首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial ribosomes stalled on defective messenger RNAs (mRNAs) are rescued by tmRNA, an approximately 300-nucleotide-long molecule that functions as both transfer RNA (tRNA) and mRNA. Translation then switches from the defective message to a short open reading frame on tmRNA that tags the defective nascent peptide chain for degradation. However, the mechanism by which tmRNA can enter and move through the ribosome is unknown. We present a cryo-electron microscopy study at approximately 13 to 15 angstroms of the entry of tmRNA into the ribosome. The structure reveals how tmRNA could move through the ribosome despite its complicated topology and also suggests roles for proteins S1 and SmpB in the function of tmRNA.  相似文献   

2.
In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNA(i)(fMet) and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.  相似文献   

3.
Structure of the 70S ribosome complexed with mRNA and tRNA   总被引:1,自引:0,他引:1  
The crystal structure of the bacterial 70S ribosome refined to 2.8 angstrom resolution reveals atomic details of its interactions with messenger RNA (mRNA) and transfer RNA (tRNA). A metal ion stabilizes a kink in the mRNA that demarcates the boundary between A and P sites, which is potentially important to prevent slippage of mRNA. Metal ions also stabilize the intersubunit interface. The interactions of E-site tRNA with the 50S subunit have both similarities and differences compared to those in the archaeal ribosome. The structure also rationalizes much biochemical and genetic data on translation.  相似文献   

4.
The ribosome of Thermus thermophilus was cocrystallized with initiator transfer RNA (tRNA) and a structured messenger RNA (mRNA) carrying a translational operator. The path of the mRNA was defined at 5.5 angstroms resolution by comparing it with either the crystal structure of the same ribosomal complex lacking mRNA or with an unstructured mRNA. A precise ribosomal environment positions the operator stem-loop structure perpendicular to the surface of the ribosome on the platform of the 30S subunit. The binding of the operator and of the initiator tRNA occurs on the ribosome with an unoccupied tRNA exit site, which is expected for an initiation complex. The positioning of the regulatory domain of the operator relative to the ribosome elucidates the molecular mechanism by which the bound repressor switches off translation. Our data suggest a general way in which mRNA control elements must be placed on the ribosome to perform their regulatory task.  相似文献   

5.
Crystal structure of the eukaryotic ribosome   总被引:1,自引:0,他引:1  
Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.  相似文献   

6.
Crystal structure of the ribosome at 5.5 A resolution   总被引:1,自引:0,他引:1  
We describe the crystal structure of the complete Thermus thermophilus 70S ribosome containing bound messenger RNA and transfer RNAs (tRNAs) at 5.5 angstrom resolution. All of the 16S, 23S, and 5S ribosomal RNA (rRNA) chains, the A-, P-, and E-site tRNAs, and most of the ribosomal proteins can be fitted to the electron density map. The core of the interface between the 30S small subunit and the 50S large subunit, where the tRNA substrates are bound, is dominated by RNA, with proteins located mainly at the periphery, consistent with ribosomal function being based on rRNA. In each of the three tRNA binding sites, the ribosome contacts all of the major elements of tRNA, providing an explanation for the conservation of tRNA structure. The tRNAs are closely juxtaposed with the intersubunit bridges, in a way that suggests coupling of the 20 to 50 angstrom movements associated with tRNA translocation with intersubunit movement.  相似文献   

7.
During protein synthesis, the ribosome controls the movement of tRNA and mRNA by means of large-scale structural rearrangements. We describe structures of the intact bacterial ribosome from Escherichia coli that reveal how the ribosome binds tRNA in two functionally distinct states, determined to a resolution of ~3.2 angstroms by means of x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit site. The structures help to explain how the ratchet-like motion of the two ribosomal subunits contributes to the mechanisms of translocation, termination, and ribosome recycling.  相似文献   

8.
During protein synthesis, transfer RNAs (tRNAs) are translocated from the aminoacyl to peptidyl to exit sites of the ribosome, coupled to the movement of messenger RNA (mRNA), in a reaction catalyzed by elongation factor G (EF-G) and guanosine triphosphate (GTP). Here, we show that the peptidyl transferase inhibitor sparsomycin triggers accurate translocation in vitro in the absence of EF-G and GTP. Our results provide evidence that translocation is a function inherent to the ribosome and that the energy to drive this process is stored in the tRNA-mRNA-ribosome complex after peptide-bond formation. These findings directly implicate the peptidyl transferase center of the 50S subunit in the mechanism of translocation, a process involving large-scale movement of tRNA and mRNA in the 30S subunit, some 70 angstroms away.  相似文献   

9.
During transfer RNA (tRNA) selection, a cognate codon:anticodon interaction triggers a series of events that ultimately results in the acceptance of that tRNA into the ribosome for peptide-bond formation. High-fidelity discrimination between the cognate tRNA and near- and noncognate ones depends both on their differential dissociation rates from the ribosome and on specific acceleration of forward rate constants by cognate species. Here we show that a mutant tRNA(Trp) carrying a single substitution in its D-arm achieves elevated levels of miscoding by accelerating these forward rate constants independent of codon:anticodon pairing in the decoding center. These data provide evidence for a direct role for tRNA in signaling its own acceptance during decoding and support its fundamental role during the evolution of protein synthesis.  相似文献   

