首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Acetic acid esterase (EC 3.1.1.6) cleaves the acetyl groups substituted at O-2/O-3 of the xylan backbone of arabinoxylans and is known to modulate their functional properties. To date, this enzyme from cereals has not received much attention. In the present study, acetic acid esterase from 72 h ragi malt was isolated and purified to apparent homogeneity by a four-step purification, i.e., ammonium sulfate precipitation, DEAE-cellulose, Sephacryl S-200, and phenyl-Sepharose column chromatography, with a recovery of 0.36% and a fold purification of 34. The products liberated from alpha-NA and PNPA by the action of purified ragi acetic acid esterase were authenticated by ESI-MS and 1H NMR. The pH and temperature optima of the enzyme were found to be 7.5 and 45 degrees C, respectively. The enzyme is stable in the pH range of 6.0-9.0 and temperature range of 30-40 degrees C. The activation energy of the enzymatic reaction was found to be 7.29 kJ mol-1. The apparent Km and Vmax of the purified acetic acid esterase for alpha-NA were 0.04 microM and 0.175 microM min-1 mL-1, respectively. The molecular weight of the native enzyme was found to be 79.4 kDa by GPC whereas the denatured enzyme was found to be 19.7 kDa on SDS, indicating it to be a tetramer. EDTA, citric acid, and metal ions such as Fe+3 and Cu+2 increased the activity while Ni+2, Ca+2, Co+2, Ba+2, Mg+2, Mn+2, Zn+2, and Al+3 reduced the activity. Group-specific reagents such as eserine and PCMB at 25 mM concentration completely inhibited the enzyme while iodoacetamide did not have any effect. Eserine was found to be a competitive inhibitor.  相似文献   

2.
Free and bound phenolic acids were isolated from native and malted finger millet (ragi, Eleusine coracana Indaf-15), and their antioxidant properties were evaluated. Protocatechuic, gallic, and caffeic acids were found to be the major free phenolic acids. A 3-fold decrease was observed in protocatechuic acid content, whereas the decrease was marginal in the case of caffeic acid upon 96 h of malting. However, the contents of other free phenolic acids such as gallic, vanillic, coumaric, and ferulic acids increased. Ferulic, caffeic, and coumaric acids were found to be the major bound phenolic acids, and a 2-fold decrease was observed in their contents upon 96 h of malting. The antioxidant activity of a free phenolic acid mixture was found to be higher compared to that of a bound phenolic acid mixture. An increase in antioxidant activity coefficient was observed in the case of free phenolic acids from 770.0 +/- 7.8 to 1686.0 +/- 16.0, whereas the same was decreased from 570.0 +/- 6.0 to 448.0 +/- 4.5 in bound phenolic acids upon 96 h of malting. Therefore, the antioxidant capacity of phenolic acids changes during the malting of ragi.  相似文献   

3.
Hemicelluloses (A and B) were isolated from an Indo-African hybrid variety of finger millet (ragi, Eleusine coracana) by extracting the starch-free residue with 10% sodium hydroxide under a continuous stream of nitrogen, and changes in their sugar composition during malting for 96 h were studied. Hemicellulose B, obtained in higher yield from both native (N) and malted (M) flours, was found to be completely soluble in water, richer in uronic acid, and more viscogenic than hemicelullose A. Fractional precipitation of hemicellulose B by ammonium sulfate resulted in four precipitable fractions (F-60, F-70, F-80, and F-100) and a nonprecipitable (NP) fraction varying in their yield and arabinose, xylose, galactose, and glucose contents. A progressive increase in the pentose-to-hexose ratio (P:H) from 0.42:1.0 in F-60 to 1.94:1.0 in NP was observed in native hemicellulose B fractions; however, in malted hemicellulose B the P:H ratio increased from 0.43:1.0 in F-60 to 1.56:1.0 in F-80 and then decreased to 1.13:1.0 in NP. The major fraction, F-70 (N, 44.5%; M, 38.5%), was separated into eight subfractions on DEAE-cellulose by successive elution with water, ammonium carbonate (AC) (0.1, 0.2, and 0.3 M AC), and sodium hydroxide (0.1 and 0.2 M) differing in their yield and neutral sugar composition. The purity of the major glucuronoarabinoxylan fraction (0.1 M AC eluted) was ascertained by Sepharose CL-4B, HPSEC, cellulose acetate, and capillary electrophoresis methods. A significant decrease in the molecular mass of arabinoxylan from 1200 to 1120 kDa upon malting for 96 h is an indication of cell wall degradation by the inducible cell wall degrading enzymes.  相似文献   

