首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
长江上游重点水土流失区坡耕地土壤侵蚀的137Cs法研究   总被引:15,自引:2,他引:15  
利用137Cs示踪技术,对长江上游重点水土流失区(金沙江下游及毕节地区、嘉陵江中下游地区、嘉陵江上游陕南陇南地区和三峡库区)坡耕地土壤流失速率进行了初步研究。结果表明,研究区土壤类型、坡度等因子对坡耕地土壤流失速率的影响较大,陕南区砾质土、三峡库区黄壤坡耕地的土壤流失速率相对较小,34°砾质土坡耕地,多年平均土壤流失率为985t/(km2·a),31°黄壤坡耕地为2059t/(km2·a);嘉陵江中下游地区和三峡库区紫色土、陕南区黄褐土、陇南区黄绵土和金沙江燥红土坡耕地土壤流失速率较高,一般在2000~10000t/(km2·a);坡度越大土壤流失速率也越高。同时,对坡耕地地块内部土壤侵蚀与堆积的空间分异进行了初步探讨。在坡耕地地块内部,土壤在流水和犁耕共同作用下,侵蚀速率从峁顶至坡底总体呈下降趋势,并在地块中下部出现堆积大于侵蚀的区域。侵蚀小于堆积的临界点,一般出现在距坡顶20~30m范围。  相似文献   

2.
Vast areas of Europe were contaminated by the Chernobyl-derived 137Cs in April–May 1986. This paper reports a detailed study of the post-fallout 137Cs redistribution within a 1 ha field located in the Chasovenkov Verh catchment in the northern part of the Middle-Russian upland. Particular attention was paid to the study of reference inventories. It is shown that the random spatial variability of 137Cs is similar within undisturbed and cultivated parts of a flat interfluve. Systematic spatial variability is not essential for a relatively short (200 m) topographical unit with simple relief. The analysis of a soil redistribution pattern within the study field using the Chernobyl 137Cs technique demonstrates that it is possible to identify areas of soil loss/gain. This pattern does not reflect soil redistribution for the whole field, because these have been only 12 years since the Chernobyl accident. Net erosion rates based on 137Cs method were comparable to soil losses directly measured at the study field.  相似文献   

3.
Starting in the 1980's, the Rainbow Smelt (Osmerus mordax) population of the Boyer River (Canada) gradually declined due to water eutrophication and excessive siltation in the spawning area. Sediments and agricultural nutrients reach hydrosystems through runoff and soil erosion. The objectives of the study were to quantify the soil and sediment loss from agricultural fields and to identify the areas at risk, using 137Cs measurements. Using a Geographical Information Systems (GIS), the watershed was subdivided into 6 isosectors presenting specific soil/slope combinations. Representative fields from each isosector were sampled for 137Cs. Using GIS, the data for individual fields were extrapolated to isosectors and the whole cultivated area of the watershed. Based on this approach, it was estimated that around 30% of the arable lands of the watershed show erosion rates higher than 6 t ha− 1 yr− 1, which is considered as a tolerable level for Canadian soils, and that 45% of the residual area presents an erosion rate close to that limit. The average sediment production at the edge of fields was estimated at 2.8 t ha− 1 yr− 1, for an annual production of more than 60 000 t of material. Loamy soils with a slope higher than 2% were estimated to generate the highest sediment rate (6.9 t ha− 1 yr− 1) and nearly 40% of the overall sediment production.  相似文献   

