首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Root growth, grain yield and water uptake by wheat in relation to soil water regime and depth of nitrogen (N) placement were studied in metallic cylinders filled with loamy sand soil. Root-length and -weight densities were greater under irrigated than under unirrigated conditions and they increased with deep placement as compared to surface mixing of fertilizer N. The differences were relatively larger in the deeper than in the upper soil layers and increased during later stages of plant growth. Under non-irrigated conditions, constant water table at 100 cm depth produced maximum root growth in the top 30 cm soil. Water uptake rate increased with increase in root density depending on root age and soil water status. Dry matter accumulation at different stages of plant growth and grain yield varied significantly with moisture regime and depth of N placement. Deep placement of fertilizer N under shallow water table and non-irrigated conditions caused greater root growth, better water utilization and a higher production.  相似文献   

2.
Summary Rapid drying of surface layers of coarse-textured soils early in the growth season increases soil strength and restricts root growth. This constraint on root growth may be countered by deep tillage and/or early irrigation. We investigated tillage and irrigation effects on root growth, water use, dry matter and grain yield of wheat on loamy sand and sandy loam soils for three years. Treatments included all combinations of two tillage systems i) conventional tillage (CT) — stirring the soil to 10 cm depth, ii) deep tillage (DT) — subsoiling with a single-tine chisel down to 35–40 cm, 40 cm apart followed by CT; and four irrigation regimes, i) I0 — no post-seeding irrigation, ii) I1 — 50 mm irrigation 30 days after seeding (DAS), iii) I2 — 50 mm irrigation 30 DAS and subsequent irrigations of 75 mm each when net evaporation from USWB class A open pan (PAN-E) since previous irrigation accumulated to 82 mm, and iv) I3 — same as in I2 but irrigation applied when PAN-E accumulated to 62 mm. The crop of wheat (Triticum aestivum L. HD 2329) was fertilized with 20kg P, 10kg K and 5kg Zn ha–1 at seeding. The rate of nitrogen fertilization was 60 kg ha–1 in the unirrigated and 120 kg ha–1 in the irrigated treatments. Tillage decreased soil strength and so did the early post-seeding irrigation. Both deep tillage and early irrigation shortened the time needed for the root system to reach a specified depth. Subsequent wetting through rain/irrigation reduced the rate of root penetration down the profile and also negated deep tillage effects on rooting depth. However, tillage/irrigation increased root length density in the rooted profile even in a wet year. Better rooting resulted in greater profile water depletion, more favourable plant water status and higher dry matter and grain yields. In a dry year, the wheat in the DT plots used 46 mm more water, remained 3.3 °C cooler at grain-fill and yielded 68% more grain than in CT when unirrigated and grown in the loamy sand. Early irrigation also increased profile water depletion, more so in CT than DT. Averaged over three years, grain yield in DT was 12 and 9% higher than in CT on loamy sand and sandy loam, respectively. Benefits of DT decreased with increase in rainfall and irrigation. Irrigation significantly increased grain yield on both soils, but the response was greatly influenced by soil type, tillage system and year. The study shows that soil related constraints on root growth may be alleviated through deep tillage and/or early irrigation.  相似文献   

