首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The mass accumulation in the developing soybean seed has been shown to be a dynamic process with various rates at different filling stages. The objective of this study was to identify quantitative trait loci (QTL) underlying seed filling rate of soybean. 143 recombinant inbred lines derived from the cross of Charleston and Dongnong 594 were used to obtain field data in 2004 and 2005. In present study, one genetic linkage map including 164 SSR markers and 35 RAPD markers was constructed using 143 F5 derived RILs from the cross between Charleston and Dongnong 594 (data not shown). The order of most markers is consistent with Song et al. (Theor Appl Genet 109: 122?C128, 2004). The average number of markers on each linkage group was 9.7 with an average length of 153.36?cM. Twenty-nine unconditional QTL underlying seed filling rate at different developmental stages were mapped onto fourteen linkage groups. The phenotypic variation of seed filling rate explained by these unconditional QTL ranged from 4.29 to 33.3?%. Thirty-nine conditional QTL underlying seed filling rate were mapped onto sixteen linkage groups. The phenotypic variation explained by these conditional QTL ranged from 4.47 to 25.03?%. The locations, numbers, genetic effects and types of QTL for seed filling rate were different at each seed developmental stage. Genotype by environment interaction effects among QTL related to seed filling rate were observed. In addition, several genomic regions that influenced seed filling rate were detected.  相似文献   

3.
A genetic map was constructed with 353 sequence-related amplified polymorphism and 34 simple sequence repeat markers in oilseed rape (Brassica napus L.). The map consists of 19 linkage groups and covers 1,868 cM of the rapeseed genome. A recombinant doubled haploid (DH) population consisting of 150 lines segregating for oil content and other agronomic traits was produced using standard microspore culture techniques. The DH lines were phenotyped for days to flowering, oil content in the seed, and seed yield at three locations for 3 years, generating nine environments. Data from each of the environments were analyzed separately to detect quantitative trait loci (QTL) for these three phenotypic traits. For oil content, 27 QTL were identified on 14 linkage groups; individual QTL for oil content explained 4.20–30.20% of the total phenotypic variance. For seed yield, 18 QTL on 11 linkage groups were identified, and the phenotypic variance for seed yield, as explained by a single locus, ranged from 4.61 to 24.44%. Twenty-two QTL were also detected for days to flowering, and individual loci explained 4.41–48.28% of the total phenotypic variance.  相似文献   

4.
The oil accumulation in the developing soybean seed has been shown to be a dynamic process with different rates and activities at different phases affected by both genotype and environment. The objective of the present study was to investigate additive, epistatic and quantitative trait loci (QTL) × environment interaction (QE) effects of the QTL controlling oil filling rate in soybean seed. A total of 143 recombinant inbred lines (RILs) derived from the cross of Charleston and Dongnong 594 were used in this study to obtain 2 years of field data (2004 and 2005). A total of 26 QTL with significantly unconditional and conditional additive (a) effect and/or additive × environment interaction (ae) effect at different filling stages were identified on 14 linkage groups. Among the QTL with significant a effects, 18 QTL showed positive effects and 6 QTL had negative effects on seed filling rate of oil content during seed development. A total of 29 epistatic pairwise QTL underlying seed filling rate were identified at different filling stages. About 28 pairs of the QTL showed additive × additive epistatic (aa) effects and 14 pairs of the QTL showed aa × environment interaction (aae) effects at different filling stages. QTL with aa and aae (additive × additive × environment) effects appeared to vary at different filling stages. Our results demonstrated that oil filling rate in soybean seed were under genetic, developmental and environmental control.  相似文献   

5.
Pseudomonas syringae is the main pathogen responsible for bacterial blight disease in pea and can cause yield losses of 70%. P. syringae pv. pisi is prevalent in most countries but the importance of P. syringae pv. syringae (Psy) is increasing. Several sources of resistance to Psy have been identified but genetics of the resistance is unknown. In this study the inheritance of resistance to Psy was studied in the pea recombinant inbred line population P665 × ‘Messire’. Results suggest a polygenic control of the resistance and two quantitative trait loci (QTL) associated with resistance, Psy1 and Psy2, were identified. The QTL explained individually 22.2 and 8.6% of the phenotypic variation, respectively. In addition 21 SSR markers were included in the P665 × ‘Messire’ map, of which six had not been mapped on the pea genome in previous studies.  相似文献   