4.
5.
Genetic Resources and Crop Evolution - Availability of the germplasm of suitable crops for cultivation in environmental stress prone and resource poor terrains is crucial for food security in these...  相似文献   

6.
Zinc (Zn) malnutrition can be alleviated by increasing the dietary Zn intake through Zn biofortification of edible crops. Agronomic and genetic biofortification has been suggested as better option to increase the dietary Zn. In this study, we show considerable genetic variability for seed Zn concentration in six leading finger millet genotypes. External application of Zn resulted in improved Zn concentration in different plant parts; in particular there was significant increase in seed Zn concentration in all genotypes. Though genotypes GPU28 and INDAF5 showed differences in root and shoot Zn at vegetative stage but at reproductive stage there was no significant difference. Apart from that, Zn application increased the seed iron (Fe) concentration with no or minimal effect on copper (Cu) concentration.  相似文献   

7.
Seeds of finger millet (Eleucine coracan (L.) Gaertner) and kidney beans (Phaseolus vulgaris L.) were sprouted, autoclaved, and fermented during the processing of a weaning (complementary) food for children. Relative changes in individual amino acids with processing were evaluated. Finger millet and kidney beans both showed a good percentage of essential to total amino acids, with 44. 2-44.9% in finger millet and 44.2-45.1% in kidney beans, when compared to 33.9% for the FAO/WHO reference protein for 2-5 year old children. Sprouting resulted in a significant decrease in lysine in kidney beans. Autoclaving caused significant decreases in histidine, while fermentation significantly decreased phenylalanine and increased tryptophan in finger millet. The leucine-to-lysine ratio, which is an indicator of the pellagragenic character of a protein, was significantly improved in finger millet by both sprouting and fermentation.  相似文献   

8.
Two varieties of finger millet (Eleusine coracana)-a tannin-containing red variety, CO13, and nontannin white variety, CO9-processed by treatment with enzymes (cellulase and hemicellulase) and fermentation with starters (from previously fermented finger millet batter), achieved the desirable goals of reduced fermentation time (12 h), increased acidity (2.2 to 2.4%), enhanced in vitro protein digestibility (IVPD) (14 to 26%), and mineral availability compared to 48 h uncontrolled natural fermentation (Usha Antony and Chandra, 1998). Fermentation with starters alone increased titratable acidity (1.02 to 1.88%), IVPD (5. 5 to 22%) and mineral availability, and decreased phytate (23 to 26%) and tannin (10.8 to 40.5%) in the millets. Enzymatic treatment (3 h, 50 degrees C) did not significantly alter the pH, phytate, tannins, IVPD, or HCl-mineral extractability but enhanced fermentative changes. Overall, the changes were marked when the 48 h starter was used and the improvements in nutrient availability was greater in the CO13 variety.  相似文献   

9.
Oat hulls, an agricultural byproduct, contain a relatively high amount of ferulic acid (FA; 4-hydroxy-3-methoxycinnamic acid), which is believed to be inhibitory to oat hull biodegradability by rumen microorganisms. In this paper, Aspergillus ferulic acid esterase (FAE) was investigated for its ability to release FA from oat hulls. The objectives were to determine the effects of particle size of oat hulls (ground to pass through 1 mm and 250 microm screens and a 100 microm sieve) on release of FA by FAE both in the presence and in the absence of Trichoderma xylanase. The results show that the release of FA by FAE was dependent upon the particle size of oat hulls (< or = 250 microm). In the absence of Trichoderma xylanase, little FA was released by FAE. In the presence of Trichoderma xylanase, there was a significant release of FA by FAE, indicating a synergistic interaction between FAE and Trichoderma xylanase on release of FA from oat hulls. These results indicate that FAE is able to break the ester linkage between FA and the attached sugar, releasing FA from oat hulls. This may leave the remainder of the polysaccharides open for further hydrolytic attack by rumen microorganisms. It is likely that removing FA from oat hulls could improve rumen biodegradability, thus improving the nutritional value of oat hulls.  相似文献   

10.
A metagenomic library of China Holstein cow rumen microbes was constructed and screened for novel gene cluster. A novel feruloyl esterase (FAE) gene was identified with a length of 789 bp and encoded a protein displaying 56% identity to known esterase sequences. The gene was functionally expressed in Escherichia coli BL21 (DE3), and the total molecular weight of the recombined protein was 32.4 kDa. The purified enzyme showed a broad specificity against the four methyl esters of hydroxycinnamic acids and high activity (259.5 U/mg) to methyl ferulate at optimum conditions (pH 8.0, 40 °C). High thermal and pH stability were also observed. Moreover, the enzyme showed broad resistance to proteases. FAE-SH1 can enhance the release of ferulic acid from wheat straw with cellulase, β-1,4-endoxylanase, β-1,3-glucanase, and pectase. These features suggest FAE-SH1 as a good candidate to enhance biomass degradation and improve the health effects of food and forage.  相似文献   

