,对无机碳的亲和力明显下降。以上结果表明,盐度升高对小新月菱形藻生长和光合作用具有明显抑制作用,但小新月菱形藻可以通过胞外碳酸酐酶活性变化、对无机碳的亲和力和调整光系统Ⅱ的能量流动与能量利用效率以应对高盐度的胁迫。  相似文献   

18.
三角褐指藻和新月菱形藻具有生长快、耐低温,容易培养的优点,是贝类和虾类幼体的良好饵料,在象山县水产养殖公司育苗厂,笔者于1989、1990、1992年在培养这两种藻类用于中国对虾育苗的生产过程中,在藻类培养池面积有限的条件下,采用原池追肥和吸去沉淀物少量补充培养的方法,有效地延长了藻类的生长期和提高了培养浓度,从而保证了在整个育苗过程中随时都有较高浓度的优质藻液供应,以下简单介绍一下有关方法。  相似文献   

19.
本文对新月菱形藻(Nitzschiaclosterium)不同培养规模(一、二、三级)、周期(3、5、6、7天)、生态条件(瘟度、光照、PH值)下,不同培养密度与增殖速度进行了实验测试及归纳总结,得出如下结论:在培养规模、周期及生态条件相同情况下,在一定密度范围内,新月菱形藻的增殖速度──相对生长常数(K1)值随培养密度的提高而降低,即呈负相关性。  相似文献   

20.
研究了N/P(1∶1、5∶1、12.5∶1、30∶1、50∶1、80∶1)对菱形藻的生长速率、营养成分含量及氮磷利用率的影响。试验结果表明,(1)N/P对菱形藻的生长影响显著(P0.05),其中N/P为12.5∶1时,比生长速率最大,当N/P5∶1和N/P50∶1时,菱形藻的生长较慢,比生长速率为0.3~0.6/d;(2)藻细胞营养成分的含量也受N/P的影响:在N/P为12.5∶1时,叶绿素的含量达到1.81g/ml,总脂肪、蛋白质、胞外多糖和胞内多糖的含量分别占干质量的29.9%、17.8%、15.3%、14.2%,高于其他N/P下的营养成分含量;(3)培养后水体中氮磷的含量明显下降,TN的利用率之间有显著性差异(P0.05),利用率均超过55%,最高为30∶1,达78%,TP的利用率之间无显著性差异(P0.05),均高于90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号