6.
Quantitative trait loci (QTL) analysis was conducted to identify QTL for seed yield and color retention following processing of a recombinant inbred line (RIL) black bean population. A population of 96 RILs were derived from the cross of black bean cultivars ‘Jaguar’ and 115M and evaluated in replicated trials at one location over 4 years (2004–2007) in Michigan. A 119-point genetic map constructed using simple sequence repeat (SSR), sequence related amplified polymorphism (SRAP), target region amplified polymorphism (TRAP) and phenotypic markers spanned fifteen linkage groups (LG) or 460 cM of the bean genome. Fourteen QTL for yield and color retention in four environments were identified by composite interval mapping on six linkage groups. A major QTL SY10.2J115 for seed yield was identified on LG B10 with additional QTL on B3, B5, and B11. Color retention following processing was associated with loci on B1, B3, B5, B8, and B11. 115M possessed positive alleles for yield, but negative alleles for color retention. Some QTL for yield and color retention co-localized with regions identified in previous studies while others, particularly for color retention, were unique. Additional QTL for agronomic and canning quality traits were detected and individual contributions to future black bean breeding are discussed.  相似文献   

7.
Soybean (Glycine max L. Merr.) pod borer (Leguminivora glycinivorella (Mats.) Obraztsov) (SPB) results in severe loss in soybean yield and quality in certain regions of the world, especially in Northeastern China, Japan and Russia. The aim here was to evaluate the inheritance of pod borer resistance and to identify quantitative trait loci (QTL) underlying SPB resistance for the acceleration of the control of this pest. Used were the 129 recombinant inbred lines (RILs) of the F5:6 derived population from ‘Dong Nong 1068’ × ‘Dong Nong 8004’ and 131 SSR markers. Correlations between the percentage of damaged seeds (PDS) by pod borer and plant, pod and seed traits that were potentially related to SPB resistance were analyzed. The results showed highly significant correlations between PDS by pod borer and plant height (PH), maturity date (MA), pod color (PC), pubescence density (PB), 100-seed weight (SW) and protein content existed. Soybeans with dwarf stem, light color of pod coat, small seeds, lower density of pubescence, early maturity and low content of protein seemed to have higher resistance to SPB. The correlated traits had potential to inhibit egg deposition and thereby to decrease the damage by SPB. Three QTL directly associated with the resistance to SPB judged by PDS at harvest were identified. qRspb-1 (Satt541–Satt253) and qRspb-2 (Satt253–Satt314) were both on linkage group (LG) H and qRspb-3 (Satt288–Satt199) on LG G. The three QTL explained 10.96, 9.73 and 11.59% of the phenotypic variation for PDS, respectively. In addition, 12 QTL that underlay 10 of 13 traits potentially related with SPB resistance were found. These QTL detected jointly provide potential for marker assisted selection to improve cultivar resistance to SPB. Guiyun Zhao, Jian Wang, and Yingpeng Han have equal contribution to the paper.  相似文献   

8.
A set of 65 recombinant inbred lines of the ‘International Triticeae Mapping Initiative’ mapping population (‘W7984’בOpata 85’) was analysed for resistance to septoria tritici blotch at the seedling and adult plant stages. The mapping population was inoculated with two Argentinean isolates (IPO 92067 and IPO 93014). At the seedling stage, three loci were discovered on the short arms of chromosomes 1D, 2D and 6B. All three loci were detected with both isolates. At the adult plant stage, two isolate-specific QTL were found. The loci specific for isolates IPO 92067 and IPO 93014 were mapped on the long arms of chromosomes 3D and 7B, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Recombinant inbred lines (RILs) derived from a cross between Brassica rapa L. cv. ‘Sampad’, and an inbred line 3‐0026.027 was used to map the loci controlling silique length and petal colour. The RILs were evaluated under four environments. Variation for silique length in the RILs ranged from normal, such as ‘Sampad’, to short silique, such as 3‐0026.027. Three QTL, SLA3, SLA5 and SLA7, were detected on the linkage groups A3, A5 and A7, respectively. These QTL explained 36.0 to 42.3% total phenotypic variance in the individual environments and collectively 32.5% phenotypic variance. No additive × additive epistatic interaction was detected between the three QTL. Moreover, no QTL × environment interaction was detected in any of the four environments. The number of loci for silique length detected based on QTL mapping agrees well with the results from segregation analysis of the RILs. In case of petal colour, a single locus governing this trait was detected on the linkage group A2.  相似文献   

