首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Renewable and cheap materials in electrodes could meet the need for low-cost, intermittent electrical energy storage in a renewable energy system if sufficient charge density is obtained. Brown liquor, the waste product from paper processing, contains lignin derivatives. Polymer cathodes can be prepared by electrochemical oxidation of pyrrole to polypyrrole in solutions of lignin derivatives. The quinone group in lignin is used for electron and proton storage and exchange during redox cycling, thus combining charge storage in lignin and polypyrrole in an interpenetrating polypyrrole/lignin composite.  相似文献   

2.
Ultralight (<10 milligrams per cubic centimeter) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. We present ultralight materials based on periodic hollow-tube microlattices. These materials are fabricated by starting with a template formed by self-propagating photopolymer waveguide prototyping, coating the template by electroless nickel plating, and subsequently etching away the template. The resulting metallic microlattices exhibit densities ρ ≥ 0.9 milligram per cubic centimeter, complete recovery after compression exceeding 50% strain, and energy absorption similar to elastomers. Young's modulus E scales with density as E ~ ρ(2), in contrast to the E ~ ρ(3) scaling observed for ultralight aerogels and carbon nanotube foams with stochastic architecture. We attribute these properties to structural hierarchy at the nanometer, micrometer, and millimeter scales.  相似文献   

3.
Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp(2)-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.  相似文献   

4.
Porous tantalum disks, available as "slugs" from the capacitor industry, have large available surface area and a thin insulating coating of tantalum pentoxide. When implanted, they fill with extracellular fluid and operate as capacitor-stimulating electrodes having high capacitance per unit volume. Capable of stimulating excitable tissute without generating electrochemical by-products, these electrodes should provide a safer interface between neural prosthetic devices and human tissue.  相似文献   

5.
Electrodes with electrochemical dimensions as small as 10 angstroms have been fabricated and used for electrochemical studies. These nanometer-scale electrodes have enabled the measurement of electron-transfer rate constants, k(het), that are two orders of magnitude faster than k(het) values accessible with any other electrochemical method.  相似文献   

6.
We demonstrated short segments of a superconducting wire that meets or exceeds performance requirements for many large-scale applications of high-temperature superconducting materials, especially those requiring a high supercurrent and/or a high engineering critical current density in applied magnetic fields. The performance requirements for these varied applications were met in 3-micrometer-thick YBa2Cu3O(7-delta) films epitaxially grown via pulsed laser ablation on rolling assisted biaxially textured substrates. Enhancements of the critical current in self-field as well as excellent retention of this current in high applied magnetic fields were achieved in the thick films via incorporation of a periodic array of extended columnar defects, composed of self-aligned nanodots of nonsuperconducting material extending through the entire thickness of the film. These columnar defects are highly effective in pinning the superconducting vortices or flux lines, thereby resulting in the substantially enhanced performance of this wire.  相似文献   

7.
Bulk YBa(2)Cu(3)O(7-delta) superconductors, under certain processing conditions such as melt texturing, exhibit a very high dislocation density of 10(9) to 10(10) per square centimeter. In addition, the density of low-angle grain boundaries in such samples can be significantly increased (to less than 700-nanometer spacing) through a dispersion of submicrometer-sized Y(2)BaCuO(5) inclusions. These defect densities are comparable to those in high critical current thin films as revealed through scanning tunneling microscopy, and yet the critical current densities in the bulk materials (at 77 kelvin and a field of 1 tesla for example) remain at a 10(4) amperes per square centimeter level, about two orders of magnitude lower than in thin films. The results imply that these defect density levels are not significant enough to explain the difference in flux pinning strength between the thin film and bulk materials. The observation of spiral-like growth of the superconductor phase in bulk Y-Ba-Cu-O is also reported.  相似文献   

8.
目的以工业碱木质素和甲醛为原料,在盐的制孔和稳定作用下,水热反应后直接碳化制备多孔碳气凝胶,并检测其结构、理化性质和电化学性能,探究其在超级电容器电极材料中的运用。方法将2 g工业碱木质素分别与3种盐(ZnCl2、NaCl、Na2CO3)混合均匀,各加入1.5 mL甲醛,搅拌成黏稠浆状,转移至反应釜中,160 ℃反应2 h,得到一系列的木质素碳气凝胶(LCA)前驱体,在通氮气保护的管式炉中,以3 ℃/min的升温速率升温至900 ℃,保温3 h进行碳化,自然冷却后取出并洗涤,得到LCA。通过比表面积测定(SSA)、扫描电镜(SEM)、X射线衍射(XRD)表征碳气凝胶的结构和理化性质,将其研磨粉碎后制成超级电容器电极,通过循环伏安测试、恒流充放电测试和开位电路阻抗测试进行电化学储能表征。结果以ZnCl2为模板制备的LCA最高比表面积可达711 m2/g,在SEM下能观察到凝胶状结构,XRD表明LCA以无定形碳为主。在0.2 A/g的电流密度下,比电容达到124 F/g;在10 A/g的高电流密度下,比电容维持在60 F/g,电容保持率约为48%,拥有最佳的倍率性能。结论本实验以价格低廉的工业碱木质素为原料,在盐模板下经过水热和碳化过程直接制备LCA。在ZnCl2盐模板下可以制备出高比表面积,以无定形碳为主的LCA,并拥有优良的电化学性能,可用于超级电容器电极材料。该方法绿色环保、操作简单、成本低,具有潜在的工业化利用前景。   相似文献   