4.
This study was carried out to obtain a representative set of data on long-term erosion rates from a pilot area located close to the Jaslovske Bohunice village, in western Slovakia using the 137Cs-method. The study area chosen was representative of the hilly loess cultivated areas of Slovakia. The sampling strategy was based on a multiple transect approach. Analyses of the samples for 137Cs activity were made at the Nuclear Power Plant Research Institute, Jaslovske Bohunice. The 137Cs-method was used to obtain long-term estimates of soil erosion in the Jaslovske Bohunice site, a representative hilly loess cultivated area of Slovakia. The estimated reference 137Cs inventory was 2910 Bq m−2, with a coefficient of variation of 4.3%.Examination of the 137Cs redistribution in relation to the topography of the study area revealed that, within individual transects the 137Cs inventories were closely related to major landforms. The 137Cs inventories were considerably lower on the slopes than on the plateau and they were highest in the valley. However, when plotted against a selection of individual quantitative slope parameters, i.e. the S and the LS factors of the USLE or slope inclination, the correlations obtained were weak.Three conversion models, i.e. the proportional model (PM), the simplified mass balance model (MBM1) and the standard mass balance model (MBM2), from the set of models developed at Exeter University, Great Britain were selected to interpret the resulting 137Cs measurements into soil erosion/deposition rates. The mean erosion rates estimated with the PM were 22.4, 35.6 with MBM1 and 17.3 t ha−1 per year with MBM2. There was a good agreement between the average of these mean erosion rates (25.1 t ha−1 per year) for the Jaslovske Bohunice site and the estimated mean soil erosion rate obtained for small erosion plots (15 t ha−1 per year) for conditions similar to the study site. Nevertheless, further research on the application of the 137Cs-method, in particular the independent validation of the results obtained, is needed. Several issues requiring further study have been highlighted.  相似文献   

5.
Wind erosion has degraded over one-half billion hectares of land worldwide. 137Cesium (137Cs) has been used as a tracer to study long-term rates of soil redistribution by water and, to a lesser extent, by wind. Early studies assumed that the decline in 137Cs activity for a potentially eroded soil relative to that for an uneroded soil was linearly proportional to soil loss. More recently, models have emerged that consider the effects of soil cultivation and the particle surface area-dependent partitioning of 137Cs on soils. We investigated the partitioning of 137Cs in wind-eroded sediments and with soil surface samples sieved into contiguous ranges of particle sizes. We also compared the 137Cs activities and stratification of several adjacent soils with known wind erosion and deposition histories. Finally, we tested 137Cs-based soil loss models with measured data from sites with documented histories. 137Cs activities and mean particle diameters of aeolian samples agreed well with the 137Cs activities and respective mean diameters of the sieved surface soil samples. Good agreement between model estimations and measured data indicated that 137Cs models developed to estimate soil redistribution by water were also applicable to soil redistribution by wind provided that the models contained an appropriate particle size correction parameter.  相似文献   

6.
长江上游137Cs法土壤侵蚀量研究   总被引:17,自引:2,他引:17  
长江上游地区侵蚀泥沙径流观测资料较少,难以确定不同类型土地侵蚀量。本文利用137Cs示踪法测定了长江上游不同土地类型土壤侵蚀量,农耕地土壤侵蚀量介于758~9854t/(km2·a),非农耕地土壤侵蚀量介于310~4435t/(km2·a),紫色土裸坡侵蚀量高达12444t/(km2·a)。  相似文献   

7.
Some alternative mehods for estimating soil erosion rates rapily were used to elucidate the relationship between the land use types and land degradation.The ^137Cs content,magnetic susceptibility,aggregate stability,and soil properties were studied in the Dongxi River Basin, a mountainous area of ewstern Fujian, A plot of ^137Cs inventory(Y) against slope angle(X) shows a strong inverse log-log relationship(r=-0.83), indicating that muh more soil erosion occurs on steeper slopes.Average soil loss(in thickness of top soil per year) in the past 30 years for arable slope crest,arable slopes and tea plantation slopes are 1.6,10.4 and 8.0 mm year^-1 respectively,The surface layer enrichment factor of magnetic susceptibility(Y) in soil aslo shows an inverse log-log relationship (r=-0.63), indicating a similar tendency with the realtionship between the ^137Cs inventory(Y) against slope angle (X).The Physical and chemical properties of soils among different land use types show different degraded characteristics at different significant levles.  相似文献   

8.
GIS支持下的长江上游降雨侵蚀力时空分布特征分析   总被引:8,自引:0,他引:8  
降雨侵蚀力是土壤侵蚀评估模型中的一个基本因子,利用长江上游361个测站1961-2004年日雨量资料估算降雨侵蚀力R值,利用GIS空间分析功能,获得长江上游降雨侵蚀力分布图、降雨侵蚀力年际变化趋势图、各区域R值平均年内分配曲线,在此基础上分析长江上游降雨侵蚀力时空分布特征。研究表明长江上游降雨侵蚀力的地域差异十分显著,与降雨量空间分布近似,由东向西减少,且降雨侵蚀力大的区域与多雨中心和暴雨中心分布基本一致。降雨侵蚀力年际变化存在明显的空间差异性,在一些地区年降雨侵蚀力的变化与年降雨量的变化趋势不一致。各区域降雨侵蚀力年内分配曲线为尖峰状分布,降雨侵蚀力十分集中。  相似文献   