3.
For trickle irrigation systems to deliver improved water- and nutrient-use efficiency, distance between emitters and emitter flow rates must be matched to the soil's wetting characteristics and the amount and timing of water to be supplied to the crop. Broad soil texture ranges (e.g. sand, loam, clay) are usually the only information related to soil wetting used in trickle system designs. In this study, dimensions of wetted soil were calculated from hydraulic properties of 29 soils covering a wide range of textures and soil hydraulic properties to assess the impact of soil texture and/or type on soil wetting patterns. The soils came from two groups that differed in the extent to which hydraulic properties depended on soil texture. Vertical and radial distances to the wetting front from both surface and buried emitters were calculated for conditions commonly associated with daily irrigation applications in a widely spaced row crop (sugarcane) and horticultural crops. In the first group of soils, which had least expression of field structure, the wetted volume became more spherical (i.e. the wetted radius increased relative to the depth of wetting below the emitter) with increasing clay content, as is commonly accepted. However, in the second group of soils in which field structure was preserved, there was no such relationship between wetted dimensions and texture. For example, five soils with the same texture had as great a variation in wetting pattern, as did all 11 soils in the first group, indicating the considerable impact of field structure on wetting patterns. The implications of the results for system design and management were illustrated by comparing current recommendations for trickle irrigation systems in coastal northeastern Australia with the calculated wetted dimensions. The results suggest that (1) emitter spacings recommended for sugarcane are generally too large to allow complete wetting between emitters, and (2) the depth of wetting may be greater than the active root zone for both sugarcane and small crops in many soils, resulting in losses of water and chemicals below the root zone. We conclude that texture is an unreliable predictor of wetting and there is no basis for adopting different dripper spacing in soils of different textures in the absence of site-specific information on soil wetting. Such information is crucial for the design of efficient trickle irrigation systems.Communicated by J. Annandale  相似文献   

4.
The resource potential of shallow water tables for cropping systems has been investigated using the Australian sugar industry as a case study. Literature concerning shallow water table contributions to sugarcane crops has been summarised, and an assessment of required irrigation for water tables to depths of 2 m investigated using the SWIMv2.1 soil water balance model for three different soils. The study was undertaken because water availability is a major limitation for sugarcane and other crop production systems in Australia and knowledge on how best to incorporate upflow from water tables in irrigation scheduling is limited. Our results showed that for the three soils studied (representing a range of permeabilities as defined by near-saturated hydraulic conductivities), no irrigation would be required for static water tables within 1 m of the soil surface. Irrigation requirements when static water tables exceeded 1 m depth were dependent on the soil type and rooting characteristics (root depth and density). Our results also show that the near-saturated hydraulic conductivities are a better indicator of the ability of water tables below 1 m to supply sufficient upflow as opposed to soil textural classifications. We conclude that there is potential for reductions in irrigation and hence improvements in irrigation water use efficiency in areas where shallow water tables are a low salinity risk: either fresh, or the local hydrology results in net recharge.  相似文献   

5.
覆膜滴灌条件下灌水量对玉米根系分布特征的影响   总被引:2,自引:0,他引:2  
根系生长决定了植物吸收养分和水分的能力,在作物生长中扮演了重要的角色。为了探讨水分差异对玉米根系分布规律的影响,在民勤试验站进行了不同灌水量对覆膜滴灌玉米0~100cm土层根系质量、根径及根长的影响研究,结果表明,灌水量对膜下滴灌玉米根系特征产生了重要影响:灌水量越大,其根系所占百分比和根径越大;同一生育时期,各处理不同土层根重变化较大,但其变化规律基本一致,均随着土层深度的增加,根重逐渐减小,0~40cm土层所占的重量百分比较大,同时0~40cm土层平均根径及根长也较大。试验为探索覆膜滴灌条件下玉米根系分布特征提供一定的参考,为完善覆膜滴灌灌溉制度提供一定的指导意义。  相似文献   

6.
Non-uniformities in soil hydraulic properties and infiltration rates are considered to be major reasons for the inefficiencies of some surface irrigation systems. These non-uniformities may cause non-uniformities in soil water contents and could potentially affect plant growth. To investigate whether the non-uniformities in soil water contents can be overcome by well-managed irrigation systems, fields with clay loam soils and planted to cotton were irrigated with a continuous-flow, a surge flow, and a subsurface drip system. Measurements of water contents in each field were taken throughout the growing season at several depths. The water contents measured within the top 0–0.9 m in the three irrigations systems were evaluated in terms of their spatial and temporal variabilities. The analyses indicated that on this soil, use of the surge flow system did not lead to increased spatial uniformities of soil water contents compared with the continuous-flow system. Use of the subsurface drip system resulted in very non-uniform soil water contents above the depth of the emitters. Variability in water contents below the emitter depth was comparable to the surface irrigation systems. Received: 26 March 1996  相似文献   