10.
11.
We report the crystal structure of the catalytic domain of human ADAR2, an RNA editing enzyme, at 1.7 angstrom resolution. The structure reveals a zinc ion in the active site and suggests how the substrate adenosine is recognized. Unexpectedly, inositol hexakisphosphate (IP6) is buried within the enzyme core, contributing to the protein fold. Although there are no reports that adenosine deaminases that act on RNA (ADARs) require a cofactor, we show that IP6 is required for activity. Amino acids that coordinate IP6 in the crystal structure are conserved in some adenosine deaminases that act on transfer RNA (tRNA) (ADATs), related enzymes that edit tRNA. Indeed, IP6 is also essential for in vivo and in vitro deamination of adenosine 37 of tRNAala by ADAT1.  相似文献   

12.
Eubacteria inactivate their ribosomes as 100S dimers or 70S monomers upon entry into stationary phase. In Escherichia coli, 100S dimer formation is mediated by ribosome modulation factor (RMF) and hibernation promoting factor (HPF), or alternatively, the YfiA protein inactivates ribosomes as 70S monomers. Here, we present high-resolution crystal structures of the Thermus thermophilus 70S ribosome in complex with each of these stationary-phase factors. The binding site of RMF overlaps with that of the messenger RNA (mRNA) Shine-Dalgarno sequence, which prevents the interaction between the mRNA and the 16S ribosomal RNA. The nearly identical binding sites of HPF and YfiA overlap with those of the mRNA, transfer RNA, and initiation factors, which prevents translation initiation. The binding of RMF and HPF, but not YfiA, to the ribosome induces a conformational change of the 30S head domain that promotes 100S dimer formation.  相似文献   

13.
The specificity of tRNA(Arg) (arginine transfer RNA) for aminoacylation (its acceptor identity) were first identified by computer analysis and then examined with amber suppressor tRNAs in Escherichia coli. On replacing two nucleotides in tRNA(Phe) (phenylalanine transfer RNA) with the corresponding nucleotides from tRNA(Arg), the acceptor identity of the resulting tRNA was changed to that of tRNA(Arg). The nucleotides used in the identity transformation occupy a "variable pocket" structure on the surface of the tRNA molecule where two single-stranded loop segments interact. The middle nucleotide in the anticodon also probably contributes to the interaction, since an amber suppressor of tRNA(Arg) had an acceptor identity for lysine as well as arginine.  相似文献   

14.
Noller HF 《Science (New York, N.Y.)》2005,309(5740):1508-1514
The crystal structures of the ribosome and its subunits have increased the amount of information about RNA structure by about two orders of magnitude. This is leading to an understanding of the principles of RNA folding and of the molecular interactions that underlie the functional capabilities of the ribosome and other RNA systems. Nearly all of the possible types of RNA tertiary interactions have been found in ribosomal RNA. One of these, an abundant tertiary structural motif called the A-minor interaction, has been shown to participate in both aminoacyl-transfer RNA selection and in peptidyl transferase; it may also play an important role in the structural dynamics of the ribosome.  相似文献   

15.
Enzymatic modification of transfer RNA   总被引:12,自引:0,他引:12  
D S?ll 《Science (New York, N.Y.)》1971,173(994):293-299
The molecular events leading to the synthesis of mature tRNA are only now becoming amenable to experimental study. In bacterial and mammalian cells tRNA genes are transcribed into precursor tRNA. These molecules, when isolated, contain additional nucleotides at both ends (20) of the mature tRNA and lack most modified nucleosides. Presumably, specific nucleases ("trimming" enzymes) cut the precursor to proper tRNA size. The C-C-A nucleotide sequence of the amino acid acceptor end common to all tRNA's does not seem to be coded by tRNA genes (30), and may be added to the trimmed molecules by the tRNA-CMP-AMP-pyrophosphorylase (71). Modifications at the polynucleotide level of the heterocyclic bases or the sugar residues give rise to the modified nucleosides in tRNA. Although newly available substrates have allowed the detection of more of the enzymes involved in these reactions, there is still no knowledge about the sequence of modification or trimming events leading to the synthesis of active tRNA. Progress in these studies may not be easy because enzyme preparations free of nucleases or other tRNA modifying enzymes are required. The role of the modified nucleosides in the biological functions of tRNA is still unknown. Possibly pseudouridine is required for ribosome mediated protein synthesis; some other modified nucleosides in tRNA are not required for this reaction, but may enhance its rate. What might be the role of the large variety of modified nucleosides in tRNA? One is tempted to speculate that such nucleosides are important in other cellular processes in which tRNA is thought to participate such as virus infection, cell differentiation, and hormone action (2, 3). Mutants in a number of tRNA-modifying enzymes are needed in order to extend our knowledge of their purpose and of tRNA involvement in other biological processes. But unless tRNA-modifying enzymes specific for a particular tRNA species exist, no simple selection procedure can be devised. Possibly some of the regulatory mutants of amino acid biosynthesis may prove to affect tRNA-modifying enzymes (72). Transfer RNA's are macromolecules well suited for the study of nucleic acid-protein interactions. The tRNA molecules are structurally very similar, and they interact with a large number of enzymes or protein factors (2, 3). Each aminoacyl-tRNA synthetase, for instance, very precisely recognizes a set of cognate isoacceptor tRNA's (2, 73). The availability of the tRNA- modifying enzymes adds another dimension to the problem of the nature of specific recognition of tRNA by proteins. There are some tRNA-modifying enzymes, such as the uracil-tRNA methylase, which may recognize all tRNA species, while others, such as the isopentenyl-tRNA transferase, probably recognize only a selected set of tRNA molecules, even with different amino acid accepting capacities. With well-characterized RNA precursor and tRNA molecules we can hope to delineate those features of primary, secondary, and tertiary structure involved in the specific interactions of tRNA with these enzymes.  相似文献   

