首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study evaluated the effects of dietary protein concentration (26, 28, and 32%) and an all-plant protein diet (28% protein) on growth, feed efficiency, processing yield, and body composition of channel catfish, Ictalurus punctatus raised from advanced fingerlings to large marketable size (about 800 to 900 g/fish) for two growing seasons. Fingerling channel catfish (average weight = 56 g/fish) were stocked into twenty 0.04-ha ponds at a density of 18,525 fish/ha. Fish were fed once daily to satiation during the two growing seasons and fed according to recommended winter feeding schedules during the winter. There were no differences in diet consumption, weight gain, feed conversion ratio, survival, processing yields (carcass, shank fillet, and nugget), or fillet composition (moisture, protein, fat, and ash) among fish fed the various diets. These results indicate that a 26% protein diet containing plant and animal proteins or a 28% all-plant protein diet is adequate for channel catfish raised in ponds from advanced fingerlings to large marketable size without adversely affecting weight gain, feed efficiency, processing yield, or body composition. Large marketable-size channel catfish appear to use diets less efficiently but give higher processing yields compared to small marketable-size fish.  相似文献   

2.
Diets containing 28% and 32% crude protein were compared for pond‐raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04‐ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia‐nitrogen (TAN) and nitrite‐nitrogen (NO2‐N) than ponds stocked at lower densities. However, stocking density had no significant effect on un‐ionized ammonia‐nitrogen (NH3‐N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single‐batch cropping systems. Optimum dietary protein concentration for pond‐raised channel catfish does not appear to be affected by stocking density.  相似文献   

3.
A factorial experiment was conducted to examine effects of dietary protein concentration (24, 28, 32, or 36%) and feeding regimen (feeding once daily or every other day [EOD]) on channel catfish, Ictalurus punctatus, production in earthen ponds. Compared with fish fed daily, fish fed EOD had lower feed consumption, weight gain, net production, and percentage of market‐size fish but had high feed efficiency and required fewer hours of aeration. Fish fed EOD also had lower carcass yield, fillet yield, and visceral and fillet fat. There was a significant interaction between dietary protein and feeding regimen for weight gain. No significant differences were observed in weight gain of fish fed daily with diets containing various levels of protein, whereas weight gain of fish fed EOD with a 24% protein diet was lower than those fed EOD with higher protein diets. Results suggest that response of channel catfish to dietary protein levels depends on whether the fish were fed daily or EOD. Feeding EOD to satiation improved feed efficiency and required less aeration compared with fish fed daily but also reduced net production and processing yield; therefore, EOD feeding should be examined closely before implementation.  相似文献   

4.
Two studies were conducted to evaluate the effects of (I) high-protein (38%) finisher feed fed to satiation for 30,45,60, or 90 days prior to harvest and (2) dietary protein (32 vs. 38%) and feeding regimen (satiation or restricted) on growth and fattiness of channel catfish. Each study was conducted for two years in earthen ponds stocked with channel catfish at a rate of 13,590 fish/ha (35 to 40 g initial weight) for year 1 and 6,800 fish/ha (0.45 to 0.6 kg initial weight) for year 2. Years refer to year of experiment and not fish age class. There were no significant differences in total yield, dressed yield, or muscle fat, regardless of diet or feeding regimen within year. Year-one fish (study 2) fed to satiation tended to gain more weight and appeared to convert feed better than fish fed at a restricted rate. In study 2 there were significant interactions between year and feed, and between year and feeding regimen. Percentage visceral fat was reduced by feeding a high-protein feed during year 1 (study 1). Females also generally had a higher percentage visceral fat than males, regardless of diet. Year-two-fish generally contained a higher percentage of visceral fat as compared to year-one fish. In study 2, there was a significant interaction effect between year, feed, feeding regimen, and sex on visceral fat. Increasing dietary protein or restricting feed appeared to have only marginal effects on fattiness in channel catfish. Fish size and/or age appeared to influence fattiness more than diet or feeding regimen.  相似文献   