7.
Water dynamics and salt distribution in the soil were studied under Fixed Partial Root zone Drying irrigation (FPRD) conditions in corn fields in Northern Greece. FPRD irrigation technique was applied without deficit treatment in two calcareous soils, a sandy clay loam and a sandy loam. Soil water content was recorded in the vertical profile of 0.6 m with the use of capacitance sensors in the row and interrow positions of plants. Salt built-up was monitored to the depth of the root zone, bi-weekly, by measuring electrical conductivity (ECe) and the concentrations of soluble cations Ca2+, Mg2+, Na+ and K+ of the saturation extract on irrigated and non irrigated interrow positions. Soil moisture distribution and salt built-up in soil were used to evaluate the potentials and constraints of FPRD efficiency to sustain plant growth and crop production as a low cost drip irrigation technique. The results indicated that FPRD application on both soils was capable of supplying sufficient amounts of water on plant row. Soil analyses showed that salts accumulated to high levels in the soil surface and decreased in depth at the non irrigated interrow positions. Spatial and temporal variability of salt movement and distribution in the soil profile of 0.6 m were ascribed to soil textural differences. The development and yield of corn plants for both soils reached the usual standards for the area with a minor decrease in the sandy loam soil.  相似文献   

8.
Summary Water withdrawal from the soil beneath an irrigated peach orchard is described over depth and time after irrigation for a red-brown earth where the hydraulic properties vary with depth. Relationships between water uptake by roots, root concentration and soil-water suction were explored over protracted drying cycles. In the early stages of drying water uptake by roots was well correlated with root concentration over the profile but, over time, water uptake was redistributed over the root system. Theoretical analysis suggests that poor utilization of water from depth on this soil was associated mainly with low root concentrations and low root (radial) conductance. Practical considerations for improved water management in the root zone of peach orchards on shallow soils are discussed.  相似文献   

9.
为了研究干旱半干旱地区土壤剖面深层水分对冬小麦根系生长及抗旱性的影响,采用PVC管土柱法进行冬小麦生长水分调控试验,设计了4个处理,即处理Ⅰ为地面灌溉、处理Ⅱ为计划湿润层取根系分布深度的60%、处理Ⅲ为计划湿润层取根系分布深度的75%、处理Ⅳ为计划湿润层取根系分布深度的90%,测定了冬小麦各生育期根系形态指标和地上部分植株体干重的变化,结果表明:灌水总量一定,改变灌水方式、考虑计划湿润层的深层灌溉,能够促进冬小麦根系深扎,至成熟期,处理Ⅱ、Ⅲ、Ⅳ的根长比处理Ⅰ长27~37 cm,总根干重均增加,但根冠比减小,产量增加。适宜的根冠比能更好地协调冬小麦地上部分与地下部分之间生长关系,提高抗旱能力。处理Ⅱ和处理Ⅲ是冬小麦根冠层生长协调、提高抗旱能力较适宜的灌溉方案,可为我国北方地区冬小麦节水灌溉提供参考。  相似文献   

10.
滴灌紫花苜蓿根层水分稳定同位素特征分析   总被引:1,自引:0,他引:1  
为了明确滴灌紫花苜蓿根层水分运移,进一步阐明滴灌节水机理,采用液态水稳定氢氧同位素技术,分析了滴灌紫花苜蓿根层水分稳定氢氧同位素分布特征。结果表明,紫花苜蓿根层水分稳定氢氧同位素在下层富集,且随土壤剖面深度的增加同位素富集量有增加的趋势。滴灌条件下,紫花苜蓿根层发育有较多细根,可迅速而高效地利用灌溉水,灌溉后紫花苜蓿对灌溉水的利用不明确偏向于某一深度土层,根层内各土层土壤水均有利用。灌溉前土壤干旱时,滴灌紫花苜蓿以30 cm上下土层土壤水作为主要水分来源的概率较高。  相似文献   

