首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过B超监测11头青年母牛的卵巢动态变化。显示在自然发情状态下,排卵当天卵巢直径的平均值为18.24mm,排卵前一天平均值为21.94mm,排卵后一天平均值为21.63mm。卵泡发育以卵泡波的形式出现,本实验观察到3—4个卵泡波,以3个卵泡波为主,占81.82%,4个卵泡波的占18.18%;青年母牛左侧卵巢优势卵泡的平均直径为11.71±0.71mm,成熟卵泡的平均直径为14.76±0.94mm;右侧卵巢优势卵泡的平均直径为13.02±1.97mm,成熟卵泡的平均直径为14.34±1.30mm.  相似文献   

2.
Follicular development was examined by transrectal ultrasound scanning in 12 heifers during 51 oestrous cycles. Internal diameters of largest and second largest follicles and the number of smaller ovarian vesicles were determined. Diameters of dominant follicles showed inverse growth pattern to the second largest follicles and numbers of smaller follicles (greater than or equal to 5 mm). There was an increase in diameters of the largest follicles from beginning of dioestrous to day 9 and from time of luteolysis to ovulation, which was coincident which a decrease in diameters of the second largest follicles and numbers of smaller ovarian vesicles. Smaller follicles increased in count and diameter, when the dominant follicle achieved its largest dimension and started to regress. The cyclic corpus luteum had no local influence on diameters of the largest and second largest follicles in the ovary bearing the corpus luteum versus the contralateral ovary. Internal diameters of oestrous follicles measured 14.7 +/- 2.6 mm in heifers and 15.3 +/- 2.9 mm in cows at the day of oestrous (p greater than 0.05; t-test). Dioestrous follicles with similar size were detected during various stages of the oestrous cycle. The diameter of the dominant follicle is not an accurate criterion for determining the stage of the oestrous cycle.  相似文献   

3.
The application of real-time ultrasonography to monitoring ovarian function in mammals has advanced the understanding of follicular dynamics and its regulation. Follicular development is a wave-like sequence of organised events. The waves consist of the synchronous growth of small (4 to 5 mm) antral follicles, followed by the selection and growth of one dominant follicle which achieves the largest diameter and suppresses the growth of the subordinate follicles. In the absence of luteal regression, the dominant follicle eventually regresses (becomes atretic) and a new follicular wave begins. The dominant follicle regulates the growth of the subordinate follicles, because the appearance of the next wave is accelerated if the dominant follicle is ablated, and delayed if the lifespan of the dominant follicle is prolonged. During bovine oestrous cycles, two or three successive waves emerge, on average, on the day of ovulation (day 0) and day 10 for two-wave cycles, and on days 0, 9 and 16 for three-wave cycles. During the oestrous cycle there are thus two or three successive dominant follicles, and the last of these ovulates. Ovarian folliculogenesis is a complex process involving interactions between pituitary gonadotrophins, ovarian steroids and non-steroidal factors. Subtle changes in the hormonal milieu regulate folliculogenesis and the emergence of a follicular wave is preceded by a small increase in the concentration of plasma follicle-stimulating hormone. The mechanisms that promote the selection of a dominant follicle have not been elucidated, but considerable progress has been made in understanding follicular development and its regulation. Most treatments designed to control the development of follicular waves have been based on the physical or hormonal removal of the suppressive effect of the dominant follicle, and the consequent controlled induction of the emergence of a new follicular wave. The studies reviewed here describe current methods for regulating the bovine ovarian cycle, interesting models for future studies, and information that may be used for improving reproductive efficiency.  相似文献   