9.
为探究长江中下游地区耕地土壤固碳增汇措施,该研究收集与整理长江中下游地区59处长期定位试验观测数据,量化不同类型耕地土壤有机碳密度变化率的差异特征,运用随机森林模型与线性规划探究土壤有机碳密度变化率的驱动因素与提升途径。结果表明:水田和旱地土壤有机碳密度变化率范围分别为−1 548.15~3 577.10 kg/(hm2·a)和-261.89~3 245.01 kg/(hm2·a),差异不显著(P=0.85)。有机肥氮量、土壤pH值、化肥氮量、秸秆氮量对水田土壤有机碳密度变化率的影响较大;有机肥氮量和化肥氮量对旱地影响较大。因此,建议长江中下游地区可通过有机无机肥科学配施,合理调控水田土壤pH值和秸秆还田量。该研究可为长江中下游地区耕地固碳增汇的技术推广提供参考。  相似文献   

10.
11.
Abstract

To improve the methods of application of phosphorus or supply of soil P to Azolla (A. microphylld), basal application, split application, inoculation of P-enriched Azolla, and soil disturbance were compared. Soil disturbance did not increase the floodwater P content. Phosphorus was applied to inoculum production plots to enrich Azolla with P. Thus, phosphorus-enriched Azolla could multiply 5–7 times after inoculation until it became P deficient. Trials on the methods of enrichment of Azolla with P showed that the best method was to broadcast twice 4.33 kg P (10 kg P2O5/ha) at 2-day intervals and to harvest Azolla 3 days after P application. Addition of P once or twice 2 weeks after the inoculation of P-enriched Azolla further increased the biomass production. Efficiency of P application was analyzed in terms of N gain in relation to the amount of P applied. This ratio in the P-enriched Azolla treatment was higher than the economically sound ratio -5-, and higher than or equal to that in the standard split application.  相似文献   

12.
用137Cs示踪法研究密云水库周边土壤侵蚀与氮磷流失   总被引:5,自引:2,他引:5  
运用137Cs核素示踪技术,研究密云水库周边地区及白河上游地区土壤侵蚀与氮、磷流失状况及其相互之间的量变关系.研究结果表明:从土壤表层(0~20 cm)137Cs分布规律基本符合地形地貌的变化规律,山坡上部的137Cs含量低于山坡中部与坡下部,但是如果山顶具有缓坡或山角下具有陡坡,则137Cs含量变化规律相反.根据土壤137Cs监测数据结果判定该地区基本属于轻度侵蚀和中度侵蚀,部分地区侵蚀情况达到剧烈程度.不同景观与土地利用方式对土壤氮、磷分布有巨大影响:有机质、全氮、水解氮含量均是以灌丛土壤最高,林地次之,与流域内137Cs分布规律相符合;而农田中全磷、速效磷含量最高.不同区域土壤养分含量不同:水库上游地区土壤氮素、磷素含量均低于水库周边地区.证明不合理的人为活动严重的增强了土壤侵蚀程度与养分流失量.回归模拟了土壤中137Cs、(210Pb)与全氮、全磷、水解氮、速效磷含量之间的数学模型.这些模型在区域较小、景观单一的范围内可以定量分析、预报预测各采样区的全磷和有效态氮、磷含量的变化趋势.简化了监测与分析测试程序.扩大了核素示踪技术的应用范围.  相似文献   