11.
This study was carried out at the experimental field station of the Atomic Energy Authority in Anshas, Egypt, by the aim of assessing the soil moisture status under surface and subsurface drip irrigation systems, as a function of the variation in the distance between drippers along and between laterals. Moisture measurements were carried out using neutron moisture meter technique, and water distribution uniformity was assessed by applying Surfer Model. The presented data indicated that the soil moisture distribution and its uniformity within the soil profile under surface drip was to great extent affected by the distance between drippers rather than that between laterals. Generally, the soil moisture distribution under using 30-cm dripper spacing was better than of that under 50 cm. Under subsurface drip irrigation, the allocation of the irrigation system was the factor that dominantly affected the moisture trend under the studied variables. Installing the system at 30 cm from the soil surface is the one to be recommended as it represents the active root zone for most vegetable crops, beside it leads to a better water saving in sandy soils than that allocated at 15 cm depth.  相似文献   

12.
为解决宁南山区旱地经济林干旱缺水的现状及小降雨(4~16 mm)无法入渗到根系(20~40 cm)分布范围,设计了一种降雨集流渗灌装置,通过室内土箱试验,以降雨量作为控制因子,研究不同雨量条件下径向和垂向土壤水分的运动特征。结果表明:随雨量增加累计入渗量逐渐增大,入渗速率逐渐减小;不同雨量条件下土壤含水率增量在垂向0~40 cm范围内随土层深度的增加呈先增加后减小的趋势,径向沿距渗灌器距离的增加逐渐减小;灌水结束24 h后土壤水分高含水率区主要分布在垂向20~40 cm和径向0~20 cm,湿润体大致呈半椭球体;集流渗灌器明显提升了小降雨的利用,使经济林主要根系分布范围(20~60 cm)内,土壤含水率明显增加,有利于缓解经济林生育期缺水,促进其生长,该研究结果可为集流渗灌器在田间推广应用提供可靠的数据支撑。  相似文献   

13.
Analysis of soil wetting and solute transport in subsurface trickle irrigation   总被引:17,自引:2,他引:17  
The increased use of trickle or drip irrigation is seen as one way of helping to improve the sustainability of irrigation systems around the world. However, soil water and solute transport properties and soil profile characteristics are often not adequately incorporated in the design and management of trickle systems. In this paper, we describe results of a simulation study designed to highlight the impacts of soil properties on water and solute transport from buried trickle emitters. The analysis addresses the influence of soil hydraulic properties, soil layering, trickle discharge rate, irrigation frequency, and timing of nutrient application on wetting patterns and solute distribution. We show that (1) trickle irrigation can improve plant water availability in medium and low permeability fine-textured soils, providing that design and management are adapted to account for their soil hydraulic properties, (2) in highly permeable coarse-textured soils, water and nutrients move quickly downwards from the emitter, making it difficult to wet the near surface zone if emitters are buried too deep, and (3) changing the fertigation strategy for highly permeable coarse-textured soils to apply nutrients at the beginning of an irrigation cycle can maintain larger amounts of nutrient near to and above the emitter, thereby making them less susceptible to leaching losses. The results demonstrate the need to account for differences in soil hydraulic properties and solute transport when designing irrigation and fertigation management strategies. Failure to do this will result in inefficient systems and lost opportunities for reducing the negative environmental impacts of irrigation.Communicated by J. Annandale  相似文献   