4.
With an objective to evaluate the follicular dynamics and vascularity changes in follicles and corpus luteum, the ovaries of cyclic Surti buffaloes (n = 9) were examined daily sequentially by transrectal B‐mode and colour flow mode (CFM) ultrasonography starting from the day of oestrus till the onset of next oestrus. Higher proportion of buffaloes evidenced one‐wave cycle (66.66%) compared to two‐wave cycle (33.34%) with none showing a three‐wave cycle. The dominant follicle of the first follicular wave was the ovulatory follicle and persisted for 19.70 ± 0.50 days compared to its persistence for 16.5 ± 1.45 days in a two‐wave cycle. The maximum diameter of the ovulatory follicle in a one‐wave and two‐wave cycle did not differ yet their linear growth rates were significantly lower (p < 0.01) in a one‐wave cycle. Colour flow mode examination of follicles revealed that the percentage of follicles with detectable blood flow in the subsequently determined largest follicle (dominant follicle) was not different from that in the second largest follicle before follicle deviation. The blood flow in the dominant follicle increased significantly on the day of oestrus. The mean diameter and blood flow to the corpus luteum (CL) increased linearly and significantly from Day 5 of oestrus till Day 13 after which both parameters started declining. At or around Day 16, there was precipitous fall in the blood supply to the CL and CL diameter that continued declining thereafter to reach the lowest around Day 20 of the oestrous cycle. Rise in plasma progesterone concentrations was synchronous to CL diameter and vascularity and showed significant and positive correlations. It was concluded that Surti buffaloes evidence a preponderance of one‐wave follicular growth pattern with a significant increase in the vascularity of ovulatory follicle on the day of oestrus and corpus luteum on Day 13 of the oestrous cycle.  相似文献   

5.
The characteristics of the major follicular waves (primary and secondary) throughout estrous cycle were studied in 7 healthy Caspian mares (age, 4-15 years; weight, 198.6 ± 0.9 kg) during the breeding season. Ovarian follicular dynamics were monitored by using an ultrasound scanner equipped with a 5-MHz, B-mode, linear-array, rectal transducer throughout 2 complete estrous cycles. The diameters of antral follicles (5 mm) were measured, averaging the narrowest and widest dimensions. To detect follicular wave emergence, the diameter profile of the 3 largest follicles per ovary of each mare was determined without considering day-to-day identity of follicles but with maintenance of distinction between left and right ovaries. The primary waves originated on day 6.4 ± 0.81 (ovulation = day 0) when the mean diameter of ovarian follicles was 9.6 ± 1.05 mm. Divergence between the dominant preovulatory follicle and subordinate follicles occurred on day 13.4 ± 0.81, when the dominant follicle was 18.1 ± 2.67 mm in diameter. The intervals from emergence to divergence and from divergence to ovulation were 7 ± 0.68 and 8.7 ± 0.68 days, respectively. Secondary major follicular waves were not observed during this study. In conclusion, only 1 major follicular wave was detected in a Caspian mare, confirming the data previously described in other equine breeds. It is also indicated that the occurrence of 1 major follicular wave per cycle is a more common phenomena in equine species.  相似文献   

6.
The objective of this study was to examine the follicular dynamics of five-eighths Girolando cows by observing the number of follicular development waves, days of emergence of those waves, diameters of the dominant and largest subordinate follicles and the processes of follicular selection and dominance. Ovarian follicle dynamics were monitored for 24 oestrous cycles in 12 cows, of 4 to 10 years of age, presenting regular oestrous cycles and with body scores between 3 and 4. Ovaries were observed daily for two consecutive oestrous cycles and follicles were measured with ultrasonographic equipment. The dominant follicle was considered to be that which presented a diameter ≥ 10 mm for three consecutive days and on the day of wave emergence, when a group of follicles measuring 3–5 mm in diameter would appear. Of the 24 cycles monitored, 62.5% presented two waves of follicular development and 37.5% presented three waves. The cycles presenting two waves had an average duration of 20 days, with the emergence of the waves on days 1 and 9, whereas the cycles presenting three waves had an average duration of 22 days, with emergences on days 1, 10 and 16. For cycles with two waves, both the first and second dominant follicles reached an average size of 13.8 mm, with the first regressing on day 10 and the second ovulating around day 20. For cycles with three waves, the dominant follicles of the first and second waves reached maximum diameters of 11.8 and 12 mm, respectively, with the first regressing on day 11 and the second regressing on day 17. The third dominant follicle reached a maximum diameter of 12.4 mm on day 20, and ovulated on day 22. These results lead to the conclusion that the follicular dynamics of five-eighths Girolando cows are characterized by the presence of two to three waves of follicular growth.  相似文献   