16.
生物体内氨基酸与遗传密码关系研究   总被引:3,自引:0,他引:3  
mRNA的核苷酸序列通过密码子决定了蛋白质的氨基酸序列 ,密码子的使用频率及其在mRNA二级结构中分布的差异 ,影响到氨基酸的相对含量及蛋白质的空间结构。密码子的使用频率及氨酰 -tRNA合成酶对tRNA的识别 ,影响到生物体内氨基酸的生物配比  相似文献   

17.
The termination of protein synthesis occurs through the specific recognition of a stop codon in the A site of the ribosome by a release factor (RF), which then catalyzes the hydrolysis of the nascent protein chain from the P-site transfer RNA. Here we present, at a resolution of 3.5 angstroms, the crystal structure of RF2 in complex with its cognate UGA stop codon in the 70S ribosome. The structure provides insight into how RF2 specifically recognizes the stop codon; it also suggests a model for the role of a universally conserved GGQ motif in the catalysis of peptide release.  相似文献   

18.
Ribosome recycling factor (RRF), together with elongation factor G (EF-G), catalyzes recycling of ribosomes after one round of protein synthesis. The crystal structure of RRF was determined at 2.55 angstrom resolution. The protein has an unusual fold where domain I is a long three-helix bundle and domain II is a three-layer beta/alpha/beta sandwich. The molecule superimposes almost perfectly with a transfer RNA (tRNA) except that the amino acid-binding 3' end is missing. The mimicry suggests that RRF interacts with the posttermination ribosomal complex in a similar manner to a tRNA, leading to disassembly of the complex. The structural arrangement of this mimicry is entirely different from that of other cases of less pronounced mimicry of tRNA so far described.  相似文献   

19.
Protein synthesis requires several guanosine triphosphatase (GTPase) factors, including elongation factor Tu (EF-Tu), which delivers aminoacyl-transfer RNAs (tRNAs) to the ribosome. To understand how the ribosome triggers GTP hydrolysis in translational GTPases, we have determined the crystal structure of EF-Tu and aminoacyl-tRNA bound to the ribosome with a GTP analog, to 3.2 angstrom resolution. EF-Tu is in its active conformation, the switch I loop is ordered, and the catalytic histidine is coordinating the nucleophilic water in position for inline attack on the γ-phosphate of GTP. This activated conformation is due to a critical and conserved interaction of the histidine with A2662 of the sarcin-ricin loop of the 23S ribosomal RNA. The structure suggests a universal mechanism for GTPase activation and hydrolysis in translational GTPases on the ribosome.  相似文献   

20.
Polypeptide sequences essential for RNA recognition by an enzyme   总被引:4,自引:0,他引:4  
Many RNAs are complex, globular molecules formed from elements of secondary and tertiary structure analogous to those found in proteins. Little is known about recognition of RNAs by proteins. In the case of transfer RNAs (tRNAs), considerable evidence suggests that elements dispersed in both the one- and three-dimensional structure are important for recognition by aminoacyl tRNA synthetases. Fragments of alanine tRNA synthetase were created by in vitro manipulations of the cloned alaS gene and examined for their interaction with alanine-specific tRNA. Sequences essential for recognition were located near the middle of the polypeptide, juxtaposed to the carboxyl-terminal side of the domain for aminoacyl adenylate synthesis. The most essential part of the tRNA interaction strength and specificity was dependent on a sequence of fewer than 100 amino acids. Within this sequence, and in the context of the proper conformation, a segment of no more than 17 amino acids was responsible for 25% or more of the total synthetase-tRNA free energy of association. The results raise the possibility that an important part of specific RNA recognition by an aminoacyl tRNA synthetase involves a polypeptide segment that is short relative to the total size of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号