9.
Voltammetric electrodes of microscopic dimension, termed ultramicroelectrodes, can be used to make measurements that are difficult or impossible with conventional electrochemical techniques. Measurements of chemical concentration can be made with these electrodes on a microsecond time scale and with micrometer spatial resolution. In addition, measurements can be made in highly resistive solutions.  相似文献   

10.
无参比恒槽压法导电涂层阴极保护技术的研究   总被引:2,自引:0,他引:2  
朱淮传 《油气储运》1994,13(2):46-50
无参比恒槽压法导电涂层阴极保护技术,甩掉了恒电位法使用的石墨参比电极,克服了用石墨参比电极电位不稳定时对阴极保护电位的影响,当涂层各部位干湿状态不均匀时,能自动调节各部位(干湿态)所需的极化电流密度i阴(表现),使E槽压和Q阴保护电位恒定不变,电位分布均匀,保护效果提高。此外,无参比恒槽压导电涂层阴极保护技术与恒电位法相比,还具有安装维护方便,运行可靠等优点,能广泛地适用于工业大气、海洋大气(潮差  相似文献   

11.
The use of bismuth-layered perovskite films for planar-type nonvolatile ferroelectric random-access memories requires films with spontaneous polarization normal to the plane of growth. Epitaxially twinned a axis-oriented La-substituted Bi4Ti3O12 (BLT) thin films whose spontaneous polarization is entirely along the film normal were grown by pulsed laser deposition on yttria-stabilized zirconia-buffered Si(100) substrates using SrRuO3 as bottom electrodes. Even though the (118) orientation competes with the (100) orientation, epitaxial films with almost pure (100) orientation were grown using very thin, strained SrRuO3 electrode layers and kinetic growth conditions, including high growth rates and high oxygen background pressures to facilitate oxygen incorporation into the growing film. Films with the a-axis orientation and having their polarization entirely along the direction normal to the film plane can achieve a remanent polarization of 32 microcoulombs per square centimeter.  相似文献   

12.
Liu CY  Pan HL  Fox MA  Bard AJ 《Science (New York, N.Y.)》1993,261(5123):897-899
An electrooptical memory effect is observed with solid thin films of the photoconductor zinc-octakis(beta-decoxyethyl) porphyrin (ZnODEP) sandwiched between two optically transparent electrodes. Upon irradiation with the simultaneous application of an electric field, electron-hole pairs are generated and separated within the photoconductive layer. These electron-hole pairs become "frozen" within the films when the irradiation is interrupted. These trapped charges can be released by irradiation of the cell, resulting in a transient short-circuit photocurrent. No cross talk between adjacent memory elements separated by approximately 0.2 micrometer (a density of 3 gigabits per square centimeter) was detected. The charge storage system is robust and nonvolatile. The response time for the write-read beam is in the subnanosecond range, and no refreshing is required for long-term retention of trapped charges.  相似文献   

13.
The use of molecular reagents to manipulate the properties of electrode surfaces has broad application in areas such as electrochemical synthesis, energy conversion and storage, displays, sensors, and new kinds of microelectronic devices. Surface modification of electrodes has contributed to a revival of interest in basic and applied research in electrochemistry and electrochemical devices. This article is focused on specific examples of systems modified electrodes where basic developments provide promising opportunities for applications stemming from the properties of molecules attached to an electrode surface.  相似文献   

14.
Thin-film heterostructures of Bi(4)Ti(3)O(12)Bi(2)Sr(2)CuO(6+x), have been grown on single crystals of SrTiO(3), LaAlO(3), and MgAl(2)O(4) by pulsed laser deposition. X-ray diffraction studies show the presence of c-axis orientation only; Rutherford backscattering experiments show the composition to be close to the nominal stoichiometry. The films are ferroelectric and exhibit a symmetric hysteresis loop. The remanent polarization was 1.0 microcoulomb per square centimeter, and the coercive field was 2.0 x 10(5) volts per centimeter. Similar results were obtained with YBa(2)Cu(3)O(7-x) and Bi(2)Sr(2)CaCu(2)O(8+x), and single-crystal Bi(2)Sr(2)CuO(6+x)as the bottom electrodes. These films look promising for use as novel, lattice-matched, epitaxial ferroelectric film/electrode heterostructures in nonvolatile memory applications.  相似文献   