11.
Invertase (EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Insoluble acid invertase (INAC-INV) was purified from pea (Pisum sativum L.) by sequential procedures entailing ammonium sulfate precipitation, ion exchange chromatography, absorption chromatography, reactive green-19 affinity chromatography, and gel filtration. The purified INAC-INV had a pH optimum of 4.0 and a temperature optimum of 45 °C. The effects of various concentrations of Tris-HCl, HgCl(2), and CuSO(4) on the activities of the purified invertase were examined. INAC-INV was not affected by Tris-HCl and HgCl(2). INAC-INV activity was inhibited by 6.2 mM CuSO(4) up to 50%. The enzymes display typical hyperbolic saturation kinetics for sucrose hydrolysis. The K(m) and V(max) values of INAC-INV were determined to be 4.41 mM and 8.41 U (mg protein)(-1) min(-1), respectively. INAC-INV is a true member of the β-fructofuranosidases, which can react with sucrose and raffinose as substrates. SDS-PAGE and immunoblotting were used to determine the molecular mass of INAC-INV to be 69 kDa. The isoelectric point of INAC-INV was estimated to be about pH 8.0. Taken together, INAC-INV is a pea seedling invertase with a stable and optimum activity at lower acid pH and at higher temperature than other invertases.  相似文献   

12.
Esterases from a fenitrothion-resistant strain (VOSF) of the saw-toothed grain beetle, Oryzaephilus surinamensis (L.), are presumed to play a role in conferring resistance to malathion, fenitrothion, and chlorpyrifos-methyl. Colorimetric assays showed a significant positive correlation between increased resistance to fenitrothion in strains of O. surinamensis examined and elevated esterase hydrolytic activity to substrates of p-nitrophenyl acetate, alpha-naphthyl acetate, and beta-naphthyl acetate. Esterase zymograms showed different banding patterns between VOSF and an insecticide-susceptible strain, VOS48. A major esterase in the VOSF strain, not detected in VOS48, was purified and characterized by chromatographic and electrophoretic techniques. On the basis of SDS-polyacrylamide gel eletrophoresis, the molecular mass of the purified esterase from VOSF was 130 kDa and consisted of two 65 kDa subunits. Additional properties of this enzyme are discussed.  相似文献   

13.
Hydroxycinnamic acids, mainly ferulic and p-coumaric acids, are believed to be inhibitory to ruminal biodegradability of complex cell wall materials such as oat hulls. Previous studies have shown that a novel enzyme, Aspergillus ferulic acid esterase, and Trichoderma xylanase act synergistically to break the ester linkage between ferulic acid and the attached sugar of feruloyl polysaccharides, releasing ferulic acid from oat hulls. In this paper, we examined the enzymic release of reducing sugars from oat hulls by the actions of individual enzymes (Aspergillus ferulic acid esterase at 13 mU, 6.4 U, and 4678.4 U/assay; cellulase at 20 levels, ranging from 7.8 mU to 2772.7 U/assay; Trichoderma xylanase at 20 levels, ranging from 7.8 mU to 4096 U/assay) and by the combined action of cellulase at six levels (62.5 mU, 2 U, 16 U, 128 U, 1024 U, and 2772.7 U/assay), Aspergillus ferulic acid esterase at 13 mU/assay, and Trichoderma xylanase at two levels (1 U and 256 U/assay). The amount of total acid-extractable reducing sugars in the oat hulls used in this study was 793.8 +/- 8.0 microg/mg. The results show that after a 24-h incubation with Aspergillus ferulic acid esterase alone, no reducing sugars were observed to be released from oat hulls. With cellulase as the sole enzyme, as the concentration increased from 7.8 mU to 2772.7 U/assay, the release of reducing sugars increased (P < 0.01) from 0 to 39% of the total present, with the highest release at 512 U/assay. With Trichoderma xylanase alone, as the concentration increased from 7.8 mU to 4096 U/assay, the release of reducing sugars increased (P < 0.01) from 4.9 to 33%, with the highest release at 2048 U/assay. When incubated together with Trichoderma xylanase (1 U or 256 U/assay) and Aspergillus ferulic acid esterase (13 mU/assay), cellulase at all six levels (62.5 mU, 2 U, 16 U, 128 U, 1024 U and 2772.7 U/assay) significantly increased the release of reducing sugars (P < 0.01) from 8 to 69%. These results indicate that the synergistic interaction between Aspergillus ferulic acid esterase and Trichoderma xylanase on the release of ferulic acid from feruloyl polysaccharides of oat hulls makes the remainder of the polysaccharides open for further hydrolytic attack and facilitates the accessibility of the main chain of polysaccharides to cellulase. This action extends the cell wall hydrolysis, thus releasing a higher yield of reducing sugars. Such enzymic pretreatment of oat hulls may provide a unique advantage to rumen microorganisms for the biodegradation of the complex cell walls of byproduct feeds such as oat hulls.  相似文献   