5.
Two experiments were conducted in earthen ponds to evaluate the effect of dietary protein concentration and feeding rate on weight gain, feed efficiency, and body composition of channel catfish. In Experiment 1, two dietary protein concentrations (28% or 32%) and four feeding rates (≤ 90. ≤ 112, ≤ 135 kg/ha per d, or satiation) were used in a factorial arrangement. Channel catfish Ictalurus punctatus fingerlings (average size: 27 g/fish) were stocked into 0.04-ha ponds at a rate of 24,700 fish/ha. Fish were fed once daily at the predetermined maximum feeding rates for 282 d (two growing seasons). In Experiment 2, three dietary protein concentrations (24, 28, or 32%) and two feeding rates (≤ 135 kg/ha per d or satiation) were used. Channel catfish (average size: 373 g/fish) were stocked into 0.04-ha ponds at a rate of 17,300 fish/ha. Fish were fed once daily for 155 d. In both experiments, five ponds were used for each dietary treatment. Results from Experiment 1 showed no differences in total feed fed, feed consumption per fish, weight gain, feed conversion ratio (FCR), or survival between fish fed diets containing 28% and 32% protein diets. As maximum feeding rate increased, total feed fed, feed consumption per fish, and weight gain increased. There were no differences in total feed fed, feed consumption per fish, or weight gain between fish fed at ≤ 135 kg/ha per d and those fed to satiation. Fish fed the 28% protein diet had a lower percentage carcass dressout and higher percentage visceral fat than fish fed the 32% protein diet. Dietary protein concentrations of 28% or 32% had no effect on fillet protein, fat, moisture, and ash. Feeding rate did not affect FCR, survival, percentage carcass dressout, or fillet composition, except fillet fat. As feeding rate increased, percentage visceral fat increased. Fish fed at ≤ 90 kg/ha per d had a lower percentage fillet fat than fish fed at higher feeding rates. In Experiment 2, dietary protein concentration or maximum feeding rate did not affect total feed fed, feed consumption per fish, weight gain, FCR, or survival of channel catfish. Feeding rate had no effect on percentage carcass dressout and visceral fat, or fillet composition. This was due to the similar feed consumption by the fish fed at the two feeding rates. Fish fed the 24% protein diet had lower carcass dressout, higher visceral fat and fillet fat than those fed the 28% or 32% protein diet. Results from the present study indicate that both 28% and 32% protein diets provide satisfactory fish production, dressed yield, and body composition characteristics for pond-raised channel catfish fed a maximum rate of 90 kg/ha per d or ahove.  相似文献   

6.
A 2 ± 4 factorial experiment was conducted to examine effects of dietary protein level (28, 32, 36, and 40%) and feeding rate (satiation or ± 90 kg/ha per d) on production characteristics, processing yield, body composition, and water quality for pond-raised channel catfish Ictalurus punctatus. Fingerling channel catfish with a mean weight of 64 g/fish were stocked into 40 0.04-ha ponds at a rate of 17,290 fish/ha. Fish were fed once daily to apparent satiation or at a rate of ± 90 kg/ha per d for 134 d during the growing season. Dietary protein concentration had no effect on feed consumption, weight gain, feed conversion, survival, aeration time, or on fillet moisture, protein, and fat levels. Fish fed to satiation consumed more feed, gained more weight, had a higher feed conversion, and required more aeration time than fish fed a restricted ration. Visceral fat decreased, and fillet yield increased as dietary protein concentration increased to 36%. Carcass yield was lower for fish fed a diet containing 28% protein. Increasing feeding rate increased visceral fat but had no major effect on carcass, fillet, and nugget yields. Fish fed to satiation contained less moisture and more fat in the fillets that those fed a restricted ration. Nitrogenous waste compounds were generally higher where the fish were fed the higher protein diets. Although there was a significant interaction in pond water chemical oxygen demand between dietary protein and feeding rate, generally ponds in the satiation feeding group had higher chemical oxygen demand than ponds in the restricted feeding group. There was a trend that pond water total phosphorus levels were slightly elevated in the satiation feeding group compared to the restricted feeding group. However, pond water soluble reactive phosphorus and chlorophyll-a were not affected by either diet or feeding rate. Results from the present study indicate that a 28% protein diet provides the same level of channel catfish production as a 40% protein diet even when diet is restricted to 90 kg/ha per d. Although there was an increase in nitrogenous wastes in ponds where fish were fed high protein diets, there was little effect on fish production. The long term effects of using high protein diets on water quality are still unclear. Feeding to less than satiety may be beneficial in improving feed efficiency and water quality.  相似文献   