7.
The follicle and hormone aspects of diameter deviation and development of one dominant (≥28 mm) follicle (1DF) vs two dominant follicles (2DF) were studied in 32 ovulatory follicular waves in mares. Follicles were ranked each day as F1 (largest) to F3. The beginning of deviation was designated day 0 and preceded the first increase in the differences in diameter between F1 and F2 in the 1DF group and between a combination of F1 and F2 vs F3 in the 2DF group. One dominant follicle and 2DF developed in 21 (66%) and 11 (34%) waves, respectively. Double ovulations occurred in only one of the waves with 2DF. In 8/11 waves with 2DF, a second deviation occurred between F1 and F2 on 2.5 ± 0.4 days after the first deviation. On day 0, 1DF and 2DF waves were similar in number of days after ovulation, number of follicles, difference in diameter between F1 and F2, and plasma concentrations of LH, estradiol and immunoreactive inhibin. The interval from maximum FSH concentration to day 0 was longer (p < 0.05) and FSH concentration was lower (p < 0.05) on days -1 to 4 in the 2DF group. The similarities on day 0 in the characteristics of 1DF and 2DF waves despite the differences in the declining portions of the FSH profile indicated that a specific day of the FSH decline or a specific concentration were not factors in initiating deviation. Unlike reported results in heifers, the results in mares did not indicate a hormonal basis for the development of 2DF or two deviations.  相似文献   

8.
The selection of a single ovarian follicle for further differentiation and finally ovulation is a shared phenomenon in monovulatory species from different phylogenetic classes. The commonality of dominant follicle (DF) development leads us to hypothesize that mechanisms for DF selection are conserved. This review highlights similarities and differences in follicular wave growth between cows, mares and women, addresses the commonality of the transient rises in FSH concentrations, and discusses the follicular secretions oestradiol and inhibin with their regulatory roles for FSH. In all three species, rising FSH concentrations induce the emergence of a follicle wave and cohort attrition occurs during declining FSH concentrations, culminating in DF selection. Cohort secretions are initially responsible for declining FSH, which is subsequently suppressed by the selected DF lowering it below the threshold of FSH requirements of all other cohort follicles. The DF acquires relative FSH-independence in order to continue growth and differentiation during low (cow, mare) or further declining FSH concentrations (women), and thus may be the one cohort follicle with the lowest FSH requirement due to enhanced FSH signalling. In all three monovulatory species a transition from FSH- to LH-dependence is postulated as the mechanism for the continued development of the selected DF. In addition, FSH and IGF enhance each other's ability to stimulate follicle cell function and access of IGF-I and -II to the type 1 receptor is regulated by IGF binding proteins that are in turn regulated by specific proteases; all of which have been ascribed a role in DF development. No fundamental differences in DF selection mechanisms have been identified between the different species studied. Thus functional studies of the selection of DFs in cattle and mares are also valuable for identifying genes and pathways regulating DF development in women.  相似文献   

9.
We tested the hypothesis that a small dose of estradiol benzoate (EB) at the midstage of the estrous cycle in cattle would synchronize the subsequent pattern of ovarian follicular development, estrus, and ovulation. Nonlactating Friesian cows received either 1 mg of EB i.m. on d 13 of the estrous cycle (T; n = 12; estrus = d0) or served as untreated controls (C; n = 12). Their ovaries were examined daily with transrectal ultrasonography from d 7, and blood samples were collected 0, 2, 4, 8, 24, and 48 h after treatment on d 13. Plasma concentrations of estradiol-17beta were elevated to 12 pg/mL during the initial 24 h following treatment, compared with a baseline of 1 pg/mL in untreated controls (P < .001). Progesterone concentrations in cows of the T group declined between 24 and 48 h after treatment (-3.2 +/- .5 ng/mL) compared with little change in concentrations of progesterone in cows of the C group at this time (P < .01). This difference was coincident with an earlier time to regression of the corpus luteum in cows of the T group. Disregarding treatment groups, the second dominant follicle of the estrous cycle (DF2) emerged on d 10.6 +/- .3 and was 9.4 +/- .4 mm in diameter on d 13. Further growth of the DF2 was halted by EB treatment on d 13. Cessation of growth occurred irrespective of whether the DF2 was in the early or late growth phase, and a new follicular wave emerged 4.5 +/- .2 d later. The dominant follicle from this wave (DF3) ovulated 5 d after emergence in most cases. During the estrous cycle of every cow in the T group, there were three waves of follicular development (3-wave), whereas the ratio of 2:3 waves of follicular development in cows of the C group was 1:3. Consequently, the interval from emergence to ovulation of the ovulatory dominant follicle in cows of the C group ranged from 3 to 11 d. The dynamics of ovarian follicular wave development during the estrous cycle can be strategically manipulated by treating with a small dose of EB to synchronize proestrous development of the ovulatory follicle.  相似文献   