14.
Summary Different soils are known to affect the amount and distribution of both available water and roots. Optimising irrigation water use, especially when shallow water-tables are present requires accurate knowledge of the root zone dynamics. This study was conducted to determine the effect of two soil types on root growth, soil water extraction patterns, and contributions of a water-table to crop evaporation (E). Two weighing lysimeters (L1 and L2) with undisturbed blocks of soil were used. The soil in L1 had higher hydraulic conductivity and lower bulk density than that in L2. Well watered conditions were maintained by irrigation for the first 110 days from sowing (DFS). Root length density (RLD) was calculated from observations made in clear acrylic tubes installed into the sides of the lysimeters. Volumetric soil water contents were measured with a neutron probe. A water-table (EC = 0.01 S m-1) was established 1 m below the soil surface 18 DFS. RLD values were greater in L1 than L2 at any depth. In L1, maximum RLD values (3 × 104 m m-3) were measured immediately above the water-table at physiological maturity (133 DFS). In L2, maximum RLD values (1.5 × 104 m m-3) were measured at 0.42 m on 120 DFS and few roots were present above the water-table. From 71 to 74 DFS, 55 and 64% of E was extracted from above 0.2 m for L1 and L2, respectively. In L2, extraction was essentially limited to the upper 0.4 m, while L1 extraction was to 0.8 m depth. Around 100 DFS the water-table contributed 29% (L1) and 7% (L2) of the water evaporated. This proportion increased rapidly as the upper soil layers dried following the last substantial irrigation 106 DFS. Over the whole season the water-table contributed 24% in L1 and 6.5% in L2 of total E.  相似文献   

15.
基于不同灌溉类型区土壤剖面理化性质的取样分析,对喷灌区、纯井灌区、河灌区及非灌溉区2m深度土壤剖面的理化性质进行了比较分析,揭示了长期喷灌条件下的土壤剖面理化性质的变化特征。结果表明,喷灌区与其他灌溉类型区相比,全剖面,尤其是心土层和底土层的含水率有较大幅度降低;犁底层及其以下一定深度范围内土层的干密度有较大幅度的增加...  相似文献   

16.
Farm woodlots or plantations of salt tolerant trees may provide an economic use or reclamation treatment for salt-affected farmland within the irrigation regions of the Indus Valley, but the hydrological impact and sustainability of such plantations are unknown. Detailed measurements of plantation water use, watertable depth and soil conditions were recorded over 2 years in two small plantations with contrasting soil and groundwater salinity at Tando Jam in the Sindh province of Pakistan. The species monitored were Acacia nilotica, A. ampliceps and Prosopis pallida. Annual water use by 3- to 5-year old A. nilotica was 1248 mm on the severely saline site and 2225 mm on the mildly saline site. Water use by the other species was less than 25% of these rates, but this difference is largely explained by their lower density in terms of sapwood area per hectare. Water use by A. nilotica was considerably greater than annual rainfall, implying uptake of groundwater which was confirmed both by piezometric observations and chloride balance modelling to predict vertical water movement through the root zone. Plantation watertables fell from 1.7 m below surface in March to over 2.9 m in September, then rose again during irrigation of the surrounding farmland. Root zone salt concentrations remained high at the more saline site throughout the monitoring period, but at the less saline site there was evidence of increasing root zone salinity as salt accumulated in areas of the profile subject to root water uptake. Salt concentration in the upper profile decreased as the soil dried and water was absorbed from greater depth. Plantations using saline groundwater may be sustainable if occasional leaching and other salt-removing processes are sufficient to maintain root zone salinity at a level which does not excessively reduce tree growth.  相似文献   

17.
黄土丘陵区红枣经济林根系分布与土壤水分关系研究   总被引:7,自引:0,他引:7  
为明确半干旱黄土丘陵区不同年龄无灌溉旱作矮化修剪密植枣林的根系分布范围与其土壤水分的空间关系,利用根钻法测定枣林株间不同深度的根系分布、枣树主干就近位置的根系量,并采用土钻取土和中子仪定位测定结合了解不同年龄的枣林10 m深度的土壤水分。结果表明:随着树龄增加,1、3、5、12 a枣树根系最大深度年平均增值在减小,12 a枣林垂直根系达520 cm。枣树株间100 cm处向下的根系深度较浅,枣林的垂直根系最大和最小值之差先增加后减小,12 a枣林垂直根系之差只有180 cm。研究区枣树株间水平根系在枣林3 a时开始交汇,枣树水平根系延伸无法确定,所得到的水平方向根系实际是枣林多株树汇集的根系。枣林垂直根系对土壤水分的垂直变化作用显著,但矮化修剪密植枣林株间根系深度差异并没有造成土壤水分因此而波动。随着枣树树龄的增加根系深度和土壤水分干层均增加,0~2 m土层的土壤水分年内变化幅度也增加,而且根层范围的土壤水分随着树龄增加在降低,但是土壤干层深度稍大于测得的根系深度。  相似文献   