7.
A laboratory feeding trial was conducted to evaluate the effects of reducing digestible energy to protein (DE:P) ratios of practical diets on body fat and weight gain of channel catfish. Five diets were formulated to contain 32, 28, or 24% crude protein with typical DE:P ratios of 8.5, 9.9, or 11.4 kcal/g protein, respectively, and 28% or 24% protein with a reduced DE:P ratio of 8.5 kcal/g protein. Cellulose was used to adjust the DE:P ratio. Juvenile channel catfish Ictalurus punctatus (initial weight: 5.2 g/fish) were fed the experimental diets twice daily to apparent satiation for 12 wk. Fish fed the 28% protein diet with a reduced DE:P ratio of 8.5 kcal/g protein gained less weight and converted feed less efficiently than those fed the 28% protein diet with a typical DE:P ratio of 9.9 kcal/g protein. Fish fed the 24% protein diet with a reduced DE:P ratio of 8.5 kcal/g protein had a similar weight gain but converted feed less efficiently than those fed the 24% protein diet with a typical DE:P ratio of 11.4 kcal/g protein. Weight gain and feed conversion efficiency of fish fed the 32% protein diet with a typical DE:P ratio of 8.5 kcal/g protein were higher than for fish fed other diets except those fed the 28% protein diet with a DE:P ratio of 9.9 kcal/g protein. There were no differences in feed consumption and survival among dietary treatments. Fillet fat of fish fed the 24% and 28% protein diets with a reduced DE:P ratio was lower than that of the fish fed diets containing the same protein concentrations with typical DE:P ratios. At a DE:P ratio of 8.5 kcal/g protein, there were no differences in fillet fat concentration among fish fed diets containing different protein concentrations. There were no differences in fillet protein, moisture, and ash between fish fed the 24% or 28% protein diets containing reduced and typical DE:P ratios. Results from this study show that reducing DE:P ratios in practical diets lowers body fat but also depresses weight gain of channel catfish; thus it would not be economical to use this strategy to reduce body fat of the fish.  相似文献   

8.
Three levels of dietary protein (26, 28, or 32%) and four levels of animal protein (0, 2, 4, or 6%) were evaluated in a factorial experiment for pond-raised channel caffish using practical-type extruded feeds. Meat, bone, and blood meal (65% protein) was used as the animal protein source. Channel catfish fingerlings (average weight: 69 glfish) were stocked into 48 0.04-ha ponds at a rate of 24,700 fishha. Four ponds were used for each dietary treatment. Fish were fed once daily to apparent satiation for 158 d. No differences were observed in weight gain, feed consumption, feed conversion ratio, survival, and hematocrits of channel catfish fed diets containing various levels of dietary protein and animal protein. Inclusion of animal protein in the diet did not affect fish dressout, percentage visceral fat, or fillet composition. Comparison of means pooled by dietary protein without regard to animal protein showed that fish fed diets containing 26% protein had a lower percentage dressout than fish fed higher protein diets (55.4% vs. 56.3%). Fish fed the 32% protein diet had lower visceral fat than those fed the 26% or 28% protein diet (2.9% vs. 3.6% or 3.4%). Fillet fat was lower for fish fed the 32% protein diet than for fish fed the 26% protein diet (5.8% vs. 7.1%). Fillet fat in fish fed the 28% protein diet (6.5%) was not different from fish fed either 26% or 32% dietary protein. No differences were detected in fillet protein, moisture, and ash concentrations among fish fed diets containing various concentrations of protein. There were no interactions between dietary protein and animal protein for any variables. Results from the present study indicate that animal protein can be eliminated from diets for grow out of channel catfish fed to apparent satiation using diets containing 26% to 32% crude protein.  相似文献   