10.
Plant architecture plays an important role in the yield, product quality, and cultivation practices of many crops. Branching pattern is one of the most important components in the plant architecture of melon (Cucumis melo L.). ‘Melon Chukanbohon Nou 4 Go’ (Nou-4) has a short-lateral-branching trait derived from a weedy melon, LB-1. This trait is reported to be controlled by a single recessive or incompletely dominant major gene called short lateral branching (slb). To find molecular markers for marker-assisted selection of this gene, we first constructed a linkage map using 94 F2 plants derived from a cross between Nou-4 and ‘Earl’s Favourite (Harukei-3)’, a cultivar with normal branching. We then conducted quantitative trait locus (QTL) analysis and identified two loci for short lateral branching. A major QTL in linkage group (LG) XI, at which the Nou-4 allele is associated with short lateral branching, explained 50.9 % of the phenotypic variance, with a LOD score of 12.5. We suggest that this QTL corresponds to slb because of the magnitude of its effect. Another minor QTL in LG III, at which the Harukei-3 allele is associated with short lateral branching, explained 9.9 % of the phenotypic variance, with a LOD score of 4.2. Using an independent population, we demonstrated that an SSR marker linked to the QTL in LG XI (slb) could be used to select for short lateral branching. This is the first report of mapping a gene regulating the plant architecture of melon.  相似文献   

11.
Water yam (Dioscorea alata L.) is the most widely cultivated food yams. Despite its importance, its production is limited by anthracnose disease caused by Colletotrichum gloeosporioides (Penz.). The use of resistant yam varieties is the most reliable approach of management of this disease. The speed and precision of breeding can be improved by the development of genetic linkage maps which would provide the basis for locating and hence manipulating quantitative traits such as anthracnose resistance in breeding programmes. An F1 diploid population was developed by crossing ‘Boutou’ a female clone (with field resistance to anthracnose) with ‘Pyramide’ (susceptible). A linkage map was generated with 523 polymorphic markers from 26 AFLP primer combinations. The resulting map covered a total length of 1538 cM and included 20 linkage groups. It is the most saturated of all genetic linkage maps of yam to date. QTL analysis of anthracnose resistance was performed based on response to two isolates of C. gloeosporioides. Resistance to anthracnose appeared to be inherited quantitatively. Using a LOD significance threshold of 2.6 we identified a total of nine QTLs for anthracnose resistance. The phenotypic variance explained by each QTL ranged from 7.0 to 32.9% whereas the total amount of phenotypic variation for anthracnose resistance explained by all significant QTLs varied from 26.4 to 73.7% depending on the isolate and the variable considered. These QTLs displayed isolate-specific resistance as well as broad spectrum resistance. The availability of molecular markers linked to the QTLs of anthracnose resistance will facilitate marker-assisted selection in breeding programmes.  相似文献   