18.
不同滴灌方式下咸水灌溉对棉花根系分布的影响   总被引:7,自引:1,他引:6  
通过大田试验研究了不同滴灌方式利用咸水灌溉对棉花根系分布的影响。结果表明,2种滴灌方式下土壤中的水分和盐分在1 m土体内随土壤深度的增加和咸水浓度的增加而增加,且由于滴头的洗盐作用,地表滴灌和地下滴灌方式下土壤中的水盐分布深度均有所下移。正是由于水盐在土壤有这样的分布特征,2种滴灌方式下不同盐度咸水灌溉后,作物不仅可以感受到变化了的环境信息,而且自发地改变结构形态、空间构型,即增加根长、根干重、根半径以及根表面积,对盐胁迫做出适应性的根系形态变化。  相似文献   

19.
The effect of irrigation frequency on soil water distribution, potato root distribution, potato tuber yield and water use efficiency was studied in 2001 and 2002 field experiments. Treatments consisted of six different drip irrigation frequencies: N1 (once every day), N2 (once every 2 days), N3 (once every 3 days), N4 (once every 4 days), N6 (once every 6 days) and N8 (once every 8 days), with total drip irrigation water equal for the different frequencies. The results indicated that drip irrigation frequency did affect soil water distribution, depending on potato growing stage, soil depth and distance from the emitter. Under treatment N1, soil matric potential (ψm) Variations at depths of 70 and 90 cm showed a larger wetted soil range than was initially expected. Potato root growth was also affected by drip irrigation frequency to some extent: the higher the frequency, the higher was the root length density (RLD) in 0–60 cm soil layer and the lower was the root length density (RWD) in 0–10 cm soil layer. On the other hand, potato roots were not limited in wetted soil volume even when the crop was irrigated at the highest frequency. High frequency irrigation enhanced potato tuber growth and water use efficiency (WUE). Reducing irrigation frequency from N1 to N8 resulted in significant yield reductions by 33.4 and 29.1% in 2001 and 2002, respectively. For total ET, little difference was found among the different irrigation frequency treatments.  相似文献   

20.
The influences of water quantity and quality on young lemon trees (Eureka) were studied at the University of Jordan Research Station at the Jordan Valley for 5 years (1996–2000). Five water levels and three water qualities were imposed via trickle irrigation system on clay loam soil. The primary effect of excess salinity is that it renders less water available to plants although some is still present in the root zone. Lemon trees water requirements should be modified year by year since planting according to the percentage shaded area, and this will lead into substantial water saving. Both evaporation from class A pan and the percentage shaded area can be used to give a satisfactory estimate of the lemon trees water requirement at the different growth stages. The highest lemon fruit yield was at irrigation water depth equal to evaporation depth from class A pan when corrected for tree canopy percentage area. Increasing irrigation water salinity 3.7 times increased average crop root zone salinity by about 3.8–4.1 times.The high salt concentration at the soil surface is due to high evaporation rate from wetted areas and the nature of soil water distribution associated with drip irrigation system. Then, the salt concentration decreased until the second depth, thereafter, salt concentration followed the bulb shape of the wetted soil volume under trickle irrigation. Irrigation water salinity is very important factor that should be managed with limited (deficit) irrigation. But increasing amount of applied saline water could result in a negative effect on crop yield and environment such as increasing average crop root zone salinity, nutrient leaching, water logging, increasing the drainage water load of salinity which might pollute ground water and other water sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号