10.
Follicular wave emergence was synchronized by treating camels with GnRH when a dominant follicle (DF) was present in the ovaries. Animals were scanned twice a day from day 0 (day of GnRH treatment) to day 10, to characterize emergence and deviation of follicles during the development of the follicular wave. Follicle deviation in individual animals was determined by graphical method. Single DFs were found in 16, double DFs in 9 and triple DFs in two camels. The incidence of codominant (double and triple DFs) follicles was 41%. The interval from GnRH treatment to wave emergence, wave emergence to deviation, diameter and growth rate of F1 follicle before or after deviation did not differ between the animals with single and double DFs. The size difference between future DF(s) and the largest subordinate follicle (SF) was apparent from the day of wave emergence in single and double DFs. Overall, interval from GnRH treatment to wave emergence and wave emergence to the beginning of follicle deviation was 70.6 ± 1.4 and 58.6 ± 2.7 h, respectively. Mean size of the DF and largest SF at the beginning of deviation was 7.4 ± 0.2 and 6.3 ± 0.1 mm, respectively. In conclusion, the characteristics of follicle deviation are similar between the animals that developed single or double DFs.  相似文献   

11.
AIMS: To determine the turnover of the first follicular wave in Japanese black cows and quantitative immunohistological characteristics of the previously in vivo identified dominant follicle (DF) and largest subordinate follicle (SF) derived from ovariectomy on Day 7 (3 cows) and Day 10 (3 cows) (Day 0=estrus). Six cases of first follicular wave in cows were observed twice daily by ultrasound scanning. The number of follicles, diameter of DF and SF, and prevalence of apoptotic granulosa cells (GC) and theca cells (TC) were studied by TUNEL methods. At follicular wave emergence, 13.5 +/- 9.5 Class I (2-5 mm in diameter follicles) were found 12 hr after ovulation, and increased its number until Day 1 pm. Future DF and SF observed retrospectively were 4.9 +/- 0.8 mm and 4.9 +/- 0.9 mm at wave emergence. Deviation of DF and SF occurred on Day 3 pm with mean diameters of 8.9 +/- 1.3 mm and 6.8 +/- 0.9 mm, respectively. DF developed until Day 8 am with a maximum diameter of 14.4 +/- 1.8 mm (n=3) and then regressed. The follicular wall of the DF had a characteristic image of a healthy follicle on Day 7 and slightly atretic DF on Day 10, whereas SF showed heavy atresia on both Day 7 and Day 10 under HE staining. In the prevalence of apoptotic cells, DF were 4.4 +/- 1.0% and 17.9 +/- 4.9% on Day 7 and on Day 10 in GC, respectively, and 2.4 +/- 0.7% and 8.0 +/- 1.4% on Day 7 and on Day 10 in TC, respectively. These results showed that, 1) the first follicular wave in cows is characterized by 24 hr recruitment of small follicles and a gradual divergence of growth rates in future DF and SF, and 2) early regression of DF on Day 10 was preceded by severe apoptosis.  相似文献   

12.
A serial ultrasonographic study was conducted on nine jennies aged 5–15 years from January to April 2008 with the objective of studying ovarian follicular dynamics and estrus manifestations under controlled management. Ovarian follicular activity was determined from the number and size distribution of follicles, length of interovulatory interval (IOI), growth rate of preovulatory follicles, diameter of follicles at the onset of estrus, and incidence of ovulation. Estrus manifestations were characterized using length of estrus and estrous cycle. The mean (±SD) number of follicle detected per ovary was 5.45?±?2.3 (range, 1–16) with sizes ranging from 2.9 to 44 mm. The mean (±SD) size of follicle encountered at the onset of estrus was 25.9?±?3.7 mm (range, 20.9–34.4) while that of the preovulatory follicles at ?1 day before ovulation was 36.81?±?3.78 mm. The mean (±SD) IOI, estrus, and estrous cycle length were 25.4?±?3.6, 7.9?±?2.9, and 24.2?±?7.4 days, respectively. The mean (±SD) growth rate of the preovulatory follicle after the day of divergence was 1.9?±?0.3 mm/day. Serum progesterone profile followed the same patterns of ovarian dynamics with maximum values being detected during midluteal phase. Serum progesterone assay revealed blood progesterone profiles of <1.0 ng/ml during estrus and up to 11 ng/ml during midluteal phase with a pattern following follicular dynamics. Body condition of the study jennies steadily increased and was positively correlated (r?=?0.52, p?<?0.001) with the diameter of the preovulatory follicle. In conclusion, the ultrasonic evaluation has revealed that follicular dynamics of jennies were generally related with body condition which might have been influenced by the type of management.  相似文献   