12.
Pod dehiscence (PD) prior to harvest results in serious yield loss in soybean. Two linkage maps with simple sequence repeat (SSR) markers were independently constructed using recombinant inbred lines (RILs) developed from Keunolkong (pod-dehiscent) × Sinpaldalkong (pod-indehiscent) and Keunolkong × Iksan 10 (pod-indehiscent). These soybean RIL populations were used to identify quantitative trait loci (QTLs) conditioning resistance to PD. While a single major QTL on linkage group (LG) J explained 46% of phenotypic variation in PD in the Keunolkong × Sinpaldalkong population with four minor QTLs, three minor QTLs were identified in the Keunolkong × Iksan 10 population. Although these two populations share the pod dehiscent parent, no common QTL has been identified. In addition, epistatic interactions among three marker loci partially explained phenotypic variation in PD in both populations. The result of this study indicates that different breeding strategies will be required for PD depending on genetic background.  相似文献   

13.
Grain moisture in maize at harvest depends on the grain drying rate (GDR) after physiological maturity. The maize plants with high GDR can reduce grain moisture rapidly, which will shorten the drying time after harvest and prevent the grain to be mildew and enhance maize quality. In this study, A total of 280 recombinant inbred lines that were derived from a cross between Ji846 (high drying rate, 1.18 % day−1) and Ye3189 (slow drying rate, 0.39 % day−1) were used to construct genetic linkage map and identify QTL underlying GDR in different environments. A genetic linkage map was constructed containing 97 SSR and 49 AFLP markers, which covered 2356.8 cM of the maize genome, with an average distance of 16.1 cM. Composite interval mapping identified 14 QTL for GDR after physiological maturity located on chromosomes 2, 3, 5, 6 and 8. The additive effects of QTL were all from Ji846. The range of phenotypic variation explained by the QTL was 5.05–16.28 %. But only two QTL (qKdr-2-1, qKdr-3-6) were identified across both locations. qKdr-2-1 positioned between the markers phi090-umc1560 on chromosome 2 explained 15.59 % of the phenotypic variance, and the other qKdr-3-6 positioned between the markers phi046-bnlg1754 on chromosome 3 explained 10.28 % of the phenotypic variance.  相似文献   

14.
Botrytis grey mould (BGM) caused by Botrytis cinerea Pers. ex. Fr. is the second most important foliar disease of chickpea (Cicer arietinum L.) after ascochyta blight. An intraspecific linkage map of chickpea consisting of 144 markers assigned on 11 linkage groups was constructed from recombinant inbred lines (RILs) of a cross that involved a moderately resistant kabuli cultivar ICCV 2 and a highly susceptible desi cultivar JG 62. The length of the map obtained was 442.8 cM with an average interval length of 3.3 cM. Three quantitative trait loci (QTL) which together accounted for 43.6% of the variation for BGM resistance were identified and mapped on two linkage groups. QTL1 explained about 12.8% of the phenotypic variation for BGM resistance and was mapped on LG 6A. It was found tightly linked to markers SA14 and TS71rts36r at a LOD score of 3.7. QTL2 and QTL3 accounted for 9.5 and 48% of the phenotypic variation for BGM resistance, respectively, and were mapped on LG 3. QTL 2 was identified at LOD 2.7 and flanked by markers TA25 and TA144, positioned at 1 cM away from marker TA25. QTL3 was a strong QTL detected at LOD 17.7 and was flanked by TA159 at 12 cM distance on one side and TA118 at 4 cM distance on the other side. This is the first report on mapping of QTL for BGM resistance in chickpea. After proper validation, these QTL will be useful in marker-assisted pyramiding of BGM resistance in chickpea.  相似文献   

15.
Phenotypic and genetic evaluation of morphological traits associated with herbage biomass production was undertaken in a perennial ryegrass (Lolium perenne L.) biparental F1 mapping population (n = 200) with parent plants from cultivars ‘Grasslands Impact’ and ‘Grasslands Samson’. Morphological traits measured on three clonal replicates of the parental genotypes and 200 F1 progeny in a glasshouse in two separate trials (autumn and spring) included: dry weight (DW), leaf elongation rate (LER), initial tiller number (TNs), final tiller number (TNe), site filling (Fs), tiller weight (TW), leaf lamina length, leaf tip and ligule appearance rates (ALf, ALg) and leaf elongation duration (LED). Principal component analysis of patterns of trait association identified negative correlation between TNs or TNe, and TW as the primary basis for morphological difference and indicated that either high LER or long LED could reduce TN. Plants with higher LER tended to have increased DW. Quantitative trait loci (QTL) were detected on all seven linkage groups (LG) of a perennial ryegrass linkage map for all but three traits. A total of 61 QTL were identified, many of which clustered at 15 shared genome locations. Significant genotype by environment effects were encountered, evidenced both by variation between experiments in genotype rankings and by a general lack of commonality for QTL for the same traits in the different experiments. Only five QTL, for ALf, ALg and TN, were conserved between autumn and spring trials. A QTL for TN and DW on LG6 is a strong candidate for application of MAS in future plant improvement work and was found to be co-linear with QTL for equivalent traits reported on chromosome 2 in rice.  相似文献   