9.
A laboratory study was conducted to evaluate effects of dietary total protein and animal protein source and concentration on growth and feed efficiency of juvenile channel catfish Ictalurus punctutus and their response to Edwardsiellu ictuluri challenge. Eight diets evaluated were: three diets containing either 28, 32, or 36% crude protein with 6% menhaden fish meal and 6% meat and bonehlood meal and five diets containing 32% crude protein with either no animal protein, 68 or 12% menhaden fish meal, or 6% or 12% meat and bonehlood meal, respectively. Twenty channel catfish with an average weight of 6.6 g/fish were stocked into each of forty 110-L flow-through aquaria (five aquaridtreatment). Fish were fed to approximate satiation twice daily for 9 wk. Fish in each tank were then exposed to E. ictaluri . There were no differences in feed consumption, weight gain, feed efficiency, and survival before and after challenge among fish fed diets containing 28, 32, or 36% protein with 6% menhaden fish meal and 6% meat and bone/ blood meal. Fish fed a 32% all-plant protein diet had weight gain and feed efficiency similar to fish fed diets containing 12% menhaden fish meal, but had a higher weight gain than fish fed a 32% protein diet containing 6% meat and bonehlood meal. No significant differences were observed in survival after E. ictuluri challenge among fish fed diets containing the various levels of animal proteins. Results indicate that dietary protein levels varying from 28% to 36% do not appear to affect growth, feed efficiency. and E. icraluri resistance or susceptibility in fingerling channel cattish fed to satiation and raised from approximately 7 to 56 g under laboratory conditions. Data also demonstrate that a 32% all-plant protein diet can be fed to small fingerling channel catfish without adversely affecting growth, feed efficiency, or resistance to E. ictuluri .  相似文献   

10.
Channel catfish, Ictalurus punctatus, in a quadruplicate flowthrough aquaria for 15 weeks, were fed a semipurified basal diet containing no folic acid or with folic acid levels ranging from 0.2 to 10.0 mg/kg with or without antibiotic. A second study was conducted for 25 weeks under similar conditions but with semipurified diets containing either 20 or 200 mg/kg ascorbic acid and either 0, 0.4, or 4.O.mg/kg folic acid in a factorial design. Mortalities throughout both experiments were monitored and the etiological causes noted. Fish remaining from the second study were overwintered in circular tanks, kept on the same experimental diets, and challenged with Edwardsiella ictaluri after having been on experimental diets for 50 weeks. In both studies, the addition of folk acid to the basal experimental diet resulted in a decreased incidence of columnaris, Flexibacter columnaris. Folic acid concentration in the diet significantly affected mortalities in fish exmrimentallv challenged with E. ictaluri; however, there was significant interaction between the folic acid concentration and the concentration of ascorbic acid. At the lower concentration of ascorbic acid, 4 mg/kg of folic acid was required to reduce mortalities, but at the higher concentration of ascorbic acid, only 0.4 mg/kg folic acid was needed to reduce mortalities below that of the diet without folk acid. Antibody tilers were not affected by folic acid concentration at the lower concentration of ascorbic acid; however at the higher concentration of ascorbic acid, the diets containing 0.4 or 4 mg/kg of folic acid resulted in increased antibody production.  相似文献   

11.
Channel catfish Ictalurus punctatus (initial weight: 6.1 g/fish) were fed eight diets containing the mold Fusarium moniliforme-cultured corn supplying 0.7, 2.5, 5, 10, 20, 40, 80, or 240 mg of the mycotoxin, fumonisin B1 (FB1)/kg diet under laboratory conditions for 12 wk. Fish fed diets containing FB1 levels of 40 mg/kg and above showed reduced growth, feed consumption, and feed efficiency, but fish fed FB1 concentrations of 20 mg/kg and below did not. The minimum level of FB1 that depressed growth appeared to be between 20 and 40 mg/kg. Hematocrit was significantly lower for fish fed diets containing 80 and 240 mg FB,/kg than for fish fed diets containing lower levels of FB1. Fish fed diets containing 40 mg FB1kg and above had increased liver glycogen, increased vacuolation in nerve fibers, and perivascular lymphohistiocytic investment in the brain compared to fish fed diets containing lower levels of fumonisins. Results from this study indicate that FB1 levels below 20 mg/kg diet are not a problem in commercial catfish feeds. However, it is prudent to screen for fumonisins in feed ingredients.  相似文献   