13.
Ovarian Follicular Dynamics in Buffalo Cows (Bubalus bubalis)   总被引:1,自引:0,他引:1  
Follicular growth in Egyptian buffalo cows was monitored using genital tracts from 200 buffalo cows collected immediately after slaughter. According to the morphological appearance of the corpus luteum (CL), the corresponding oestrous cycle was divided into four stages: A (days 1–4), B (days 5–10), C (days 11–17) and D (days 18–21). Within these stages the follicular population on the ovaries was evaluated and the dominant follicle (DF) determined in all recovered ovaries. The functional status of the DF and the largest sub‐dominant follicles was examined by histological examination in 31 cases, and Radio Immunoassay (RIA) analyses for estradiol‐17β (E2) and progesterone (P4) was performed in the follicular fluid in 23 of the DF. The results showed that DFs changed their endocrine character within the stages of the oestrous cycle. The DFs between days 5 and 10 were functionally active (E2‐dominant; non‐atretic) in most of the cases. Between days 11 and day 17 half of the DFs became functionally inactive (P4‐dominant; atretic). At days 18–21 all of the DF became functionally active and non‐atretic. In the specimens that carried two large follicles one of them was regularly atretic and P4‐dominant whereas the other was non‐atretic and E2‐dominant. Between days 18 and 21 all ovaries examined showed at least one large follicle. These findings suggest that in most of the cases follicular dynamics occurs in two wave‐like patterns in the Egyptian buffalo cows.  相似文献   

14.
A decrease in insulin-like growth factor (IGF) binding protein (BP) amount occurs within the follicular fluid of dominant ovarian follicles. At the same time, concentrations of follicular fluid IGF-I do not change. The mRNA for IGF-I, IGF-II, IGFBP-2, and IGFBP-3 in dominant and subordinate follicles were measured to determine if changes in IGF or IGFBP gene expression are associated with follicular dominance. Heifers were ovariectomized during a follicular wave, either during early-dominance (emerging dominant follicle, 9 mm diameter) or mid-dominance (established dominant follicle, 14–16 mm diameter). Follicles were classified as either dominant (DF), subordinate (SF), or not-recruited (NRF; small antral follicles). mRNA was localized by in situ hybridization and measured by image analyses. The IGF-I mRNA (granulosa cells) was greatest in DF and increased in DF, SF, and NRF from early- to mid-dominance. Likewise, IGF-II mRNA (theca cells) was greatest in DF compared with SF or NRF. The IGFBP-2 mRNA (granulosa cells), however, was nearly undetectable in DF, whereas adjacent SF expressed abundant IGFBP-2 mRNA. The NRF were not uniform in their IGFBP-2 expression because only 5 of 13 NRF had IGFBP-2 mRNA. The IGFBP-3 mRNA (granulosa cells) was found only in two NRF, suggesting that local synthesis is not a predominant source of follicular fluid IGFBP-3. These data show that changes in gene expression for IGFBP-2 are opposite to those for IGF-I or IGF-II. Increased IGF-I and IGF-II mRNA and decreased IGFBP-2 mRNA within the DF may be one mechanism leading to follicular dominance. The opposite pattern of IGFBP-2 gene expression in SF and some NRF may lead to follicular atresia.  相似文献   