15.
The selection and assembly of materials are central issues in the development of smaller, more flexible batteries. Cobalt oxide has shown excellent electrochemical cycling properties and is thus under consideration as an electrode for advanced lithium batteries. We used viruses to synthesize and assemble nanowires of cobalt oxide at room temperature. By incorporating gold-binding peptides into the filament coat, we formed hybrid gold-cobalt oxide wires that improved battery capacity. Combining virus-templated synthesis at the peptide level and methods for controlling two-dimensional assembly of viruses on polyelectrolyte multilayers provides a systematic platform for integrating these nanomaterials to form thin, flexible lithium ion batteries.  相似文献   

16.
New applications such as hybrid electric vehicles and power backup require rechargeable batteries that combine high energy density with high charge and discharge rate capability. Using ab initio computational modeling, we identified useful strategies to design higher rate battery electrodes and tested them on lithium nickel manganese oxide [Li(Ni(0.5)Mn(0.5))O2], a safe, inexpensive material that has been thought to have poor intrinsic rate capability. By modifying its crystal structure, we obtained unexpectedly high rate-capability, considerably better than lithium cobalt oxide (LiCoO2), the current battery electrode material of choice.  相似文献   

17.
A bottleneck limiting the widespread application of semiconductor nanocrystal solids is their poor conductivity. We report that the conductivity of thin films of n-type CdSe nanocrystals increases by many orders of magnitude as the occupation of the first two electronic shells, 1Se and 1Pe, increases, either by potassium or electrochemical doping. Around half-filling of the 1Se shell, a peak in the conductivity is observed, indicating shell-to-shell transport. Introducing conjugated ligands between nanocrystals increases the conductivities of these states to approximately 10(-2) siemens per centimeter.  相似文献   

18.
Bimetallic electrodes are used in a number of electrochemical processes, but the role of particular arrangements of surface metal atoms (ensembles) has not been studied directly. We have evaluated the electrochemical/catalytic properties of defined atomic ensembles in atomically flat PdAu(111) electrodes with variable surface stoichiometry that were prepared by controlled electrodeposition on Au(111). These properties are derived from infrared spectroscopic and voltammetric data obtained for electrode surfaces for which the concentration and distribution of the respective metal atoms are determined in situ by atomic resolution scanning tunneling microscopy with chemical contrast. Palladium monomers are identified as the smallest ensemble ("critical ensemble") for carbon monoxide adsorption and oxidation, whereas hydrogen adsorption requires at least palladium dimers.  相似文献   

19.
The Hubble Space Telescope observed the fragmented comet P/Shoemaker-Levy 9 (1993e) (P indicates that it is a periodic comet) on 1 July 1993. Approximately 20 individual nuclei and their comae were observed in images taken with the Planetary Camera. After subtraction of the comae light, the 11 brightest nuclei have magnitudes between approximately 23.7 and 24.8. Assuming that the geometric albedo is 0.04, these magnitudes imply that the nuclear diameters are in the range approximately 2.5 to 4.3 kilometers. If the density of each nucleus is 1 gram per cubic centimeter, the total energy deposited by the impact of these 11 nuclei into Jupiter's atmosphere next July will be approximately 4 x 10(30) ergs ( approximately 10(8) megatons of TNT). This latter number should be regarded as an upper limit because the nuclear magnitudes probably contain a small residual coma contribution. The Faint Object Spectrograph was used to search for fluorescence from OH, which is usually an excellent indicator of cometary activity. No OH emission was detected, and this can be translated into an upper limit on the water production rate of approximately 2 x 10(27) molecules per second.  相似文献   

20.
为研究四川水稻高产理想株系穗部性状的遗传特性,并筛选出高产且综合农艺性状好的新材料,利用籼稻CG133R与爪哇稻22号构建的重组自交系(RIL)群体,对其单株有效穗、一次枝梗数、穗长、每穗着粒数和千粒重等9个性状的遗传变异进行考查和相关性分析;对其单株产量与各农艺性状进行逐步回归分析与通径分析;对单株产量位列前8名的优系分析其穗部性状表现,并根据单株产量高低分成2组深入进行性状间的相关分析。结果表明,RIL群体穗部性状上发生了极广泛的变异。逐步回归分析和通径分析发现,水稻单株产量的主要贡献因素为有效穗实粒数千粒重。经过对其优系分析,初步确立四川稻区高产理想株系穗部性状的指标为有效穗数7~9个、一次枝梗数18~20个、穗长27.0~30.0cm、着粒数320粒、实粒数290粒、着粒密度120粒/10cm、结实率81%~92%、千粒重20.0~27.0g。进一步对RIL群体中单株产量位列前4名的株系分析发现,其有效穗数和着粒数呈显著正相关(P0.001)。表明打破了有效穗数和着粒数间的不利连锁关系,出现了优良变异。这些优系可作为新种质进行深入分析和利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号