12.
Two studies were conducted in 110‐L flow‐through aquaria and 0.4‐ha ponds to evaluate effects of periodic feed deprivation on the growth performance of channel catfish Ictalurus punctatus. Fish were deprived of feed 0, 1, 2, or 3 consecutive d/wk, l d per 5‐d period, or 3 consecutive d per 10‐d period and fed to satiation on days fish were fed. In Experiment 1, fish fed less frequently than daily consumed significantly less feed (over the experimental period) and gained significantly less weight than fish fed daily, except that feed consumption of fish deprived of feed 1 d/wk was not significantly different from that of fish fed daily. Compared with fish fed daily, fish deprived of feed 2 d/wk had significantly lower feed conversion ratio (FCR). Visceral fat of fish deprived of feed 1 or 2 d/wk was similar to that of fish fed daily, but fish deprived of feed for longer periods had significantly lower visceral fat than fish fed daily. Regression analysis indicated that feed consumption, weight gain, and visceral fat increased linearly as the number of days that fish were fed increased. In Experiment 2, there were no significant differences in the amount of feed fed between fish deprived of feed 1 d/wk and those fed daily. Net production of fish deprived of feed 1 or 2 d/wk or 1 d per 5‐d period was not significantly different from that of fish fed daily, but fish deprived of feed for longer periods had significantly lower net production than fish fed daily. Visceral fat of fish deprived of feed 1 d/wk or 1 d per 5‐d period was similar to that of fish fed daily, but fish on other treatments had significantly lower visceral fat than fish fed daily. Regression analysis showed that as the number of days fed increased the amount of feed fed and net production increased quadratically. Feed conversion ratio, carcass yield, visceral fat, and fillet fat increased, while fillet moisture decreased linearly as the number of days fed increased. Although feeding less frequently than daily may improve feed efficiency, and fish deprived of feed may demonstrate compensatory growth when a full feeding regime is resumed, it may be difficult to provide enough feed to satiate all size‐classes of fish under a multiple‐batch cropping system without causing water quality problems. Under normal economic conditions, fish should be fed daily to apparent satiation without waste and without causing water quality problems. However, during periods of unfavorable economic conditions, channel catfish raised from advanced fingerlings to market size may be fed less frequently than daily to reduce production cost. Results from the present study indicated that feeding channel catfish to satiation 5 or 6 d/wk (not feeding on one or two weekend days) could provide some benefits in reducing production cost through reduced feed and labor costs for food‐sized channel catfish during periods of low fish prices and high feed prices.  相似文献   

13.
Abstract.— Similarities among multi-locus DNA fingerprints of five channel catfish Ictalurus punctatus strains and the ability to identify the strain of a fish based on its fingerprint pattern were investigated. Five restriction enzymes and 13 multi-locus DNA probes were screened to identify enzyme-probe combination useful for DNA fingerprinting channel catfish. Restriction enzymes Hinf I and Dpn II, in combination with probes (CAC)n, (CGC)n, (CTC)n, (ATCC)n, and (GATA)n, produced useful fingerprints (20–30 resolvable bands for each enzyme-probe combination). Thirty individuals (3 pools of 10 individuals each) from each of five channel catfish strains (albino, Mississippi normal, USDA-102, USDA-102 select, and USDA-103) were fingerprinted with all useful enzyme-probe combinations. Band sharing among samples was higher within strains than among strains and band sharing among strains was higher for strains whose breeding history indicated a high degree of relatedness. Individual fingerprints of 18 fish from each of the USDA-102 select and USDA-103 strains revealed no strain-specific bands, but several diagnostic bands (present at high frequencies in either USDA-102 select or USDA-103 strains and at a low frequencies in other strains) were identified. Band sharing at diagnostic bands was used to correctly identify fish as USDA-102 select or USDA-103 strains with 82% accuracy from fingerprints of 17 USDA-102 select strain fish, 18 USDA-103 strain fish, and 38 fish collected from three commercial farms.  相似文献   