14.
Malted cereals are rich sources of alpha-amylase, which catalyzes the random hydrolysis of internal alpha-(1-4)-glycosidic bonds of starch, leading to liquefaction. Amylases play a role in the predigestion of starch, leading to a reduction in the water absorption capacity of the cereal. Among the three cereal amylases (barley, ragi, and jowar), jowar amylase is found to be the most thermostable. The major amylase from malted jowar, a 47 kDa alpha-amylase, purified to homogeneity, is rich in beta structure ( approximately 60%) like other cereal amylases. T(m), the midpoint of thermal inactivation, is found to be 69.6 +/- 0.3 degrees C. Thermal inactivation is found to follow first-order kinetics at pH 4.8, the pH optimum of the enzyme. Activation energy, E(a), is found to be 45.3 +/- 0.2 kcal mol(-)(1). The activation enthalpy (DeltaH), entropy (DeltaS*), and free energy change (DeltaG) are calculated to be 44.6 +/- 0.2 kcal mol(-)(1), 57.1 +/- 0.3 cal mol(-)(1) K(-)(1), and 25.2 +/- 0.2 kcal mol(-)(1), respectively. The thermal stability of the enzyme in the presence of the commonly used food additives NaCl and sucrose has been studied. T(m) is found to decrease to 66.3 +/- 0.3, 58.1 +/- 0.2, and 48.1 +/- 0.5 degrees C, corresponding to the presence of 0.1, 0.5, and 1 M NaCl, respectively. Sucrose acts as a stabilizer; the T(m) value is found to be 77.3 +/- 0.3 degrees C compared to 69.6 +/- 0.3 degrees C in the control.  相似文献   

15.
The hepatopancreas of squid (Illex illecebrosus) extract contains a wide range of carboxypeptidase (CP) activities based on hydrolysis of N-CBZ-dipeptide substrates. SDS-PAGE zymograms with N-CBZ-Phe-Leu substrate revealed three activity zones (CP-I, 23 kDa; CP-II, 29 kDa; CP-III, 42 kDa). CP-I was purified 225-fold with 86.20% recovery based on N-CBZ-Ala-Phe activity by chromatography on DEAE-cellulose, gel filtration, and chromatofocusing. The purified enzyme had broad specificity toward N-CBZ-dipeptides; however, it preferred substrates with a hydrophobic amino acid at the C terminus. CP-I had greatest activity with N-CBZ-Ala-Phe (specific activity = 7104 units/mg of protein, K(m) = 0.40 mM, and physiological efficiency = 22863). CP-I had a pI of 3.4 and is a metalloprotease that is activated by Co(2+) and partially inhibited by Pefabloc, a serine protease inhibitor. With N-CBZ-Ala-Phe and Gly-Phe, it had optimum activity at pH 8 and 70 degrees C. The amino acid composition of squid CP-I is similar to that of CP A from other species.  相似文献   

16.
Amylases II-1 and II-2 with molecular weights of 55.7 and 65 kDa, respectively, were purified to electrophoretical homogeneity from small abalone (Sulculus diversicolor aquatilis) by ammonium sulfate fractionation, Sepharose CL-6B, CM-Sepharose CL-6B, and Sephacryl S-100 chromatographs. They had optimal temperatures of 45 and 50 degrees C and an optimal pH of 6.0. The purified amylases were stable at pH 5.0-8.0 and 6.0-8.0, respectively. They were completely or partially inhibited by Hg(2+), Cu(2+), Cd(2+), Zn(2+), iodoacetamide, phenylmethanesulfonyl fluoride, and N-ethylmaleimide, suggesting the existence of cysteine at their active sites. Digestion tests against various polysaccharides suggested that the purified amylases II-1 and II-2 are neoamylases which can hydrolyze both alpha-1,4 and alpha-1,6 glucosidic bonds. Amylase II-2 might be an exo- and II-1 an endo-/exo-amylase.  相似文献   