16.
Mapping genes for double podding and other morphological traits in chickpea   总被引:4,自引:0,他引:4  
Seed traits are important considerations for improving yield and product quality of chickpea (Cicer arietinum L.). The purpose of this study was to construct an intraspecific genetic linkage map and determine map positions of genes that confer double podding and seed traits using a population of 76 F10 derived recombinant inbred lines (RILs) from the cross of ‘ICCV-2’ (large seeds and single pods) × ‘JG-62’ (small seeds and double podded). We used 55 sequence-tagged microsatellite sites (STMS), 20 random amplified polymorphic DNAs (RAPDs), 3inter-simple sequence repeats (ISSR) and 2 phenotypic markers to develop a genetic map that comprised 14 linkage groups covering297.5 cM. The gene for double podding (s) was mapped to linkage group 6 and linked to Tr44 and Tr35 at a distance of7.8 cM and 11.5 cM, respectively. The major gene for pigmentation, C, was mapped to linkage group 8 and was loosely linked to Tr33 at a distance of 13.5 cM. Four QTLs for 100 seed weight (located on LG4 and LG9), seed number plant-1 (LG4), days to 50% flower (LG3) were identified. This intraspecific map of cultivated chickpea is the first that includes genes for important morphological traits. Synteny relationships among STMS markers appeared to be conserved on six linkage groups when our map was compared to the interspecific map presented by Winter et al. (2000). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Disease resistance is a sought-after trait in plant breeding programmes. One strategy to make resistance more durable is to increase the number of resistance genes, thereby increasing the number of pathotypes withstood. One of the most important diseases on roses is powdery mildew (PM) (Podosphaera pannosa). Recent studies show that pathotypes of PM and different types of resistances in roses exist. The results of this study aim to contribute to PM resistance in roses by the development of pathotype-specific markers on a genetic map. A diploid rose population (90 genotypes) derived from a cross between Rosa wichurana and Rosa ‘Yesterday’ was used to construct a genetic linkage map encompassing 20 AFLP primer combinations, 43 SSR, and 2 morphological markers. By applying the F1 pseudo test cross population strategy, two parental linkage maps were constructed (parent ‘Yesterday’ 536 cM; parent R. wichurana 526 cM). Both parental maps consisted of seven linkage groups with an average length of 70 cM (Kosambi) corresponding to the seven haploid rose chromosomes. These new maps were used to identify QTLs controlling disease resistance. The offspring population was screened for resistance to two PM pathotypes, R–E and R–P. QTLs for controlling pathotype-specific disease resistance were mapped by applying Kruskal–Wallis rank-sum tests and simple interval mapping. With two pathotypes analysed, nine QTL loci were detected on linkage groups 2, 3, 5 and 6, explaining 15–73% of the phenotypic variance for pathotype-specific disease response. The genetic maps developed here will be useful for future rose breeding, pathotype-specific resistance research and development of a consensus map for roses.  相似文献   