13.
In order to assess its potential for estimating soil redistribution rates, the naturally occurring fallout radionuclide 210Pbex has been used in parallel with 137Cs, derived from the atmospheric testing of nuclear weapon testing in the 1950s to 1970s, to estimate rates of soil redistribution on a sloping field with traditional erosion control measures located near Jiajia Village, Jianyang County, in the Sichuan Hilly Basin of China. The local 210Pbex reference inventory of 12,860 Bq m− 2 is higher than those reported for many other areas of the world and may reflect the influence of cloudy weather in preventing 210Pb released to the atmosphere across the local region moving up into the upper troposphere, where is would be more widely dispersed. The mean 210Pbex and 137Cs inventories measured in cores collected from the upper part of the field with an average slope of 10° were 8028 Bq m− 2 and 993 Bq m− 2, respectively, and the equivalent values for the lower part of the field, where the slopes are steeper (20°) were 11,388 Bq m− 2 and 1299 Bq m− 2. The pattern of post-fallout 210Pbex and 137Cs redistribution on the sloping field reflects not only the effects of water erosion and redistribution by tillage, but also the local traditional practice of “Tiaoshamiantu”, whereby sediment trapped in the ditches is returned to the fields by the farmer. The estimates of annual rates of soil loss provided by the 210Pbex measurement are closely comparable with those derived from the 137Cs measurements and are consistent with existing knowledge for the study area. The results obtained from this study confirm the potential for using 210Pbex measurement to estimate soil erosion rates over medium-term timescale of 50–100 years. By combining the estimates of erosion rates provided by the 210Pbex and 137Cs measurements, the weighted mean net soil loss was estimated to be 48.7 t ha− 1 year− 1 from the upper subfield and 16.9 t ha− 1 year− 1 from the lower subfield. These rates are considerably lower than the erosion rates obtained from runoff plot measurements in the local area. It is suggested that the traditional erosion control practices and the practice of “Tiaoshamiantu” have a significant effect in reducing soil loss and conserving valuable cultivated soil on sloping fields in the Sichuan Hilly Basin.  相似文献   

14.
In the Eastern Rif of N Morocco, soil conservation is seriously threatened by water erosion. Large areas of soil have reached an irreversible state of degradation. In this study, the 137Cs technique was used to quantify erosion rates and identify the main factors involved in the erosion process based on a representative catchment of the Eastern Rif. To estimate erosion rates in terms of the main factors affecting soil losses, samples were collected taking into account the lithology, slope and land use along six selected transects within the Boussouab catchment. The transects were representative of the main land uses and physiographic characteristics of that Rif sector. The reference inventory for the area was established at a stable, well preserved, matorral site (value of 4250 Bq m− 2). All the sampling sites were eroded and 137Cs inventories varied widely (between 245 and 3670 Bq m− 2). The effective soil losses were also highly variable (between 5.1 and 48.8 t ha− 1 yr− 1). Soil losses varied with land use. The lowest average values were on matorral and fallow land (10.5 and 15.2 t ha− 1 yr− 1, respectively) but much higher with alfa vegetation or cereal crops (31.6 and 27.3, respectively). The highest erosion rate was on a badland transect at the more eroded part of the catchment, with rates exceeding 40 t ha− 1 yr− 1 and reaching a maximum of 48.8 t ha− 1 yr− 1.The average soil losses increased by more than 100% when the slope increased from 10° (17.7 t ha− 1 yr− 1) to 25° (40. 8 t ha− 1 yr− 1). Similar results were obtained when comparing erosion rates in soils that were covered by matorral with respect to those under cultivation. Lithology was also a key factor affecting soil loss. Soils on marls were more erodible and the average erosion rates reached 29.36 t ha− 1 yr− 1, which was twice as high as soils on the glacis and old fluvial terraces (average rates of 14.98 t ha− 1 yr− 1). The radiometric approach was very useful to quantify erosion rates and to examine the pattern of soil movement. The analysis of main erosion factors can help to promote rational soil use and establish conservation strategies in the study area.  相似文献   