15.
We reviewed recent in vivo studies of the real-time changes in the vasculature of the follicle wall during selection of the dominant follicle as well as during ovulation in cows. Changes in follicle diameter and vascularity were determined by transrectal ultrasonography. Blood flow within the walls of the two largest follicles was detected at the time of wave emergence (largest follicle=5 mm in diameter). Before selection of a follicle (largest follicle <8.5 mm in diameter), the degrees of vascularity of the two largest follicles were not significantly different. After the largest follicle reached a diameter of 10 mm, the vascularity of the largest (dominant) follicle was higher than that of the second largest (subordinate) follicle. In the preovulatory follicle, follicular vascularity gradually increased, and as ovulation approached, the LH-surge induced an increase in blood flow within the follicle wall. The above results suggest that maintenance of follicular vasculature and appropriate blood supplies to follicles are essential for establishment of follicular dominance. Consequently, only a dominant follicle with high vascularity may have a chance to reach final maturation and acquire ovulatory capacity.  相似文献   

16.
This study characterized follicular activity and oestrous behaviour from 5 to 9 days post‐calving up to the 4th ovulation postpartum (pp) in 16 multiparous (range 2–7 parities) Thai swamp buffalo cows (Bubalus bubalis), aged 4–12 years and weighing from 432 to 676 kg. Ovarian follicular activity was examined by transrectal ultrasonography (TUS) every morning. Oestrous detection was performed twice daily by direct personal observation of behaviour and for presence of clear cervical mucus discharge and indirectly by video camera recording during 21 h/day. A follicular wave‐like pattern was present before the 1st ovulation leading to short oestrous cycles. Growth rates and maximum diameters of the ovulatory follicles did not differ between the 1st and 4th ovulations. However, growth rate for non‐ovulatory dominant follicles (DF) before the 1st ovulation was lower than for the ovulatory follicle (p < 0.05). In addition, the diameter of all ovulatory follicles (14.3 ± 0.46 mm, n = 39) was significantly larger (p < 0.01) than those of the preceding last but one non‐ovulatory DF (10.8 ± 0.20 mm, n = 5), but similar to the last preceding non‐ovulatory DF diameter (12.92 ± 0.96 mm, n = 14). Short oestrous cycles were most common between the 1st and 2nd ovulations (93.75%, 15/16 cows, 10.2 ± 0.38 days) decreasing in prevalence thereafter (50%, 3/6 buffaloes, 12.0 ± 1.53 days). Oestrous signs were relatively vague around the 1st ovulation pp to become more easily detectable thereafter. This study suggests that properly fed swamp buffaloes could be mated successfully within 2 months pp, at their 2nd spontaneous ovulation, provided oestrous detection is at least performed daily at 06:00–08:00 hour.  相似文献   

17.
OBJECTIVE: To evaluate gonadotropin secretion and ovarian function after administration of deslorelin acetate to induce ovulation in mares. DESIGN: Randomized controlled trial. ANIMALS: 16 healthy mares with normal estrous cycles. PROCEDURE: 8 control mares were allowed to ovulate spontaneously, whereas 8 study mares received deslorelin to induce ovulation when an ovarian follicle > 35 mm in diameter was detected. Follicle development and serum concentrations of gonadotropins were monitored daily during 1 estrous cycle. Pituitary responsiveness to administration of gonadotropin-releasing hormone (GnRH) was evaluated 10 days after initial ovulation. RESULTS: Interovulatory intervals of mares treated with deslorelin (mean +/- SD, 25.6 +/- 2.6 days) were longer than those of control mares (22.9 +/- 1.8 days). Diameter of the largest follicle was significantly smaller during 2 days of the diestrous period after ovulation in deslorelin-treated mares than in control mares. Concentrations of follicle-stimulating hormone (FSH) were lower in deslorelin-treated mares on days 5 through 14 than in control mares. Concentrations of luteinizing hormone were not different between groups during most of the cycle. Gonadotropin release in response to administration of GnRH was lower in mares treated with deslorelin acetate than in control mares. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of deslorelin was associated with reduction in circulating concentrations of FSH and gonadotropin response to administration of GnRH during the estrous cycle. Low concentration of FSH in treated mares may lead to delayed follicular development and an increased interovulatory interval.  相似文献   