14.
Juvenile channel catfish Ictalurus punctatus (average initial weight, 6.5 g/fish) were fed twice daily to apparent satiation with practical-type diets containing 0, 50, 150, or 250 mg supplemental vitamin C/kg from L-ascorbyl-2-polyphosphate for 10 wk under laboratory conditions. At the end of the feeding period, one half of the fish were stressed for 2 h by confinement and both stressed and nonstressed fish were exposed to a virulent strain of Edwardsiella ictaluri. Weight gain and feed conversion efficiency were lower for fish fed the basal diet than those fed diets containing supplemental vitamin C. No differences were observed in weight gain and feed conversion among fish fed diets containing supplemental vitamin C. There were no differences in feed consumption and survival (prior to experimental infection) among treatments. No vitamin C deficiency signs except reduced weight gain were observed in fish fed the basal diet. Serum cortisol concentrations were higher in stressed fish than in non-stressed fish. Dietary vitamin C level had no effect on serum cortisol concentration. As dietary vitamin C increased, ascorbate concentration in serum and liver increased. Confinement stress had no effect on serum and liver ascorbate concentrations. Cumulative mortality of channel catfish 21 d subsequent to experimental infection with E. ictaluri was higher for stressed fish than for nonstressed fish. Regardless of stress or nonstress, overall mortality for fish fed the basal diet was lower than the fish fed diets containing supplemental vitamin C. There were no differences in post-infection antibody levels among treatments or between stressed and nonstressed fish. Results from this study indicate that channel catfish require no more than 50 mg/kg dietary vitamin C for normal growth, stress response, and disease resistance.  相似文献   

15.
Four treatment groups that received repeating cycles of fixed feed deprivation for either 0, 1, 2, or 3 d (control, treatment 1, treatment 2, and treatment 3, respectively), followed by periods of refeeding with a 36% protein commercial catfish feed once daily as long as the active phase of compensatory growth (CG) persisted, were assessed in flow-through aquaria. No-feed periods elicited the CG state and were immediately followed by days of ad libatum refeeding. At the end of 10 wk, average growth rate (AGR) of fish was higher ( P < 0.05) than the control by 40%, 180%, and 191% for treatment 1, treatment 2, and treatment 3, respectively. The average weight of fish in treatment 3 was heavier ( P < 0.05) than the average control group at the end of the study period. Mean daily feed consumption was 3.91%, 5.03%, 5.36%, and 5.98% for control, treatment 1, treatment 2, and treatment 3, respectively. Mean feed consumption per fish per day was 24%, 71.3%, and 70.7% higher than the control in treatment 1, treatment 2, and treatment 3, respectively. Restricted feeding is one of the effective methods to contain ESC-related losses in commercial channel catfish fingerling operations. The mean cumulative survival of treatment groups registered higher ( P < 0.05) survival to Edwardsiella ictaluri infection compared to the daily fed control fish. Results from this study show that compensatory growth response triggered by periodic non-feeding days can improve growth rate, feed consumption, and improved survival to ESC infections in channel catfish fingerlings.  相似文献   

16.
To determine whether the embryonic period of channel catfish lctalurus punctatus could be extended at low temperatures, fertilized channel catfish eggs were incubated at five constant water temperatures: 4, 11. 16. 21, and 26 C. Low-temperature incubation of catfish eggs extended the embryonic period at 16 (244%) and 21 C (56%) when compared to the control hatchery incubation temperature of 26 C. All eggs incubated at 4 and 11 C died within 24–48 h. Developmental stage had a significant ( P > 0.05) effect on percent hatch at 16, 21, and 26 C. Eggs held at 16 C prior to embryonic axis formation died within 48 h. Larvae from eggs hatched at 16 C were incompletely developed and died upon acclimation to 26 C for growth tests. Growth of fry reared at 26 C, following egg incubation at 21 C. paralleled that of fry from eggs incubated at 26 C. The underdevelopment of fry at 16 C combined with the significant effect of egg stage on survival at this temperature suggests that 16 C is below the lower thermal tolerance limit for normal development in this species. The period prior to the formation of the embryonic axis may be considered a vulnerable stage in channel catfish development. Increasing the embryonic period through low temperature incubation would increase the duration of juvenile availability for researchers and commercial operations.  相似文献   