15.
长江经济带耕地集约利用多尺度时空特征与影响因素分析   总被引:2,自引:2,他引:2  
科学分析区域耕地集约利用时空分异及影响因素,对于促进耕地资源集约潜力挖掘和高效利用具有重要现实意义。以长江经济带作为研究案例地,从投入强度、利用强度、产出效率及持续状况等维度上构建耕地集约利用评价指标体系,运用投影寻踪模型定量测度1978—2016年长江经济带耕地集约利用水平;基于流域、省域、市域多尺度视角,通过变异系数、ESDA、GIS模型,探究长江经济带耕地集约利用多尺度时空分异格局;运用地理探测器模型揭示长江经济带耕地集约利用分异的影响机制。结果表明:1)1978年以来流域尺度上长江经济带耕地集约利用水平表现提升态势,但演化过程中呈现"东高西低"差异特征;省域、市域尺度上长江经济带耕地集约利用呈现空间集聚特征,并且尺度越小空间集聚越显著。2)研究期间省域、市域尺度空间关联类型均以正向相关为主,且市域尺度上长江经济带耕地集约利用存在空间集聚"俱乐部趋同"现象,表现为H-H(high-high)型主要集聚在上海及苏南地区,并逐渐向绍杭、皖江地区演化;而L-L(low-low)型主要集聚在川西高原区。3)自然因素、人口增长、经济社会发展及制度政策可有效解释长江经济带耕地集约利用时空分异,其中人口因素、经济社会因素对耕地集约利用分异影响显著,而政策因素呈现较强驱动效应。4)最后从开展土地综合整治、加大要素投入力度、优化调整耕地结构、推进农业科技创新等方面提出促进长江经济带耕地集约利用提升政策建议。  相似文献   

16.
The purpose of this research was to evaluate the applicability of conventional 137Cs sampling and a simplified approach, for estimating medium-term tillage- and water-induced soil erosion and sedimentation rates on agricultural land in Chile. For this purpose, four study sites under contrasting land use and management were selected in central-south Chile. First, a conventional 137Cs approach, based on grid sampling was applied, adapting a mass balance conversion model incorporating soil movement by tillage to the site specific conditions of the study region. Secondly, using the same conversion model, the feasibility of estimating soil redistribution rates from measurements of 137Cs inventories based on composite soil samples taken along contour lines was also tested at all four sites. The redistribution rates associated with tillage and water and the total rates estimated using both methods correlated strongly at all four sites. The conventional method provides more detailed information concerning the redistribution processes operating over the landscape. The simplified method is suitable for assessing soil loss and sediment accumulation in areas exhibiting simple topography and almost similar slopes along the contour lines. Under these conditions, this method permits faster estimation of soil redistribution rates, providing the possibility of estimating soil redistribution rates over larger areas in a shorter time. In order to optimise the costs and benefits of the methods, the sampling and inventory quantification strategy must be selected according to the resolution of the required information, and the scale and complexity of the landscape relief. Higher tillage- and water-induced erosion rates were observed in the annually ploughed cropland sites than in the semi-permanent grassland sites. Subsistence managed crop and grassland sites also show greater erosion effects than the commercially managed sites. The 137Cs methods used permit discrimination between redistribution rates observed on agricultural land under different land use and management. The 137Cs technique must be seen as an efficient method for estimating medium-term soil redistribution rates, and for planning soil conservation and sustainable agricultural production under the climatic conditions and the soil type of the region of Chile investigated.  相似文献   

17.
侵蚀引起的苏南坡地土壤退化   总被引:5,自引:0,他引:5  
Soil erosion accelerates soil degradation. Some natural soils and cultivated soils on sloping land in southern Jiangsu Province, China were chosen to study soil degradation associated with erosion. Soil erosion intensity was investigated using the 137Cs tracer method. Soil particle-size distribution, soil organic matter (OM), total nitrogen (TN) and total phosphorus (TP) were measured, and the effects of erosion on soil physical and chemical properties were analyzed statistically using SYSTAT8.0. Results indicated that erosion intensity of cultivated soils was greater than that of the natural soils, suggesting that cultivation increased soil loss. Erosion also led to an increase of coarser soil particle proportion, especially in natural soils. In addition, silt was the primary soil particle lost due to erosion. However, in cultivated fields, coarser soil particles over time were attributed not only to soil erosion but also to mechanical eluviation as a result of farming activities. Moreover, erosion caused a decrease in soil OM, TN and TP as well as thinning of the soil layer.  相似文献   