18.
To elucidate the physiological role of insulin-like growth factor-I (IGF-I) during early pregnancy in mares, number of ovarian follicles was monitored ultrasonically during different stages of the first trimester of pregnancy in 36 thoroughbred mares. From 9 of 36 mares, blood samples were collected weekly from the mating day till the end of the first trimester of pregnancy and plasma IGF-I profiles were examined with other hormones, like follicle stimulating hormone (FSH), luteinizing hormone (LH), ir-inhibin, progesterone and estradiol-17beta. Plasma IGF-I level fluctuated throughout the studied period with four peaks on the 7th, 28th, 49th and 84th days of pregnancy. Plasma IGF-I showed a positive correlation with plasma FSH (P<0.05), whereas no correlation was found with other hormones during the studied period. Plasma IGF-I had no correlation with the foetal size, but positive correlation with the number of large (> 30 mm) and medium (10-30 mm) follicles. These results suggested that IGF-I might produce from the medium and large follicles during early pregnancy and promote to develop their growth via pituitary FSH mediated effects in the mares.  相似文献   

19.
Exogenous hormonal manipulation of ovarian activity in cattle   总被引:1,自引:0,他引:1  
To achieve precise control of the oestrous cycle in cattle it is necessary to control both the life span of the corpus luteum and the follicle wave status at the end of the treatment. Antral follicle growth in cattle occurs in distinct wavelike patterns during the ovarian cycle and the postpartum anoestrous period. The emergence of each new wave is stimulated by a transient increase in FSH. Each follicle wave has an inherent life span of 7-10 days as it progresses through the different stages of development, viz., emergence, selection, dominance and atresia or ovulation. The dominant follicle (DF) is distinguishable from other subordinate follicles by its enhanced capacity to produce oestradiol, maintenance of low intrafollicular concentrations of insulin-like growth factor binding proteins-2, -4 and -5 and follistatin and an increase in free intrafollicular concentrations of IGF-I as well as an increase in size. Three approaches can be taken to control ovarian activity and regulate the oestrous cycle in cattle: (i) use of the luteolytic agent prostaglandin F2alpha (PGF2alpha) alone or one of its potent analogues, (ii) administration of exogenous progesterone-progestagen treatments combined with the use of exogenous oestradiol or gonadotrophin releasing hormone (GnRH) to control new follicle wave emergence and shorten the life span of the corpus luteum, and (iii) prior follicle wave synchrony followed by induced luteolysis. A number of different oestrous synchronisation regimens, viz., PGF2alpha-based only, short-term progesterone with prior follicle wave synchrony using oestradiol or GnRH have been developed but the problem of obtaining good follicle wave synchrony and CL regression limit their widespread application. GnRH-prostaglandin-GnRH regimens have recently been developed for beef and dairy cows. However, their success is variable. A better understanding of the hormonal control of follicle growth is a prerequisite in order to obtain more precise control the oestrous cycle allowing one AI at a predetermined time giving high pregnancy rates without recourse to detection of oestrus.  相似文献   

20.
The association between conception rate at first service and numbers of follicles developed during a follicular wave was examined in 102 suckled beef cows and 14 heifers. Follicular development was monitored using ultrasonography for either two (trial 1) or three (trial 2) consecutive oestrous cycles (pre-breeding, breeding and post-breeding equivalent). Animals were examined on alternate days from day 6 after first oestrus (day 0) until ovulation and from day 6 after insemination until next ovulation or day 24 of pregnancy and were observed for oestrus twice daily and inseminated artificially at either the second (trial 1) or third oestrus (trial 2). Cows were classified as having two or three waves of follicular development for each oestrous cycle. Numbers of follicles >or=4 mm per wave were determined, and based on the maximum diameter they attained, were classified as small (4-6 mm), medium (7-10 mm) or large (>or=11 mm) follicles. Total numbers of follicles, and primarily numbers of small and medium follicles, were affected by trial and within trial by cow, oestrous cycle and follicular wave. Heifers had more small and total numbers of follicles, but fewer large follicles than cows in trial 1 (p < 0.05). The average number of antral follicles per wave in the breeding cycle or post-breeding period did not affect conception rates, which averaged 84%. Repeatability of the total numbers of antral follicles between and among oestrous cycles and follicular waves ranged from 0.01 to 0.97. In conclusion, fertility was not affected by the numbers of antral follicles >or=4 mm in diameter in a single follicular wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号