17.
Calpastatin, a specific calpain inhibitor was purified to electrophoretical homogeneity from grass prawn (Penaeus monodon) muscle by 100 degrees C heat-treatment, DEAE-Sephacel, and Q-Sepharose chromatographs. No significant change in the inhibitory activity of crude calpastatin was observed even after 20 min incubation at 100 degrees C, pH 7.0. The purified prawn calpastatin had a molecular weight (M(r)) of 80 and 88.7 kDa determined by SDS-PAGE and Sephacryl S-200 HR gel filtration, respectively. According to the active site titration, the purified calpastatin revealed four beef mu-calpain and two beef m-calpain binding domains, respectively. It was stable during 1 h of incubation at 30 degrees C under pH 4.5-10.0 and shown to be a highly specific inhibitor for calpain.  相似文献   

18.
Trimethylamine-N-oxide demethylase (TMAOase) was purified from Jumbo squid (Dosidicus gigas) and characterized in detail herein. The TMAOase was extracted from squid with 20 mM Tris-acetate buffer (pH 7.0) containing 1.0 M NaCl, followed by acid treatment and heat treatment. Then it was purified by deithylaminoethyl-cellulose and Sephacryl S-300 chromatography, subsequently resulting in an 839-fold purification. The molecular mass of the TMAOase was defined to be 17.5 kDa. The optimum pH of the purified TMAOase was 7.0, and its optimum temperature was confirmed to be 55 degrees C. The TMAOase was stable to heat treatment up to 50 degrees C and stable at pH 7.0-9.0. Reducing agents such as DTT, Na2SO3, and NADH were effective at activating TMAOase, and ethylenediaminetetraacetic acid, as well as Mg2+ and Ca2+, could also enhance the activity of TMAOase remarkably, whereas the TMAOase could be significantly inhibited by tea polyphenol, phytic acid and acetic acid. In addition, the TMAOase converted TMAO to dimethylamine and formaldehyde stoichiometrically with a K(m) of 26.2 mM.  相似文献   

19.
The physiological activities of some phenolic compounds affecting hepatic fatty acid synthesis in mice were compared. Male ICR mice were fed an experimental diet containing 1% quercetin dihydrate, rutin, or ferulic acid or a control diet free of phenolic compounds for 15 days. Quercetin significantly lowered serum cholesterol and phospholipid levels in mice. Also, the serum triacylglycerol level was considerably lower in mice fed the quercetin-containing diet than in those fed a diet free of phenolic compounds, although the difference was not significant. Rutin and ferulic acid did not affect these parameters. Quercetin significantly reduced the activity and mRNA levels of various enzymes involved in hepatic fatty acid synthesis. Rutin reduced a few of the parameters for lipogenesis, but ferulic acid did not affect any of the parameters. It was suggested that a reduction in hepatic lipogenesis is the mechanism underlying the hypolipidemic effect of quercetin.  相似文献   

20.
Phenyllactic acid (PLA) is a novel antimicrobial compound synthesized by lactic acid bacteria (LAB), and its production from phenylpyruvic acid (PPA) is an effective approach. In this work, a lactate dehydrogenase (LDH), which catalyzes the reduction of PPA to PLA, has been purified to homogeneity from a cell-free extract of Lactobacillus sp. SK007 by precipitation with ammonium sulfate, ion exchange, and gel filtration chromatography. The purified enzyme had a dimeric form with a molecular mass of 78 kDa (size exclusion chromatography) or 39 kDa (SDS-PAGE). The ratio of enzyme activity with PPA to that with pyruvate being almost invariable at every purification step indicated that, in Lactobacillus sp. SK007, LDH is responsible for the conversion of PPA into PLA. HPLC profiles of PPA transformation into PLA by growing cells, cell-free extract, and purified LDH of Lactobacillus sp. SK007 were also investigated. Results showed that the presence of NADH was found to be necessary for the enzymatic production of PLA from PPA. The purified LDH displayed optimal activity for PPA at pH 6.0 and 40 degrees C. The Km values of the enzyme for PPA and pyruvate were 1.69 and 0.32 mM, respectively. Moreover, because other screened LAB strains exhibiting relatively high LDH activity toward PPA produced also considerable amounts of PLA, LDH activity for PPA could be therefore used as a screening marker for PLA-producing LAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号