18.
利用137Cs估算土壤侵蚀速率的定量模型   总被引:1,自引:0,他引:1  
A quantitative model was developed to relate the amount of ^137Cs loss from the soil profile to the rate of soil erosion,According th mass balance model,the depth distribution pattern of ^137Cs in the soil profile ,the radioactive decay of ^137Cs,sampling year and the difference of ^137Cs fallout amount among years were taken into consideration.By introducing typical depth distribution functions of ^137Cs into the model ,detailed equations for the model were got for different soil,The model shows that the rate of soil erosion is mainly controlled by the depth distrbution pattern of ^137Cs ,the year of sampling,and the percentage reduction in total ^137Cs,The relationship between the rate of soil loss and ^137Cs depletion i neither linear nor logarithmic,The depth distribution pattern of ^137Cs is a major factor for estimating the rate of soil loss,Soil erosion rate is directly related with the fraction of ^137Cs content near the soil surface. The influences of the radioactive decay of ^137Cs,sampling year and ^137Cs input fraction are not large compared with others.  相似文献   

19.
Soil erosion significantly affects the most productive lands in Argentina, particularly the region called “Pampa Ondulada”. Quantification of the actual rates and patterns of soil loss is necessary for designing efficient degradation control strategies. The aim of this investigation was to gather using the 137Cs technique a reliable set of data of erosion and sedimentation rates, in order to describe the long-term erosive landscape dynamic in a 300 ha basin representative for the “Pampa Ondulada” region of Argentina. The general topography of the basin is undulated with slopes gradients between 0 and 2.5% and slope lengths up to 800 m long. The main land use consisted in annual cropping under conventional tillage.For the soil erosion study in the basin the 137Cs technique was used, which is based on the comparison between the 137Cs inventories surveyed with a local reference 137Cs profile. The sampling strategy was based on a multiple transect approach.The estimated mean soil erosion rates obtained applying Mass Balance Model 2 for the studied hillslopes ranged between −11.5 and −36 t ha−1 per year and fitted the low and moderate erosion classes according to FAO. These values ranged beyond the admitted tolerance. Sedimentation was observed at the lower landscape positions probably related to changes from convex to concave slopes. The application of the 137Cs technique in the studied basin proved to be a useful and sensible tool for assessing erosion/deposition rates. In areas with low topographic gradients like the Pampa Ondulada region, the slope length appears to be an important property for predicting spatial patterns of erosion rates.  相似文献   

20.
Water erosion in the hilly areas of west China is the main process contributing to the overall sediment of the Yellow River and the Yangtze River. The impact of gully erosion in total sediment output has been mostly neglected. Our objective was to assess the sediment production and sediment sources at both the hillslope and catchment scales in the Yangjuangou reservoir catchment of the Chinese Loess Plateau, northwest China. Distribution patterns in sediment production caused by water erosion on hills and gully slopes under different land use types were assessed using the fallout 137Cs technique. The total sediment production from the catchment was estimated by using the sediment record in a reservoir. Sediment sources and dominant water erosion processes were determined by comparing 137Cs activities and 210Pb/137Cs ratios in surface soils and sub-surface soils with those of sediment deposits from the reservoir at the outlet of the catchment. Results indicated that landscape location had the most significant impact on sediment production for cultivated hillslopes, followed by the terraced hillslope, and the least for the vegetated hillslope. Sediment production increased in the following order: top>upper>lower>middle for the cultivated hillslope, and top>lower>upper>middle for the terraced hillslope. The mean value of sediment production declined by 49% for the terraced hillslope and by 80% for the vegetated hillslope compared with the cultivated hillslope. Vegetated gully slope reduced the sediment production by 38% compared with the cultivated gully slope. These data demonstrate the effectiveness of terracing and perennial vegetation cover in controlling sediment delivery at a hillslope scale. Averaged 137Cs activities and 210Pb/137Cs ratios in the 0–5 cm surface soil (2.22–4.70 Bq kg−1 and 20.70–22.07, respectively) and in the 5–30 cm subsoil (2.60 Bq kg−1 and 28.57, respectively) on the cultivated hills and gully slopes were close to those of the deposited sediment in the reservoir (3.37 Bq kg−1 and 29.08, respectively). These results suggest that the main sediment sources in the catchment were from the surface soil and subsoil on the cultivated slopes, and that gully erosion is the dominant water erosion process contributing sediment in the study area. Changes in land use types can greatly affect sediment production from gully erosion. An increase in grassland and forestland by 42%, and a corresponding decrease in farmland by 46%, reduced sediment production by 31% in the catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号