18.
Broad tolerance to phytophthora root rot (PRR) caused by Phytophthora sojae has become an important goal for the improvement of soybean (Glycine max) because of the rapid spread of races that defeat the available resistance genes. The aim of this research was to identify the location of quantitative trait loci (QTL) in ‘Conrad’, a soybean cultivar with broad tolerance to many races of P. sojae. A PRR susceptible breeding line ‘OX760-6-1’was crossed with Conrad. Through single-seed-descent, 112, F2 derived, F7 recombinant inbred lines (RILs) were advanced. A total of 39 random amplified polymorphic DNA bands (RAPDs) and 89 type 1 microsatellite (simple sequence repeat; SSR) markers were used to construct a genetic linkage map. In the greenhouse, RILs were inoculated with four P. sojae isolates (three from China and one from Canada). Disease was measured as the percent of dead plants 20 days after germination in P. sojae inoculated vermiculite in the greenhouse. Three QTLs (QGP1, QGP2, QGP3) for PRR tolerance in the greenhouse were detected using WinQTLCart 2.0 with a log-likelihood (LOD) score 27.14 acquired through permutations (1,000 at P ≤ 0.05). QGP1 (near Satt509) was located at linkage group F and explained 13.2%, 5.9%, and 6.7% of the phenotypic variance for tolerance to the JiXi, JianSanJiang and ShuangYaShan isolates, respectively. QGP2 (near Satt334) was located in a different interval on linkage group F and explained 5.1% and 2.4% of the phenotypic variance for JiXi and ShuangYaShan isolates, respectively. QGP3 was located on linkage group D1b + W (near OPL18800/SCL18659) and explained 10.2% of the phenotypic variance for Woodslee isolate. QGP1 and QGP2 appeared to be associated with PRR tolerance across a range of isolates but QGP3 was active only against the Woodslee isolate. At Woodslee and Weaver (in Ontario) in 2000, the interval associated with QGP3 explained 21.6% and 16.7% of phenotypic variance in resistance to PRR, respectively and was referred as QFP1. The identified QTLs would be beneficial for marker assistant selection of PRR tolerance varieties against both China and North America P. sojae races. Yingpeng Han and Weili Teng have equal contribution to the paper.  相似文献   

19.
Association analysis studies can be used to test for associations between molecular markers and quantitative trait loci (QTL). In this study, a genome-wide scan was performed using 150 simple sequence repeat (SSR) markers to identify QTL associated with seed protein content in soybean. The initial mapping population consisted of two subpopulations of 48 germplasm accessions each, with high or low protein levels based on data from the USDA’s Germplasm Resources Information Network website. Intrachromosomal LD extended up to 50 cM with r 2 > 0.1 and 10 cM with r 2 > 0.2 across the accessions. An association map consisting of 150 markers was constructed on the basis of differences in allele frequency distributions between the two subpopulations. Eleven putative QTL were identified on the basis of highly significant markers. Nine of these are in regions where protein QTL have been mapped, but the genomic regions containing Satt431 on LG J and Satt551 on LG M have not been reported in previous linkage mapping studies. Furthermore, these new putative protein QTL do not map near any QTL known to affect maturity. Since biased population structure was known to exist in the original association analysis population, association analyses were also conducted on two similar but independent confirmation populations. Satt431 and Satt551 were also significant in those analyses. These results suggest that our association analysis approach could be a useful alternative to linkage mapping for the identification of unreported regions of the soybean genome containing putative QTL.  相似文献   

20.
Soybean (Glycine max [L.] Merr.) is cultivated primarily for its protein and oil in the seed. In addition, soybean seeds contain nutraceutical compounds such as tocopherols (vitamin E), which are powerful antioxidants with health benefits. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) that affect accumulation of soybean seed tocopherols. A recombinant inbred line (RIL) population derived from the cross ‘OAC Bayfield’ × ‘OAC Shire’ was grown in three locations over 2 years. A total of 151 SSR markers were polymorphic of which a one‐way analysis of variance identified 42 markers whereas composite interval mapping identified 26 markers linked to tocopherol QTL across 17 chromosomes. Individual QTL explained from 7% to 42% of the total phenotypic variation. Significant two‐locus epistatic interactions were identified for a total of 122 combinations in 2009 and 152 in 2010. The multiple‐locus models explained 18.4–72.2% of the total phenotypic variation. The reported QTL may be used in marker‐assisted selection (MAS) to develop high tocopherol soybean cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号