17.
从人工饲养的成鱼中挑选体色单纯、红色较深的个体作后备亲鱼进行强化培育,待其性腺发育成熟后,注射LHRH—A2催熟催产。催熟剂量为每千克鱼体重2~3μg(雄鱼不催熟),催产剂量为8μg(雄鱼剂量减半)。试验结果,雌鱼的催产率达70.6%;共获受精卵大约18万粒;孵化出鱼苗约16万尾,平均孵化率88.9%;经培育,共获体长3.5cm的鱼种14.82万尾,鱼种的平均培育成活率达92.6%。试验结果表明,亲鱼培育是美国红鮰鱼人工繁殖取得成功的关键,而要获得遗传性状稳定的红鮰鱼鱼种,亲鱼的筛选至关重要;美国红鮰鱼生长快,抗病力强,产量高,肉质鲜嫩,是优良的养殖品种,可以在国内推广养殖。  相似文献   

18.
The dietary iron requirement for normal growth and optimum hematological values and bioavailability was determined for channel catfish Ictalurus punctatus fingerlings using egg-white based diets supplemented with 0,5,10,20,60, and 180-mg iron/kg from iron methionine or 20, 60, and 180-mg iron/kg from iron sulfate. The basal diet which contained 9.2-mg iron/kg, 34% crude protein and 3.1 kcal of digestible energy/g was fed to channel catfish fingerlings (8.5 g) in triplicate flow-through aquariums to satiation twice daily for 8 wk. Fish fed the basal diet without iron supplementation exhibited poor growth throughout the 8-wk period. Fish fed iron-supplemented diets did not differ with regard to final weight gain. Survival, feed conversion, total blood cell count, mean corpuscular hemoglobin concentration, serum iron, total iron binding capacity, and transferrin saturation were not significantly affected by dietary iron level. Hemoglobin, hematocrit, mean corpuscular hemoglobin, and mean corpuscular volume were significantly lower in fish fed the basal diet. These values were also consistently lower for fish fed diets with 5 and 10-mg iron/kg from iron methionine. However, differences were not always significant. Results of this study indicate that supplementation of 5-mg iron from iron methionine was sufficient for growth. However, a supplemental iron level of 20-mg/kg diet or a total iron level of 30-mg/kg of diet appeared to be needed for optimum hematological values. Iron methionine and iron sulfate were equally effective in preventing anemia in channel catfish.  相似文献   

19.
The storage quality of channel catfish (Ictalurus punctatus), following long term frozen storage, fed diets containing 5 and 10 times the normal level of vitamin E for 45 or 60 days prior to harvest, was evaluated. There were no unusual effects of treatment on fish weight, survival or feed conversion ratios. Muscle vitamin E content was higher (P < 0.05) from fed diets containing supplemental vitamin E than in the control. Oxidation as measured by TBARS and sensory analysis values did not differ (P > 0.05) in response to vitamin E supplementation. Lipid oxidation increased as storage time increased. Lack of change in phospholipid and neutral lipid fractions during storage indicated that autoxidations was the major cause of oxidation in catfish. Vitamin E levels up to 10 times the normal amount did not improve the overall quality of catfish fillets.  相似文献   

20.
Behavioral interactions among juvenile channel catfish, "Ictalurus punctatus," were observed, and fixed action patterns were described and anlyzed. Dominant fish engaged regularly in aggressive activities and never in submissive activities, whereas subordinate fish were observed in submissive activities on a regular basis and rarely in those that were aggressive. Activity levels were significantly higher in dominant fish; however, there was no difference in activity levels between pairs of equal and unequal size fish. A factor analysis indicated that there were three general categoris of behavior in juvenile channel catfish. In addition, two behaviors (which appeared to be displacement activities) were functioning in agnostic encounters. Plasma cortisol concentrations measured in sigle fish and pairs of fish in aquaria and individuals from a holding tank indicated that the least amount of stress occurred in fish that were not interacting with any other individuals. Cortisol levels, however, were lower that those associated with stress levels in fish from other studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号